【名师一号】2015高考数学(人教版A版)一轮配套题库:9-2用样本估计总体]

合集下载

【优化探究】2015届高考数学(人教A版·文科)总复习word版含详析:9-2 随机抽样 能力提升

【优化探究】2015届高考数学(人教A版·文科)总复习word版含详析:9-2 随机抽样 能力提升

[A 组 基础演练·能力提升]一、选择题1.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100解析:由题意知,样本容量是100,故选D. 答案:D2.(2014年东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:依题意有33+5+7×n =18,由此解得n =90,即样本容量为90.答案:B3.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33 ~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13 解析:间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数值为7.答案:B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:因为840∶42=20∶1,故编号在[481,720]内的人数为240÷20=12. 答案:B5.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7解析:四类食品的每一种被抽到的概率为 2040+10+30+20=15,∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.答案:C6.某校共有学生2 000名,各年级男、女生人数如下表所示:( ) A .24 B .18 C .16D .12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.答案:C 二、填空题7.(2014年滨州第一次模拟)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.解析:由题意知1245+15=30120+a,解得a =30. 答案:308.(2014年武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析:设第1组抽取的号码为b,则第n组抽取的号码为8(n-1)+b,∴8×(16-1)+b =126,∴b=6,故第1组抽取的号码为6.答案:69.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析:由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组抽出的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20(人).答案:3720三、解答题10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解析:用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.11.(2014年开封模拟)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解析:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.12.(能力提升)某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有问卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的问卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的问卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?解析:(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3 000+4 000=7 500,则抽样比:1207 500=2125,所以有500×2125=8,3 000×2125=48,4 0000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64. 分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本. ④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0001,0002,0003,…,3000. ②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

2015届高考数学(文)一轮复习备选练习9-3《用样本估计总体》(人教A版)word版含详析

2015届高考数学(文)一轮复习备选练习9-3《用样本估计总体》(人教A版)word版含详析

[B 组 因材施教·备选练习]1.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( )A .±14B .±12C .±128D .无法求解解析:这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4, 又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(3d )2+(2d )2+(d )2+0+(d )2+(2d )2+(3d )27=1, 即4d 2=1,解得d =±12. 答案:B2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m o ,平均值为x ,则( )A .m e =m o =xB .m e =m o <xC .m e <m o <xD .m o <m e <x解析:由图可知,30名学生的得分情况依次为得3分的有2人,得4分的有3人,得5分的有10人,得6分的有6人,得7分的有3人,得8分的有2人,得9分的有2人,得10分的有2人.中位数为第15、16个数(分别为5、6)的平均数,即m e =5.5,5出现的次数最多,故m o =5,x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m o <m e <x .故选D. 答案:D3.(2014年宜春模拟)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.解析:由频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x=0.3,即数学成绩落在[70,80)的频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71。

2015高考数学一轮课件:第9篇 第2节 用样本估计总体

2015高考数学一轮课件:第9篇 第2节 用样本估计总体

数学(第十人页,教编A辑版于星期·五理:科十三点 五(A十H五分) 。
基础梳理
课 时 训考练点 突 破
1.(2014潍坊一模)某校从参加高二年级学业水平测试的 学生中抽出100名学生,其数学成绩的频率分布直方图如图 所 示 . 其 中 成 绩 分 组 区 间 是 [40,50) , [50,60) , [60,70) , [70,80) , [80,90) , [90,100] . 则 成 绩 在 [80,100] 上 的 人 数 为 ()
数学(第二人十二教页A,版编辑于·星理期科五:十三(点AH五十) 五分。
基础梳理
(2)频率分布直方图:
课 时 训考练点 突 破
数学(第二人十三教页A,版编辑于·星理期科五:十三(点AH五十) 五分。
基础梳理
课 时 训考练点 突 破
(3)答对下述两条中的一条即可:
①该市一个月中空气污染指数有2天处于优的水平,占
数学(第十人五页教,A编版辑于星·期理五科:十三点(A五H十五) 分。
基础梳理
课 时 训考练点 突 破
解析:总体密度曲线是频率分布折线图在样本容量无限 大,组距无限小时一个理想曲线,是有关系的,故选项A错 误;由选项A解释知道,频率分布折线图只能无限趋近于总 体密度曲线,但不能说就是总体密度曲线,所以选项B错 误;同理选项C也错误;如果样本容量无限增大,分组的组 距无限缩小,那么频率分布折线图就会无限接近于一条光滑 的曲线,这条光滑的曲线就是总体密度曲线,故选D.
用茎叶图表示数据的优点是:(1)所有的信息都可以 从茎叶图中得到;(2)便于记录和读取,能够展示数 据的分布情况.缺点是:当样本数据较多或数据位 数较多时,茎叶图就显得不太方便
数学(第六人页,教编A辑版于星期·五理:科十三点 五(A十H五分) 。

