苯-氯苯板式精馏塔工艺设计

合集下载

苯氯苯板式精馏塔的工艺设计

苯氯苯板式精馏塔的工艺设计

苯氯苯板式精馏塔的工艺设计工艺计算书〔精馏段局部〕化学与环境工程学院化工与资料系2004年5月27日课程设计标题一——苯-氯苯板式精馏塔的工艺设计一、设计标题设计一座苯-氯苯延续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。

原料液中含氯苯为35%〔以上均为质量%〕。

二、操作条件1.塔顶压强4kPa〔表压〕;2.进料热状况,自选;3.回流比,自选;4.塔釜加热蒸汽压力506kPa;5.单板压降不大于0.7kPa;6.年任务日330天,每天24小时延续运转。

三、设计内容1.设计方案确实定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学功用的设计计算;5.塔板负荷功用图的绘制;6.塔的工艺计算结果汇总一览表;7.辅佐设备的选型与计算;8.消费工艺流程图及精馏塔工艺条件图的绘制;9.对本设计的评述或对有关效果的剖析与讨论。

四、基础数据p〔mmHg〕1.组分的饱和蒸汽压i2.组分的液相密度ρ〔kg/m 3〕纯组分在任何温度下的密度可由下式计算苯 t A 187.1912-=ρ 引荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 引荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。

3.组分的外表张力σ〔mN/m 〕双组分混合液体的外表张力m σ可按下式计算:AB B A BA m x x σσσσσ+=〔B A x x 、为A 、B 组分的摩尔分率〕4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01238.012⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c 〔氯苯的临界温度:C ︒=2.359c t 〕5.其他物性数据可查化工原理附录。

附参考答案:苯-氯苯板式精馏塔的工艺计算书〔精馏段局部〕苯-氯苯板式精馏塔的工艺计算书〔精馏段局部〕一、设计方案确实定及工艺流程的说明原料液经卧式列管式预热器预热至泡点后送入延续板式精馏塔〔筛板塔〕,塔顶上升蒸汽流采用强迫循环式列管全凝器冷凝后一局部作为回流液,其他作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。

苯氯苯板式精馏塔的工艺设计工艺计算书

苯氯苯板式精馏塔的工艺设计工艺计算书

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分)化学与环境工程学院化工与材料系2004年5月27日课程设计题目一——苯-氯苯板式精馏塔的工艺设计一、设计题目设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。

原料液中含氯苯为35%(以上均为质量%)。

二、操作条件1.塔顶压强4kPa(表压);2.进料热状况,自选;3.回流比,自选;4.塔釜加热蒸汽压力506kPa;5.单板压降不大于0.7kPa;6.年工作日330天,每天24小时连续运行。

三、设计内容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.辅助设备的选型与计算;8.生产工艺流程图及精馏塔工艺条件图的绘制;9.对本设计的评述或对有关问题的分析与讨论。

四、基础数据1.组分的饱和蒸汽压οi p(mmHg)2.组分的液相密度ρ(kg/m 3)纯组分在任何温度下的密度可由下式计算苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。

3.组分的表面张力σ(mN/m )双组分混合液体的表面张力m σ可按下式计算:AB B A BA m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率)4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01238.012⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )5.其他物性数据可查化工原理附录。

附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分)苯-氯苯板式精馏塔的工艺计算书(精馏段部分)一、设计方案的确定及工艺流程的说明原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。

苯-氯苯板式精馏塔工艺设计

苯-氯苯板式精馏塔工艺设计

化工原理设计任务书一、题目:苯-氯苯板式精馏塔设计二、设计任务及操作条件设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯20000+1000n 吨(n代表学号后两位),塔顶馏出液中含氯苯不得高于:2%(单号)、3%(双号)(以上均为质量分率)。

1、塔顶压力:4kpa(表压)2、原料液中含氯苯(质量分率):40%(单号)、45%(双号)3、进料热状况:泡点4、回流比:自选5、塔底加热蒸汽压力:0.5MPa6、单板压降:≤0.7kpa7、全塔效率:ET=58%8、厂址:家乡地区三、塔板类型:自定(一般选筛板或浮阀塔板(F1型))四、基础数据ip(mmHg)纯组分在任何温度下的密度可由下式计算苯t A187.1912-=ρ氯苯t B111.11127-=ρ式中的t为温度,℃。