2015届高考数学一轮总复习 10-2用样本估计总体

2015届高考数学一轮总复习 10-2用样本估计总体

2015届高考数学一轮总复习 10-2用样本估计总体基础巩固强化一、选择题1.(2013·重庆理,4)以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:min).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8[答案] C[解析] 由甲组数据中位数为15,可得x =5;而乙组数据的平均数16.8=9+15+(10+y )+18+245,可解得y =8,故选C.2.(2013·西宁模拟)已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( )A .±14B .±12C .±128D .无法求解[答案] B[解析] 这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(3d )2+(2d )2+d 2+0+d 2+(2d )2+(3d )27=4d 2=1,解得d =±12.3.已知一组正数x 1,x 2,x 3,x 4的方差为s 2=14(x 21+x 22+x 23+x 24-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为( )A .2B .3[解析] 设x 1,x 2,x 3,x 4的平均值为x -,则 s 2=14[(x 1-x -)2+(x 2-x -)2+(x 3-x -)2+(x 4-x -)2]=14(x 21+x 22+x 23+x 24-4x -2), ∴4x -2=16,∴x -=2,x -=-2(舍),∴x 1+2,x 2+2,x 3+2,x 4+2的平均数为4,故选C.4.(文)(2013·辽宁理,5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60 [答案] B[解析] 由频率分布直方图知,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50.故选B.(理)(2013·福建理,4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480[解析]由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图.由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27[答案] B[解析]前两组中的频数为100×(0.05+0.11)=16.∵后五组频数和为62,∴前三组为38.∴第三组为22.又最大频率为0.32,故最大频数为0.32×100=32.∴a=22+32=54,故选B.6.(文)(2013·六安一模)如图是2012年某校举办“激扬青春,勇担责任”演讲比赛上七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为()A.8587 B.8486C.8485 D.8586[答案] C[解析]由茎叶图知,评委为某选手打出的分数分别不79,84,84,84,86,87,93,去掉一个最高分和一个最低分后分数分别是84,84,84,86,87,所以中位数为84,平均数为15×(84+84+84+86+87)=85.(理)(2013·山东滨州一模)如图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,则去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6 D .85,4[答案] C[解析] 去掉一个最高分93和一个最低分79,所剩数据的平均数x -=84+84+86+84+875=85,方差s 2=15[(84-85)2×3+(86-85)2+(87-85)2]=1.6,故选C.二、填空题7.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试.对200名学生测试所得数据作出频率分布直方图如图所示,若次数在110以上(含110次)为达标,则从图中可以看出高一学生的达标率是________.[答案] 80%[解析] 次数在110以上(含110次)的频率之和为(0.04+0.03+0.01)×10=0.8,则高一学生的达标率为0.8×100%=80%.8.(文)将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于________.[答案] 60[解析] 由条件知,2+3+42+3+4+6+4+1×n =27,解得n =60.(理)容量为100的样本分为10组,若前7组频率之和为0.79,而剩下三组的频数成等比数列,且其公比不为1,则剩下的三组频数最大的一组的频率是________.[答案] 0.16或0.12[解析]后三组频数和为100(1-0.79)=21,设这三组频数依次为a、ap、ap2(a、p∈N*且p>1),由题意设得,a+ap+ap2=21,∵p>1,∴1+p+p2是21的大于3的约数,∴1+p+p2=21或1+p+p2=7,得p=4或p=2.当p=4时,频数最大值为16,频率为0.16;当p=2时,频数最大值为12,频率为0.12.9.(文)(2013·湖北理,11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示(1)直方图中x的值为________.(2)在这些用户中,用电量落在区间[100,250)内的户数为________.[答案](1)0.0044(2)70[解析]∵50×(0.0024+0.0036+0.006+x+0.0024+0.0012)=1,∴x=0.0044.用电量在区间[100,250)内的频率为50×(0.0036+0.006+0.0044)=0.7,∴户数为100×0.7=70(户).(理)(2013·北京西城一模)某年级120名学生在一次百米测试中,成绩全部介于13s与18s之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为,那么成绩在[16,18]的学生人数是________.[答案] 54[解析] 成绩在[16,18]的学生的人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54.三、解答题10.(2012·石家庄市二模)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)[解析] (1)(2)月均用水量的最低标准应定为2.5t.样本中月均用水量不低于2.5t 的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5t.(3)这100位居民的月均用水量的平均数为0.5×(14×0.10+34×0.20+54×0.30+74×0.40+94×0.60+114×0.30+134×0.10)=1.875(t).能力拓展提升一、选择题11.(文)某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( )A .90B .75C .60D .45 [答案] A[解析] 产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.(理)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为( )A .480B .440C .420D .400[答案] D[解析] 设第一、第二、第三小组的频率构成的等比数列公比为q ,第三、第四、第五、第六小组的频率构成的等差数列公差为d ,则由题意知即⎩⎪⎨⎪⎧0.16+0.16q +0.64q 2+6d =1,0.16q 2+3d =0.07. 消去d 得,16q 2+8q -35=0.∵q >0,∴q =54.∴第三组的频率P =0.16q 2=0.25.设男生总数为x ,则x ×25%=100,∴x =400.12.(2013·山东济南一模)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x -甲,x -乙和中位数y 甲,y 乙进行比较,下面结论正确的是( )A.x -甲>x -乙,y 甲>y 乙B.x -甲<x -乙,y 甲<y 乙 C.x -甲<x -乙,y 甲>y 乙 D.x -甲>x -乙,y 甲<y 乙 [答案] B[解析] 由茎叶图得x -甲=19+20+21+23+25+29+32+33+37+4110=28,x -乙=10+26+30+30+34+37+44+46+46+4710=35,y 甲=25+292=27,y 乙=34+372=35.5,∴x -甲<x -乙,y 甲<y 乙,故选B. 二、填空题13.(2013·福建莆田模拟)一组数据如茎叶图所示,若从中剔除2个数据,使得新数据组的平均数不变且方差最小,则剔除的2个数据的积等于________.[答案] 63[解析] 这组数据的平均数x -=3+8+12+11+13+16+217=12,由题意,剔除2个数据,平均数不变,且方差最小,则这两个数的和等于24且(x i -x -)2的和最大,所以这两个数为3与21,故剔除的2个数据的积等于3×21=63.14.(文)(2013·徐州模拟)学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n 的值为________.[答案] 100[解析] 由条件知,1-(0.01+0.024+0.036)×10=30n,∴n =100.(理)某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测这3000名学生在该次数学考试中成绩小于60分的学生数是________.[答案] 600[解析] 成绩小于60分的学生频率为:(0.002+0.006+0.012)×10=0.2 故3000名学生中成绩小于60分的学生数为:3000×0.2=600. 三、解答题15.(2013·东北三校联考)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5μm 的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095—2012,PM2.5日均值在35微克/m 3以下空气质量为一级;在35微克/m 3~75微克/m 3之间空气质量为二级;在75微克/m 3以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶):(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;(3)以这12天的PM2.5日均值来估计2012年的空气质量情况,估计2012年(按366天计算)中大约有多少天的空气质量达到一级或二级.[解析] (1)空气质量为超标的数据有四个:77,79,84,88, 平均数为x -=77+79+84+884=82.方差为s 2=14×[(77-82)2+(79-82)2+(84-82)2+(88-82)2]=18.5.(2)空气质量为二级的数据有五个:47,50,53,57,68,任取两个有十种可能结果:{47,50},{47,53},{47,57},{47,68},{50,53},{50,57},{50,68},{53,57},{53,68},{57,68},两个数据和小于100的结果有一种:{47,50}, 记“两个数据和小于100”为事件A ,则P (A )=110,即从空气质量为二级的数据中任取2个,这2个数据和小于100的概率为110.(3)空气质量为一级或二级的数据共8个,所以空气质量为一级或二级的频率为812=23, 366×23=244,所以,2012年的366天中空气质量达到一级或二级的天数估计为244天.16.(文)某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n 名同学进行调查.下表是这n 名同学的日睡眠时间的频率分布表.(1)求(2)统计方法中,同一组数据常用该组区间的中点值(例如区间[4,5)的中点值是4.5)作为代表.若据此计算的上述数据的平均值为6.52,求a 、b 的值,并由此估计该学校学生的日平均睡眠时间在7小时以上的概率.[解析] (1)由频率分布表可得n =60.12=50.补全数据如下表频率分布直方图如下:(2)由题意知,⎩⎪⎨⎪⎧150(6×4.5+10×5.5+a ×6.5+b ×7.5+4×8.5)=6.52,6+10+a +b +4=50. 解得a =15,b =15.设“该学校学生的日平均睡眠时间在7小时以上”为事件A , 则P (A )≈15+450=0.38答:该学校学生的日平均睡眠时间在7小时以上的概率约为0.38.(理)某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180min 到330min 之间,按他们学习时间的长短分5个组统计得到如下频率分布表:(1)求分布表中s 、t (2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这40名学生中按时间用分层抽样的方法抽取20名学生进行研究,问应抽取多少名第一组的学生?(3)已知第一组的学生中男、女生均为2人,在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.[解析] (1)s =840=0.2,t =1-0.1-s -0.3-0.25=0.15.(2)设应抽取x 名第一组的学生,则x 4=2040,得x =2.故应抽取2名第一组的学生.(3)在(2)的条件下应抽取2名第一组的学生. 记第一组中2名男生为a 1,a 2,2名女生为b 1,b 2,按时间用分层抽样的方法抽取2名第一组的学生共有6种等可能的结果,列举如下: a 1a 2,a 1b 1,a 1b 2,a 2b 1,a 2b 2,b 1b 2.其中既有男生又有女生被抽中的有a 1b 1,a 1b 2,a 2b 1,a 2b 2,共4种结果, 所以既有男生又有女生被抽中的概率为P =46=23.考纲要求1.了解频率分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. 补充说明1.编制频率分布直方图的步骤如下:①求极差:极差是一组数据的最大值与最小值的差.②决定组距和组数:当样本容量不超过100时,常分成5~12组.组距=极差组数.③将数据分组:通常对组内数值所在区间取左闭右开区间,最后一组取闭区间,也可以将样本数据多取一位小数分组;④列频率分布表:登记频数,计算频率,列出频率分布表.将样本数据分成若干小组,每个小组内的样本个数称为频数,频数与样本容量的比值叫做这一小组的频率.频率反映数据在每组所占比例的大小.⑤绘制频率分布直方图:把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.2.频率分布折线图(1)把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图. (2)总体密度曲线如果样本容量不断增大,分组的组距不断缩小,则频率分布折线图实际上越来越接近于一条光滑曲线,这条光滑的曲线就叫总体密度曲线.3.茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.4.方差是刻画一组数据离散程度的量,它反映一组数据围绕平均数波动的大小.方差越大,这组数据波动越大,越分散.讨论产品质量、售价高低、技术高低、产量高低、成绩高低、寿命长短等等问题,一般都是通过方差来体现.计算方差时,要依据所给数据的特点恰当选取公式以简化计算.备选习题1.从某女子跳远运动员的多次测试中,随机抽取20次成绩作为样本,按各次的成绩(单位:cm)分成五组,第一组[490,495),第二组[495,500),第三组[500,505),第四组[505,510),第五组[510,515],相应的样本频率分布直方图如图所示.(1)样本落入第三组[500,505)的频数是多少?(2)现从第二组和第五组的所有数据中任意抽取两个,分别记为m、n,求事件“|m-n|≤5”的概率.[解析](1)由频率分布直方图可知,样本落入[500,505)的频率是1-(0.01+0.02+0.04+0.03)×5=0.5,所以,样本落入[500,505)的频数是0.5×20=10.(2)第二组中有0.02×5×20=2个数据,记为a、b;第五组中有0.03×5×20=3个数据,记为A、B、C.则{m,n}的所有可能结果为{a,b},{a,A},{a,B},{a,C},{b,A},{b,B},{b,C},{A,B},{A,C},{B,C},共10种.其中使|m-n|≤5成立的有{a,b},{A,B},{A,C},{B,C},共4种.所以事件“|m-n|≤5”的概率为P=410=25.2.(2013·烟台四校联考)据悉2012年山东省高考要将体育成绩作为参考,为此,济南市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0m(精确到0.1m)以上的为合格.把所得数据进行整理后,分成6组,并画出频率分布直方图的一部分如图所示.已知从左到右前5个小组的对应矩形的高分别为0.04,0.10,0.14,0.28,0.30,且第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出该中位数在第几组内,并说明理由. [解析] (1)由题易知,第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)×1=0.14, ∴此次测试的总人数为70.14=50.∴这次铅球测试成绩合格的人数为(0.28×1+0.30×1+0.14×1)×50=36.(2)直方图中位数两侧的矩形面积和相等,即频率和相等,前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内.。