σ双组分混合液体的表面张力m可按下式计算:AB B A B A m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01212⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )5.其他物性数据可查化工原理附录及其他文献。

目录第1章前言 (1)第2章产品与设计方案简介 (2)2.1 产品性质、质量指标 (2)2.2 设计方案简介 (3)2.3 工艺流程及说明 (3)第3章工艺计算及主体设备设计 (4)3.1 全塔的物料衡算 (4)3.1.1 料液及塔顶底产品含苯的摩尔分率 (4)3.1.2 平均摩尔质量 (4)3.1.3 料液及塔顶底产品的摩尔流率 (4)3.1.4 确定操作的回流比R (5)3.1.5 精馏塔的气液相负荷 (5)3.1.6 操作线方程 (6)3.2 塔板数的确定 (6)3.2.1 理论塔板层数N的确定 (6)T3.2.2 实际塔板数 (7)3.3 精馏塔的工艺条件及有关物性数据的计算 (7)3.3.1 操作压力的计算 (7)3.3.2 操作温度的计算 (7)3.3.3 平均摩尔质量计算 (7)3.3.4 平均密度计算 (8)3.3.5 液相平均表面张力 (9)3.3.6 液相平均粘度计算 (9)第4章精馏塔的塔体工艺尺寸计算 (10)4.1 塔径的计算 (10)4.2 精馏塔有效高度的计算 (11)第5章塔板工艺结构尺寸的设计与计算 (12)5.1 溢流装置 (12)5.2 塔板布置 (12)5.3 开孔数n和开孔率φ (13)第6章塔板上的流体力学验算 (13)6.1 气体通过筛板压降p h和p pΔ的验算 (13)6.2 雾沫夹带量v e的验算 (14)6.3 漏液的验算 (14)第7章塔板负荷性能图 (15)7.1 漏液线(气相负荷下限线) (15)7.2 雾沫夹带线 (16)7.3 液相负荷下限线 (16)7.4 液相负荷上限线 (16)7.5 液泛线 (17)第8章板式塔结构与附属设备 (19)8.1 塔高 (19)8.1.1 塔顶空间 (19)8.1.2 塔底空间 (19)8.1.3 人孔数目 (19)8.2 接管尺寸计算 (19)8.2.1 塔顶蒸汽出口管径 (19)8.2.2 回流液管径 (20)8.2.3 加料管径 (20)8.2.4 料液排出管径 (20)8.2.5 饱和蒸汽管径 (20)8.3 附属设备设计 (21)8.3.1 塔顶冷凝器 (21)8.3.2 塔底再沸器 (21)8.3.3 进料预热器 (21)8.3.4 泵型号设计 (22)第9章筛板塔设计计算结果 (23)第10章主要符号说明 (24)第11章结果与结论 (24)11.1 结果: (24)11.2 结论: (25)第12章收获与致谢 (25)第1章前言课程设计是化工原理最后一个全面总结性教学环节,是进一步巩固、深化和具体基本技能的重要课程,是培养学生综合运用所学知识与理论去独立完成某一化工生产设计任务的一次全面训练。

苯~氯苯板式精馏塔工艺设计年产99.8%的氯苯万吨

苯~氯苯板式精馏塔工艺设计年产99.8%的氯苯万吨

化工原理课程设计说明书设计题目:苯-氯苯板式精馏塔工艺设计设计者: 日期: 组员:指导老师:设计成绩:毕业设计题目——年产6万吨氯苯精馏工段板式精馏塔设计一、设计题目试设计一座年产6万吨的氯苯连续精馏塔,要求年产纯度为99.8%的氯苯60000吨,塔顶馏出液中含氯苯不高于2%。