年高考数学一轮复习 真题模拟汇编 9-2 用样本估计总体 理

年高考数学一轮复习 真题模拟汇编 9-2 用样本估计总体 理

2015年高考数学一轮复习真题模拟汇编 9-2 用样本估计总体理1. [2013·重庆高考]下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A. 0.2B. 0.4C. 0.5D. 0.6解析:由茎叶图知落在区间[22,30)内的数据有22,22,27,29,共4个,因为共有10个数据,所以数据落在区间[22,30)内的频率为410=0.4,故选B.答案:B2. [2014·江西模拟]为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则( )A. m e=m o=xB. m e=m o<xC. m e<m o<xD. m o<m e<x解析:由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15个数和第16个数(分别为5,6)的平均数,即m e=5.5,5出现次数最多,故m o=5,x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m o <m e <x .故选D.答案:D3. [2013·安徽高考]某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A. 这种抽样方法是一种分层抽样B. 这种抽样方法是一种系统抽样C. 这五名男生成绩的方差大于这五名女生成绩的方差D. 该班男生成绩的平均数小于该班女生成绩的平均数解析:若抽样方法是分层抽样,男生、女生应分别抽取6人、4人,所以A 错;由题目看不出是系统抽样,所以B 错;这五名男生成绩的平均数x 1=86+94+88+92+905=90,这五名女生成绩的平均数x 2=88+93+93+88+935=91,故这五名男生成绩的方差为15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,这五名女生成绩的方差为15[(88-91)2×2+(93-91)2×3]=6,所以这五名男生成绩的方差大于这五名女生成绩的方差,但该班男生成绩的平均数不一定小于女生成绩的平均数,所以D 错,故选C.答案:C4. [2014·泰州模拟]如图是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为10,则抽取的学生人数是________.解析:后两组的频率和是5×(0.0125+0.0375)=0.25.故第2小组的频率是(1-0.25)×26=0.25,所以抽取的学生人数是100.25=40.答案:405. [2014·沈阳模拟]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):________.解析:x 甲=x 乙=9环,s 2甲=15[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定,故填甲. 答案:甲。

2015届高考数学第一轮复习精讲(课前准备+课堂活动小结+课后练习)用样本估计总体导学案(新人教A版)文

2015届高考数学第一轮复习精讲(课前准备+课堂活动小结+课后练习)用样本估计总体导学案(新人教A版)文

学案57 用样本估计总体导学目标: 1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.自主梳理1.在频率分布直方图中,纵轴表示__________________,数据落在各小组内的频率用________________表示,所有长方形面积之和________.2.作频率分布直方图的步骤(1)求极差(即一组数据中________与________的差); (2)决定________与________; (3)将数据________; (4)列________________; (5)画________________.3.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的________,就得频率分布折线图.(2)总体密度曲线:随着__________的增加,作图时____________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.4.当样本数据较少时,茎叶图表示数据的效果较好,一是统计图上没有原始数据丢失,二是方便记录与表示,但茎叶图一般只便于表示两位有效数字的数据.5.众数、中位数、平均数(1)在一组数据中,出现次数________的数据叫做这组数据的众数.(2)将一组数据按大小依次排列,把处在________位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数.(3)如果有n 个数x 1,x 2,……,x n ,那么x =____________叫做这n 个数的平均数. 6.标准差和方差(1)标准差是样本数据到平均数的一种____________. (2)标准差:s = ________________________.(3)方差:s 2=________________________________(x n 是样本数据,n 是样本容量,x 是样本平均数).自我检测1.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b)是其中的一组,抽查出的个体在该组上的频率为m ,该组在频率分布直方图的高为h ,则|a -b|等于( )A .hmB .h mC .mhD .h +m2.(2010·福建)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和923.(2011·滨州模拟)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.25 4.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A . 65B .65C . 2D .25.(2010·江苏)某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有______根棉花纤维的长度小于20 mm .探究点一 频率分布直方图 例1 (2011·福州调研)如图是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500))(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这段应抽多少人?(3)试估计样本数据的中位数.变式迁移1 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 值分别为( )A.0.27,78 B.0.27,83C.2.7,78 D.2.7,83探究点二用样本数字特征估计总体数字特征例2甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:s1、s2、s3()A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1变式迁移2甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有.探究点三用茎叶图分析数据例3随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.变式迁移3(2011·汉沽模拟)某班甲、乙两学生的高考备考成绩如下:甲:512554528549536556534541522538乙:515558521543532559536548527531(1)用茎叶图表示两学生的成绩;(2)分别求两学生成绩的中位数和平均分.1.几种表示频率分布的方法的优点与不足:(1)频率分布表在数量表示上比较确切,但不够直观、形象,分析数据分布的总体态势不太方便.(2)频率分布直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式.但从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(3)频率分布折线图的优点是它反映了数据的变化趋势,如果样本容量不断增大,分组的组距不断缩小,那么折线图就趋向于总体分布的密度曲线.(4)用茎叶图优点是原有信息不会抹掉,能够展示数据的分布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,标准差、方差越小,数据的离散程度越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·陕西)如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x 和x B,样本标准差分别为s A和s B,则()AA.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B2.(2011·宁波期末)10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A .a>b>cB .b>c>aC .c>a>bD .c>b>a 3.(2011·金华十校模拟)为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后五组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .274.下图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4 5.(2011·四川)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( ) A .16 B .13 C .12 D .23二、填空题(每小题4分,共12分) 6.(2010·天津)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为______和_________________________.7.(2010·福建)将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 等于________.8.(2011·江苏)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.三、解答题(共38分)9.(12分)甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.10.(12分)(2010·湖北)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).(1)在下面表格中填写相应的频率;(2)估计数据落在[1.15,中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.11.(14分)(2010·安徽)某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95, 91,77,86,81,83,82,82,64,79,86,85,75,71,49,45. (1)完成频率分布表. (2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.