原料液中含氯苯为38%(以上均为质量%)。

设计区域符合西北地区的情况二、操作条件1.塔顶压强4kPa(表压);2.进料热状况,泡点进料;3.回流比,2R min;4.塔釜加热蒸汽压力0.5MPa(表压);5.单板压降不大于0.7kPa;6.年工作日300天,每天24小时连续运行。

三、设计容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.生产工艺流程图及精馏塔工艺条件图的绘制;8.对本设计的评述或对有关问题的分析与讨论。

四、基础数据ο2.组分的液相密度ρ(kg/m3)纯组分在任何温度下的密度可由下式计算苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ式中的t 为温度,℃。

3.组分的表面力σ(mN/m )双组分混合液体的表面力m σ可按下式计算:AB B A B A m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01238.012⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )5.其他物性数据可查化工原理附录。

目录一、前言 (2)二、产品与设计方案简介 (3)(一)产品性质、质量指标 (3)(二)设计方案简介 (4)(三)工艺流程及说明 (4)三、工艺计算及主体设备设计 (5)(一)全塔的物料衡算 (5)1)料液及塔顶底产品含苯的摩尔分率 (5)2)平均摩尔质量 (6)3)料液及塔顶底产品的摩尔流率 (6)(二)塔板数的确定 (6)1)理论塔板数的求取 (6)2)实际塔板数 (8)(三)塔的精馏段操作工艺条件及相关物性数据的计算 (9)1)平均压强 (9)2)平均温度 (9)3)平均分子量 (9)4)平均密度 (10)5)液体的平均表面力 (10)6)液体的平均粘度 (11)(四)精馏段的汽液负荷计算 (11)(五)塔和塔板主要工艺结构尺寸的计算 (11)1)塔径 (11)2)塔板工艺结构尺寸的设计与计算 (12)(六)塔板上的流体力学验算 (14)1)气体通过筛板压降和的验算 (14)2)雾沫夹带量的验算 (16)3)漏液的验算 (16)4)液泛的验算 (16)(七)塔板负荷性能图 (17)1)雾沫夹带线(1) (17)2)液泛线(2) (17)3)液相负荷上限线(3) (18)4)漏液线(气相负荷下限线)(4) (18)5)液相负荷下限线(5) (19)(八)精馏塔的设计计算结果汇总一览表 (21)(九)精馏塔的附属设备与接管尺寸的计算 (22)(十)主要符号说明 (24)四、对设计过程的评述和感受 (25)苯-氯苯分离过程板式精馏塔设计计算书一、前言课程设计是本课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。

苯一氯苯分离过程板式精馏塔设计修订稿

苯一氯苯分离过程板式精馏塔设计修订稿

苯一氯苯分离过程板式精馏塔设计WEIHUA system office room 【WEIHUA 16H-WEIHUA课程设计题目—苯-氯苯分离过程筛板精馏塔设计万吨一、设计题目试设计一座苯—氯苯连续精馏塔,已知原料液的处理量为万吨,设塔顶馏出液中含氯苯不高于2%,塔底馏出液中含苯不高于%,原料液中含氯苯为38%(以上均为质量%)。

二、操作条件1.塔顶压强:4kPa(表压);2.进料热状况:泡点进料;;3.回流比:2Rmin4.塔釜加热蒸汽压力:(表压);5.单板压降不大于:;6.冷却水温度:35℃;7.年工作日300天,每天24小时连续运行。

三、设计内容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板流体力学性能的计算;7.塔板负荷性能图的绘制; 8.塔的工艺计算结果汇总一览表;9.生产工艺流程图及精馏塔工艺条件图的绘制; 10.对本设计的评述或对有关问题的分析与讨论。

四、基础数据1.组分的饱和蒸汽压 i p (mmHg )2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。

3.组分的表面张力σ(mN/m )双组分混合液体的表面张力m σ可按下式计算:AB B A BA m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率)4.液体的粘度μL5.氯苯的汽化潜热常压沸点下的汽化潜热为×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01238.012⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )6.其他物性数据可查化工原理附录。