学案57 用样本估计总体自主梳理1.频率与组距的比值 小长方形的面积 等于1 2.(1)最大值 最小值 (2)组距 组数 (3)分组 (4)频率分布表 (5)频率分布直方图 3.(1)中点 (2)样本容量 所分的组数5.(1)最多 (2)中间 (3)x 1+x 2+…+x nn6.(1)平均距离(2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](3)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] 自我检测1.C 2.A 3.A 4.D 5.30课堂活动区例1 解题导引 (1)解关于图形信息题的关键是正确理解各种统计图表中各个量的含义,灵活运用这些信息和数据去发现结论.(2)在频率分布直方图中,最高矩形的中点对应值是众数;而中位数的左右两边的直方图面积相等;平均数是直方图的“重心”.解 (1)∵月收入在[1 000,1 500)的概率为0.000 8×500=0.4,且有4 000人,∴样本的容量n =4 0000.4=10 000;月收入在[1 500,2 000)的频率为0.000 4×500=0.2; 月收入在[2 000,2 500)的频率为0.000 3×500=0.15; 月收入在[3 500,4 000)的频率为0.000 1×500=0.05. ∴月收入在[2 500,3 500)的频率为 1-(0.4+0.2+0.15+0.05)=0.2.∴样本中月收入在[2 500,3 500)的人数为 0.2×10 000=2 000.(2)∵月收入在[1 500,2 000)的人数为 0.2×10 000=2 000,∴再从10 000人中用分层抽样方法抽出100人,则月收入在[1 500,2 000)的这段应抽取100×2 00010 000=20(人).(3)由(1)知月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5, ∴样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750(元).变式迁移1 A [由频率分布直方图知组距为0.1.4.3~4.4间的频数为100×0.1×0.1=1. 4.4~4.5间的频数为100×0.1×0.3=3. 又前4组的频数成等比数列,∴公比为3. 从而4.6~4.7间的频数最大,且为1×33=27. ∴a =0.27.根据后6组频数成等差数列,且共有100-13=87(人).设公差为d ,则6×27+6×52d =87.∴d =-5,从而b =4×27+4×32×(-5)=78.]例2 B [由已知可得甲、乙、丙的平均成绩均为8.5.方法一 ∵s 21=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2], ∴s 1=120[5×(7-8.5)2+5×(8-8.5)2+5×(9-8.5)2+5×(10-8.5)2] =2520.同理s 2=2920,s 3=2120,∴s 2>s 1>s 3.方法二 ∵s 21=1n(x 21+x 22+…+x 2n )-x 2, ∴s 21=120(5×72+5×82+5×92+5×102)-8.52=73.5-72.25=1.25=54, ∴s 1=2520.同理s 2=2920,s 3=2120,∴s 2>s 1>s 3.] 变式迁移2 甲解析 x 甲=x 乙=9,s 2甲=15[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25, s 2乙=15[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定,故选甲. 例3 解题导引 茎叶图在样本数据较少,较为集中且位数不多时比较适用.由于它较好地保留了原始数据,所以可以帮助我们分析样本数据的大致频率分布,还可以用来分析样本数据的一些数字特征.但当样本数据较多时,茎叶图就显得不太方便了.因为数据较多时,枝叶就会很长,需要占据较多的空间.解 (1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班.(2)x =158+162+163+168+168+170+171+179+179+18210=170,甲班的样本方差为 110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设身高为176 cm 的同学被抽中的事件为A ,从乙班10名同学中抽中两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A 含有4个基本事件,∴P(A)=410=25.变式迁移3 解 (1)两学生成绩的茎叶图如图所示.(2)将甲、乙两学生的成绩从小到大排列为:甲:512 522 528 534 536 538 541 549 554 556 乙:515 521 527 531 532 536 543 548 558 559 从以上排列可知甲学生成绩的中位数为 536+5382=537. 乙学生成绩的中位数为532+5362=534.甲学生成绩的平均分为500+12+22+28+34+36+38+41+49+54+5610=537,乙学生成绩的平均分为500+15+21+27+31+32+36+43+48+58+5910=537.课后练习区1.B [A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .]2.D [平均数a =110(15+17+14+10+15+17+17+16+14+12)=14.7.中位数b =15,众数c =17.∴c>b>a.]3.B [前两组中的频数为100×(0.05+0.11)=16. ∵后五组频数和为62,∴前三组为38.∴第三组为22.又最大频率为0.32的最大频数为0.32×100=32,∴a =22+32=54.] 4.C [去掉最高分93,最低分79,平均数为15(84+84+86+84+87)=85,方差s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=85=1.6.]5.B [由条件可知,落在[31.5,43.5)的数据有12+7+3=22(个),故所求概率约为2266=13.]6.24 23解析 x 甲=110(10×2+20×5+30×3+17+6+7)=24,x 乙=110(10×3+20×4+30×3+17+11+2)=23.7.60解析 ∵第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,∴前三组频数为2+3+420·n =27,故n =60. 8.3.2解析 x =10+6+8+5+65=7,∴s 2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165=3.2. 9.解 (1)甲、乙两人五次测试的成绩分别为: 甲 10分 13分 12分 14分 16分 乙 13分 14分 12分 12分 14分甲、乙两人的平均成绩x 甲=x 乙,都是13分,(4分)s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (8分)(2)由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本上呈上升状态,而乙的成绩在平均线上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.(12分)10.解 (1)/组距),故可得下表:(6分)(2)因为0.30+0.15+0.02=0.47,所以数据落在[1.15,1.30)中的概率约为0.47.(9分)(3)因为120×1006=2 000,所以水库中鱼的总条数约为2 000.(12分) 11.解 (1)(5分)(2)频率分布直方图如图所示.(10分)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.(14分)。

【名师一号】2019高考数学(人教版a版)一轮配套题库:9-2用样本估计总体

【名师一号】2019高考数学(人教版a版)一轮配套题库:9-2用样本估计总体

第二节用样本估计总体时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2018·重庆卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4C.0.5 D.0.6解析由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.答案 B2.(2018·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.答案 D3.(2018·四川卷)某学校随机抽取20个班,调查各班中有上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()解析 由茎叶图知,各组频数统计如下表:答案 A4.(2018·河南郑州预测)PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定解析 由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A. 答案 A5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:A .甲B .乙C .丙D .丁解析 由题目表格中数据可知,丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好,选C. 答案 C6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y ,x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n)z =(m +n)αx +(m +n)(1-α)y , 所以n x +m y =(m +n)αx +(m +n)(1-α)y .所以⎩⎪⎨⎪⎧n =+α,m =+-α于是有n -m =(m +n)[α-(1-α)]=(m +n)(2α-1).因为0<α<12,所以2α-1<0.所以n -m <0,即n <m. 答案 A二、填空题(本大题共3小题,每小题5分,共15分)7.某校举行2019年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.解析 根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85. 答案 858.(2018·武汉调研)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.解析 由频率分布直方图知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.答案 0.012 5 729.(2018·安徽联考)已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1x+y 的最小值为__________.解析 由已知得3≤x≤5,1+3+x -y4=1, ∴y =x ,∴1x +y =1x +x ,又函数y =1x +x 在[3,5]上单调递增,∴当x =3时取最小值103. 答案103三、解答题(本大题共3小题,每小题10分,共30分)10.(2018·衡阳调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:波动较小?解 x 甲=110×(0×3+1×2+2×3+3×1+4×1)=1.5, x 乙=110×(0×2+1×5+2×2+3×1)=1.2,s 2甲=110×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-1.5)2]=1.65, s 22=110×[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-1.2)2]=0.76. 从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.11.(2018·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t 该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 解 (1)当X ∈[100,130)时,T =500X -300(130-X) =800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X<130,65 000,130≤X≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.12.(2018·安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2,估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n. 由题意知,30n=0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-5 30=56.(2)设甲、乙两校样本平均数分别为x′1,x′2.根据样本茎叶图可知,30(x′1-x′2)=30x′1-30x′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x′1-x′2=0.5.故x1-x2的估计值为0.5分.。