苯-氯苯板式精馏塔冷凝器工艺设计全本

苯-氯苯板式精馏塔冷凝器工艺设计全本

苯-氯苯板式精馏塔冷凝器工艺设计工艺说明书学校:学院:专业:学号:姓名:目录一、苯-氯苯板式精馏塔的工艺设计任务书———————————————3 (一)设计题目———————————————————————————3 (二)操作条件———————————————————————————3 (三)设计内容———————————————————————————3 (四)基础数据———————————————————————————3 二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分)—————————— 4 (一)设计方案的确定及工艺流程的说明————————————————5 (二)全塔的物料衡算————————————————————————5 (三)塔板数的确定—————————————————————————5 (四)塔的精馏段操作工艺条件及相关物性数据的计算——————————10 (五)精馏段的汽液负荷计算—————————————————————11三、标准系列化管式壳换热器的设计计算步骤——————————————13四、非标准系列化管式壳换热器的设计计算步骤—————————————13五、苯立式管壳式冷凝器的设计(标准系列)——————————————14六、苯立式管壳式冷凝器的设计—工艺计算书(标准系列)————————16 (一)确定流体流动空间———————————————————————16 (二)计算流体的定性温度,确定流体的物性数据————————————16 (三)计算热负荷——————————————————————————16 (四)计算有效平均温度差——————————————————————16 (五)选取经验传热系数K值—————————————————————16 (六)估算换热面积—————————————————————————17 (七)初选换热器规格————————————————————————17 (八)核算总传热系数K0———————————————————————17 (九)计算压强降——————————————————————————18 七、板式精馏塔工艺设计感想--------------------—————————----19化工原理课程设计任务书课程设计题目——苯-氯苯板式精馏塔冷凝器的设计 一、设计题目设计一苯-氯苯连续精馏塔冷凝器。

苯—氯苯精馏过程板式塔设计-仅供参考

苯—氯苯精馏过程板式塔设计-仅供参考

化工原理课程设计说明书设计题目:苯—氯苯精馏过程板式塔设计设计者:班级姓名日期:指导教师:设计成绩:日期:目录◆设计任务书 (3)◆设计计算书 (4)设计方案的确定 (4)精馏塔物料衡算 (4)塔板数的确定 (5)精馏塔的工艺条件及有关物性数据的计算 (8)塔体工艺尺寸计算 (13)塔板主要工艺尺寸 (15)塔板流体力学验算 (17)浮阀塔的结构 (20)精馏塔接管尺寸 (23)产品冷却器选型 (25)对设计过程的评述和有关问题的讨论 (25)附图:生产工艺流程图精馏塔设计流程图设计任务书(一)题目试设计一座苯—氯苯连续精馏塔,要求年产纯度99.8%的氯苯21000吨,塔顶馏出液中含氯苯不得高于2%,原料液中含氯苯45%(以上均为质量分数)。

(二)操作条件(1)塔顶压力 4kPa(表压);(2)进料热状况泡点;(3)回流比 R=1.4R min;(4)塔底加热蒸汽压力 0.5Mpa(表压);(5)单板压降≤0.7 kPa;(三)塔板类型浮阀塔板(F1型)(四)工作日每年按300天工作计,每天连续24小时运行(五)厂址厂址为天津地区设计计算书一、设计方案的确定本任务是分离苯—氯苯混合物。

对于二元混合物的分离,应采用连续精馏流程,本设计采用板式塔连续精馏。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送进精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分冷却后送至储物罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.4倍,且在常压下操作。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储物罐。

二、精馏塔物料衡算(以轻组分计算)1.原料液及塔顶、塔釜产品的摩尔分率苯的摩尔质量 k mo l /kg 11.78=AM氯苯的摩尔质量k m o l /kg 56.112=BM003.056.112/998.011.78/002.011.78/002.0986.056.112/02.011.78/98.011.78/98.0638.056.112/45.011.78/55.011.78/55.0=+==+==+=W D F x x x2.原料液及塔顶、塔釜产品的平均摩尔质量k m o l/kg 46.11256.112)003.01(11.78003.0kmol/kg 59.7856.112)986.01(11.78986.0kmol /kg 58.9056.112)638.01(11.78638.0=⨯-+⨯==⨯-+⨯==⨯-+⨯=WDFMM M3.物料衡算原料处理量 h /25.93k m o l46.11224300100000012=⨯⨯⨯=W总物料衡算 25.93+=D F 苯物料衡算25.93003.0986.0638.0⨯+=D F联立解得h /73.24k m o lh /47.31k m o l ==F D三、塔板数的确定1.理论板数N T 的求取(1)由手册查得苯—氯苯物系的气液平衡数据,绘出x —y 图,见图1。

化工课程设计-苯-氯苯分离过程板式精馏塔设计

化工课程设计-苯-氯苯分离过程板式精馏塔设计
精馏段操作线:
提馏段操作线:
提馏段操作线为过 和 两点的直线。
图3-2 苯-氯苯物系精馏分离理论塔板数的图解
图解得 -1=10块(不含釜)。其中,精馏段 块,提馏段 块,第4块为加料板位置。
3.2.2实际塔板数
1.全塔效率
选用 公式计算。该式适用于液相粘度为0.07~1.4mPa·s的烃类物系,式中的 为全塔平均温度下以进料组成表示的平均粘度。
温度,(℃)


130

817
8
757
氯苯
1
1008
997
985
纯组分在任何温度下的密度可由下式计算
苯 :
氯苯 :
式中的t为温度,℃
塔顶: kg/m3
kg/m3
kg/m3
进料板: kg/m3
kg/m3
kg/m3
塔底: kg/m3
kg/m3
kg/m3
精馏段: kg/m3
提馏段: kg/m3
2.气相平均密度
(三)平均分子量
塔顶: , (查相平衡图)
=80.1455kg/kmol
加料板: , (查相平衡图)
kg/kmol
kg/kmol
塔底: ,
kg/kmol
kg/kmol
精馏段: kg/kmol
kg/kmol
提馏段: kg/kmol
kg/kmol
(四)平均密度
1.液相平均密度
表4-1 组分的液相密度 (kg/m3)
板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(20%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计——苯-氯苯板式精馏塔的工艺设计工艺计算书目录苯-氯苯分离过程板式精馏塔设计任务 (1)一.设计题目 (1)二.操作条件 (1)三.塔板类型 (1)四.工作日 (2)五.厂址....................................... 错误!未定义书签。

六.设计内容 (2)七.设计基础数据 (2)符号说明 (2)设计方案 (5)一.设计方案的思考 (5)二.设计方案的特点 (5)三.工艺流程 (5)苯-氯苯板式精馏塔的工艺计算书 (5)一.设计方案的确定及工艺流程的说明 (5)二.全塔的物料衡算 (6)三.塔板数的确定 (6)四.塔的精馏段操作工艺条件及相关物性数据的计算 (9)五.精馏段的汽液负荷计算....................... 错误!未定义书签。

六.塔和塔板主要工艺结构尺寸的计算 (13)七.塔板负荷性能图 (17)八.附属设备的的计算及选型 (21)筛板塔设计计算结果 (31)设计评述 (32)一.设计原则确定 (32)二.操作条件的确定 (33)设计感想 (34)苯-氯苯板式精馏塔的工艺设计苯-氯苯分离过程板式精馏塔设计任务一.设计条件年产纯度为99.5%的氯苯4万吨,原料液为苯和氯苯的的混合液,其中氯苯含量中为38%(质量百分数),其余为苯,采用泡点进料,要求塔顶氯苯含量不高于2%,精馏塔顶压强为4kPa(表压),单板压降不大于0.7kPa,采用300天/年工作日连续生产。

二.操作条件1.塔顶压强4kPa(表压);2.进料热状况,泡点进料;3.回流比,自选;4.压降不大于0.7kPa;三.塔板类型筛板或浮阀塔板(F1型)。

四.工作日每年300天,每天24小时连续运行五.计内容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.设计计算结果总表。

六.计基础数据苯-氯苯纯组分的饱和蒸气压数据温度,(℃)80 90 100 110 120 130 131. 8ip×0.133-1kPa苯760 1025 1350 1760 2250 2840 2900 氯苯148 205 293 400 543 719 760其他物性数据可查有关手册。