【与名师对话】2015高考数学一轮复习9.2用样本估计总体课时作业理(含解析)新人教a版

【与名师对话】2015高考数学一轮复习9.2用样本估计总体课时作业理(含解析)新人教a版

【与名师对话】2015高考数学一轮复习 9.2 用样本估计总体课时作业理(含解析)新人教A版一、选择题1.(2013·厦门市高三质检)某雷达测速区规定:凡车速大于或等于80 km/h的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( )A.20辆 B.40辆 C.60辆 D.80辆解析:由图知车速大于或等于80 km/h的频率为0.1,被罚车辆大约为200×0.1=20辆,选A.答案:A2.(2013·武汉调研测试)某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为( )A .0.006B .0.005C .0.004 5D .0.002 5解析:频率分布直方图中、各个矩形的面积和为1,所以20a +0.2+0.3+0.4=1,∴a =0.005.答案:B3.(2013·安徽亳州高三摸底联考)样本中共有五个个体,其值分别为a,2,3,4,5,若该样本的平均值为3,则样本方差为( )A.65 B.65C. 2 D .2 解析:由a +2+3+4+55=3得a =1∴方差S 2=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.∴故答案为D. 答案:D4.(2013·石家庄第二次模拟)给定一组数据x 1,x 2,…,x 20,若这组数据的方差为3,则数据2x 1+3,2x 2+3,…,2x 20+3的方差为( )A .6B .9C .12D .15解析:由D (a ξ+b )=a 2D (ξ),可知2x 1+3,2x 2+3,…,2x 20+3的方差为12.故选C. 答案:C5.(2012·陕西卷)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙解析:由题图可得x 甲=34516=21.562 5,m 甲=20,x 乙=45716=28.562 5,m 乙=29, 所以x 甲<x 乙,m 甲<m 乙.故选B. 答案:B6.(2012·安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:由图可得,x 甲=4+5+6+7+85=6,x 乙=3×5+6+95=6,故A 错;而甲的成绩的中位数为6,乙的成绩的中位数为5,故B 错;s 2甲=4-6 2+ 5-6 2+ 6-6 2+ 7-6 2+ 8-6 25=2,s 2乙=3× 5-6 2+ 6-6 2+ 9-625=2.4,故C 正确;甲的成绩的极差为4,乙的成绩的极差也为4,故D 错.答案:C 二、填空题7.(2013·贵州省六校第一次联考)某同学学业水平考试的9科成绩如茎叶图所示,则根据茎叶图可知该同学的平均分为________.解析:由茎叶图可知该同学的分数由个位及十位数组成,个位数的平均数与十位数的平均数之和为该同学的平均数,所以平均分为:x =1×60+4×70+3×80+1×909+3×8+2×9+2×2+1+39=670+509=80.答案:808.(2013·马鞍山第一次质检)已知总体的各个个体的值由小到大依次为3,7,a ,b,12,20,且总体的中位数为12,若要使该总体的标准差最小,则a =________.解析:总体的中位数为a +b2=12,即a +b =24,数据是从小到大排列的7≤a ≤b ≤12,∴a =b =12.答案:129.(2013·保定市高三第一次模拟)一个频率分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是________.解析:由已知样本数据在[20,60)上的频率为0.6,故在[20,60)上的数据为30,则在[40,50),[50,60)内的数据个数之和为21.答案:21三、解答题10.为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,4 000)的频率; (2)根据频率分布直方图估算样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)居民月收入在[3 000,4 000)的频率为(0.000 3+0.000 1)×500=0.2. (2)第一组和第二组的频率之和为(0.000 2+0.000 4)×500=0.3, 第三组的频率为0.000 5×500=0.25, 因此,可以估算样本数据的中位数为 2 000+0.5-0.30.25×500=2 400(元).(3)第四组的人数为0.000 5×500×10 000=2 500,因此月收入在[2 500,3 000)的这段应抽2 500×10010 000=25(人).11.某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700],由于工作中不慎将部分数据丢失,现有以下部分图表:(2)求图2中阴影部分的面积;(3)若电子元件的使用时间超过300h 为合格产品,求这批电子元件合格的概率. 解:(1)由题意可知0.1=A ·100,∴A =0.001, ∵0.1=B200,∴B =20,又C =0.1,D =30200=0.15,E =0.2×200=40,F =0.4×200=80,G =20200=0.1,∴H =10,I =10200=0.05.(2)阴影部分的面积为0.4+0.1=0.5.(3)电子元件的使用时间超过300 h 的共有40+80+20+10=150个,故这批电子元件合格的概率P =150200=34.[热点预测]12.(1)(2013·莆田质检)一组数据如茎叶图所示.若从中剔除2个数据,使得新数据组的平均数不变且方差最小,则剔除的2个数据的积等于________.(2)(2013·江门佛山两市质检)为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如下图),那么在这100株树木中,底部周长小于110cm 的株数是( )A .30B .60C .70D .80解析:(1)这组数据的平均数x =3+8+12+11+13+16+217=12,若剔除两个数据后平均数不变,则这两个数之和为24.若使方差最小,则这两个数应与12的差较大,所以剔除3和21,其乘积为3×21=63.(2)100×(0.1+0.2+0.4)=70. 答案:(1)63 (2)C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节用样本估计总体
时间:45分钟分值:75分
一、选择题(本大题共6小题,每小题5分,共30分)
1.(2013·重庆卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()
A.0.2 B.0.4
C.0.5 D.0.6
解析由茎叶图可知数据落在区间[22,30)内的频数为4,所以数
据落在区间[22,30)内的频率为4
10=0.4,故选B.
答案 B
2.(2013·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()
A .0.09
B .0.20
C .0.25
D .0.45
解析 由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.
答案
D
3.(2013·四川卷)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是(
)
解析 由茎叶图知,各组频数统计如下表:
答案 A
4.(2014·河南郑州预测)PM 2.5是指大气中直径小于或等于2.5微
米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()
A.甲B.乙
C.甲乙相等D.无法确定
解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A.
答案 A
5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:
最佳人选是()
A.甲B.乙
C.丙D.丁
解析由题目表格中数据可知,丙平均环数最高,且方差最小,
说明丙技术稳定,且成绩好,选C.
答案 C
6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<1
2,则n ,m 的大小关系为( )
A .n <m
B .n >m
C .n =m
D .不能确定
解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,
所以n x +m y =(m +n )αx +(m +n )(1-α)y .
所以⎩
⎪⎨⎪⎧
n =(m +n )α,m =(m +n )(1-α).
于是有n -m =(m +n )[α-(1-α)] =(m +n )(2α-1).
因为0<α<1
2,所以2α-1<0. 所以n -m <0,即n <m . 答案 A
二、填空题(本大题共3小题,每小题5分,共15分)
7.某校举行2014年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.
解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.
答案85
8.(2014·武汉调研)
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则
(1)图中的x=________;
(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.解析由频率分布直方图知20x=1-20×(0.025+0.006 5+0.003+0.003),解得x=0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.
答案0.012 572
9.(2014·安徽联考)已知x是1,2,3,x,5,6,7这七个数据的中位数,
且1,3,x ,-y 这四个数据的平均数为1,则1
x +y 的最小值为__________.
解析 由已知得3≤x ≤5,1+3+x -y
4=1, ∴y =x ,
∴1x +y =1x +x ,又函数y =1
x +x 在[3,5]上单调递增,∴当x =3时取最小值10
3.
答案 103
三、解答题(本大题共3小题,每小题10分,共30分) 10.(2014·衡阳调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:
10天生产中出次品的平均数较小?出次品的波动较小?
解 x 甲=1
10×(0×3+1×2+2×3+3×1+4×1)=1.5, x 乙=1
10×(0×2+1×5+2×2+3×1)=1.2,
s 2
甲=1
10×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-
1.5)2]=1.65,
s 22=
110
×[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2
+(1-1.2)2]=0.76.
从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.
11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T 表示为X 的函数;
(2)根据直方图估计利润T 不少于57 000元的概率. 解 (1)当X ∈[100,130)时,T =500X -300(130-X ) =800X -39 000.
当X ∈[130,150]时,T =500×130=65 000.
所以T =⎩
⎪⎨⎪⎧
800X -39 000,100≤X <130,65 000,130≤X ≤150.
(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150. 由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.
12.(2013·安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2, 估计x 1-x 2的值.
解 (1)设甲校高三年级学生总人数为n . 由题意知,30
n =0.05,即n =600.
样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=5
6.
(2)设甲、乙两校样本平均数分别为x ′1,x ′2.
根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.
因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。

相关文档
最新文档