符号说明:a ——填料的有效比表面积,㎡/m3at——填料的总比表面积,㎡/m3aw——填料的润湿比表面积,㎡/m3Aa——塔板开孔区面积,m2Af——降液管截面积,m2A——筛孔总面积,m2At——塔截面积,m2c——流量系数,无因次C——计算umax时的负荷系数,m/s d ——填料直径,md——筛孔直径,mD ——塔径,m——液体扩散系数,m2/sDLD——气体扩散系数,m2/sVe——液沫夹带量,kg(液)/kg(气)vE——液流收缩系数,无因次E——总板效率,无因次TF——气相动能因子,kg1/2/(s.m1/2)——筛孔气相动能因子,Fg——重力加速度,9.81m/s2h——填料层分段高度,mHETP关联式常数h——进口堰与降液管间的水平距离,m1——与干板压降相当的液柱高度,m液柱hc——与液体流过降液管的压降相当的液柱高度,m hd——塔板上鼓泡层高度,mhf——与板上液层阻力相当的液柱高度,m液柱hl——板上清液层高度,mhL——允许的最大填料层高度,mhmaxh——降液管的低隙高度,m——堰上液层高度,mhOWh——出口堰高度,mW——进口堰高度,mh’Whδ——与克服表面张力的压降相当的液柱高度,m液柱H——板式塔高度,m溶解系数,kmol/(m3·kPa)——塔底空间高度,mHB——降液管内清液层高度,mHd——塔顶空间高度,mHD——进料板处塔板间距,mHFH——气相总传质单元高度,mOG——人孔处塔板间距,mHPH——塔板间距,mT——封头高度,H1H——裙座高度,2HETP——等板高度,m——气膜吸收系数,kmol/(m2•h•kPa)kGk——液膜吸收系数,m/hLK——稳定系数,无因次——气膜吸收系数kmol/(m2•h•kPa)KGl——堰长,mW——液体体积流量,m3/hLhL——液体体积流量,m3/hsL——润湿速率,m3/(m•h)wm——相平衡常数,无因次n——筛孔数目NOG——气相总传质单元数,NT——理论板层数P——操作压力,Pa△P——压力降,Pa△PP——气体通过每层筛板的压降,Pa r——鼓泡区半径,mu——空塔气速,m/suF——泛点气速,m/su——气体通过筛孔的速度,m/su 0,min——漏液点气速,m/su’——液体通过降液管底隙的速度,m/s U——液体喷淋密度,m3/(m2•h)UL——液体质量通量,㎏/(m2•h)Umin——最小液体喷淋密度,m3/(m2•h)Uv——气体质量通量,㎏/(m2•h)Vh——气体体积流量,m3/hVs——气体体积流量,m3/hwL——液体质量流量,㎏/hwV——气体质量流量,㎏/hWc——边缘无效区宽度,mWd——弓形降液管宽度,mx——液相摩尔分数X——液相摩尔比y——气相摩尔分数Y——气体摩尔比Z——填料层高度,mβ——充气系数,无因次;δ——筛板厚度,mε——空隙率,无因次θ——液体在降液管内停留时间,s μ——粘度,Pa•sρ——密度,kg/m3σ——表面张力,N/mφ——开孔率或孔流系数,无因次Φ——填料因子,l/mψ——液体密度校正系数,无因次下标max——最大的min——最小的L——液相V——气相设计方案一.设计方案的思考通体由不锈钢制造,塔节规格Φ25~100mm、高度0.5~1.5m,每段塔节可设置1~2个进料口/测温口,亦可结合客户具体要求进行设计制造各种非标产品。

整个精馏塔包括:塔釜、塔节、进料罐、进料预热器、塔釜液储罐、塔顶冷凝器、回流比控制器、产品储罐等。

塔压降由变送器测量,塔釜上升蒸汽量可通过采用釜液温度或灵敏板进行控制,塔压可采用稳压阀控制,并可装载自动安全阀。

为使塔身保持绝热操作,采用现代化仪表控制温度条件,并可在室温~300℃范围内任意设定。

同时,为了满足用户的科研需要,每一段塔节内的温度、塔釜液相温度、塔顶气相温度、进料温度、回流温度、塔顶压力、塔釜压力、塔釜液位、进料量等参数均可以数字显示。

二.设计方案的特点浮阀塔应用广泛,对液体负荷变化敏感,不适宜处理易聚合或者含有固体悬浮物的物料浮阀塔涉及液体均布问题在气液接触需冷却时会使结构复杂板式塔的设计资料更易得到,而且更可靠。

浮阀塔更适合塔径不很大,易气泡物系,腐蚀性物系,而且适合真空操作。

三.工艺流程原料液由泵从原料储罐中引出,在预热器中预热后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。

苯-氯苯板式精馏塔的工艺计算书一.设计方案的确定及工艺流程的说明本设计任务为分离苯-氯苯混合物。

对于二元混合物的分离,应采用连续精馏过程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

二.全塔的物料衡算(一)料液及塔顶底产品含苯的摩尔分率苯和氯苯的相对摩尔质量分别为78.11 kg/kmol 和112.61kg/kmol 。

702.061.112/3811.78/6211.78/62=+=F x986.061.112/211.78/9811.78/98=+=D x00288.061.112/8.9911.78/2.011.78/2.0=+=W x(二)平均摩尔质量M F =78.11×0.702+(1-0.702)×112.61=88.39kg/kmol()kg/km ol 59.7861.112986.01986.011.78=⨯-+⨯=D M ()kg/km ol 5.11261.11200288.0100288.011.78=⨯-+⨯=W M(三)料液及塔顶底产品的摩尔流率依题给条件:一年以300天,一天以24小时计,有:W ′=40000t/a =5555.6kg/h ,全塔物料衡算:F ′=D ′+W ′0.38F ′=0.02D ′+0.998W ′F ′=15092.7kg/h F =15092.7/88.39=170.75kmol/h D ′=9537.1kg/h D =9537.1/78.59=121.35kmol/h W ′=5555.6kg/h W =5555.6/112.5=49.38kmol/h三.塔板数的确定(一)理论塔板数T N 的求取苯-氯苯物系属于理想物系,可采用梯级图解法(M ·T 法)求取T N ,步骤如下:1.根据苯-氯苯的相平衡数据,利用泡点方程和露点方程求取y x ~依据()() B A Bt p p p p x --=/,t A p x p y / =,将所得计算结果列表如下: 表3-1 相关数据计算 温度,(℃)80 90100110120130131.8ip苯 760 1025 1350 1760 2250 2840 2900 氯苯 148 205 293 400 543 719 760 两相摩尔分率x10.677 0.442 0.265 0.127 0.019 0y 1 0.9130.7850.6140.3760.071本题中,塔内压力接近常压(实际上略高于常压),而表中所给为常压下的相平衡数据,因为操作压力偏离常压很小,所以其对y x ~平衡关系的影响完全可以忽略。

2.确定操作的回流比R将表3-1中数据作图得y x ~曲线。

图3-1 苯—氯苯混合液的x —y 图在y x ~图上,因1=q ,查得925.0=e y ,而702.0==F e x x ,986.0=D x 。

故有:274.0702.0925.0925.0986.0=--=--=e e e D m x y y x R考虑到精馏段操作线离平衡线较近,故取实际操作的回流比为最小回流比的2倍,即:548.0274.022=⨯==m R R求精馏塔的汽、液相负荷L=RD=0.548×121.35=66.50 kmol/hV=(R+1)D=(0.548+1)×121.35=187.85 kmol/h L ′=L+F=66.50+170.75=237.25 kmol/h V ′=V=187.85 kmol/h 3.求理论塔板数精馏段操作线:64.035.011+=+++=x R xx R R y D 提馏段操作线:000757.026.1-'='-'''='x V Wx V L y x w提馏段操作线为过()00288.0,00288.0和()884.0,702.0两点的直线。

相关文档
最新文档