2017年广西名校高考数学猜题试卷(理科) Word版 含答案
2017广西高考数学真题及答案【广西高考数学真题及答案】

2017广西高考数学真题及答案【广西高考数学真题及答案】
又是一年高考时,战场的号角已经响起,这不仅仅是一次知识的竞赛,也是一次内心的考验。
高考频道小编紧密关注2017广西高考数学真题及答案,一旦发布,将及时在首页更新信息,请大家密切留意!更多广西高考分数线、广西高考成绩查询、广西高考志愿填报、广西高考录取查询信息等信息请关注我们网站的更新!
2017年广西高考数学真题及答案发布入口
以下广西高考真题及答案频道为大家提供的2017年广西高考真题及答案:。
广西桂林市、崇左市2017届高三下学期联合调研考试理科

2017年高考桂林市、崇左市联合调研考试数学试卷(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{||1log }A x x N x k =∈<<,集合中A 至少有2个元素,则 A .4k ≥ B .4k > C .8k ≥ D .8k >2、 复数212ii +-的虚部是 A .35- B .35i - C .1 D .i3、等差数列{}n a 中,n S 为其前n 项和,且945672S a a a =+++,则37a a += A .22 B .24 C .25 D .264、在两个变量y 与x 的回归模型中,分别选择了四个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的为A .模型①的相关指数为0.976B .模型②的相关指数为0.776C .模型③的相关指数为0.076D .模型④的相关指数为0.3565、一个简单的几何体的正视图、侧视图如图所示,则其俯视图可能为: ①长、宽不相等的长方形;②正方形;③圆;④椭圆,其中正确的是 A .①② B .②③ C .③④ D .①④6、若函数()f x 在R 上可导,且满足()()f x xf x <,则下列关系成立的是A .()()212f f <B .()()212f f >C .()()212f f =D .()()12f f = 7、在矩形ABCD 中,2,1,AB ADE ==为线段BC 上的点,则AE DE ⋅的最小值为 A .2 B .154 C .174D .4 8、若正整数N 除以正整数m 的余数为n ,则记为(mod )N n m =,例如114(mod 7)=,如图所示的程序框图的算法源于我国古代闻名中外的《中国剩余定理》,执行该程序框图,则输出的n =A .14B .15C .16D .179、已知0w >,在函数sin y wx =与cos y wx =的图象的交点中, 相邻两个交点的横坐标之差为1,则w = A .1 B .2 C .π D .2π10、过正方体1111ABCD A BC D -的顶点A 的平面α与平面11CB D 平行, 设α平面,ABCD m α=平面11ABB A n = ,那么,m n 所成角的余弦值为 A.2 B.2C .12D .1311、已知函数24y x =-的图象与曲线22:4C x y λ+=恰有两个不同的公共点,则实数λ 的取值范围是 A .11[,)44-B .11[,]44-C .11(,](0,)44-∞-D .11(,][,)44-∞-+∞ 12、已知点(1,0)M ,若点N 是曲线()y f x =上的点,且线段MN 的中点在曲线()y g x =上,则称点N 是函数()y f x =关于函数()y g x =的一个相关点,已知()()21log ,()2x f x x g x ==,则函数()f x 关于函数()g x 的相关点的个数是A .1B .2C .3D .4第Ⅱ卷本卷包括必考题和选考题两个部分,第13题—第21题为必考题,每个考生都必须作答,第22题—第23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、若满足,x y 约束条件10304x y x y y -+≤⎧⎪+-≥⎨⎪≤⎩,则3z x y =+的最小值为14、在567(1)(1)(1)x x x +++++的展开式中,4x 的系数等于 15、如果直线10ax by ++=被圆2225x y +=截得的弦长等于8,那么2212a b+的最小值等于16、在一个空心球里面射击一个棱长为4的内接正四面体,过正四面体上某一个顶点所在的三条棱的中点作球的截面,则该截面圆的面积是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知223cos cos 222A B b a c +=. (1)求证:,,a c b 成等差数列;(2)若,3C ABC π=∆的面积为c .18、(本小题满分12分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级公国的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.19、(本小题满分12分)如图,三棱柱111ABC A B C -中011,,60CA CB AB AA BAA ==∠=.(1)证明:1AB AC ⊥ (2)若平面ABC ⊥平面11,AA B A AB CB =,求直线1AC 与平面11BB C C 所成角的正弦值.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>过点3(1,)2P ,离心率为32.(1)求椭圆C 的标准方程;(2)设12,F F 分别为椭圆C 的左右焦点,过2F 的直线l 与椭圆C 交于不同的两点,M N , 记1F MN ∆的内切圆的面积为S ,求当S 取最大值时直线l 的方程,并求出最大值.21、(本小题满分12分)设函数()()ln ,ln 2f x x g x x x ==-+. (1)求函数()g x 的极大值; (2)若关于x 的不等式()11x mf x x -≥+在[1,)+∞上恒成立,求实数m 的取值范围; (3)已知(0,)2πα∈,试比较(tan )f α与cos 2α-的大小,并说明理由.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22、(本小题满分10分)选修4-4 坐标系与参数方程已知极坐标的极点在直角坐标系的原点,极轴与x 轴的非负半轴重合,直线的参数方程为:1(12x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)曲线C 的极坐标方程为:4cos ρθ=. (1)写出C 的直角坐标方程和直线的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.24、(本小题满分10分)选修4-5 不等式选讲 已知函数()13f x x x =-++. (1)解不等式()8f x ≥;(2)若关于x 的不等式()23f x a a <-的解集不是空集,求实数a 的取值范围.。
广西桂林市、百色市、崇左市2017届高三上学期第一次联合调研考试理数试题 Word版含答案 (1)

数学试卷(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|y A x ==,集合{}2|20B x x x =->,则()R C A B 等于( )A .()0,2B .[)1,2C .()0,1D .∅2.复数()2141i z i -+=+的虚部为 ( )A . -1B .-3C .1D .23. 若抛物线()220y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于( ) A .12 B .1 C .32D . 24.已知向量a b 、满足1,a b a ==与b 的夹角的余弦值为17sin 3π,则()2b a b -等于 ( )A . 2B .-1 C. -6 D .-18 5.已知()0,x π∈,且2cos 2sin 2x x π⎛⎫-= ⎪⎝⎭,则tan 4x π⎛⎫- ⎪⎝⎭等于 ( )A .13 B .13- C. 3 D .-3 6.如图是一个程序框图,则输出的S 的值是 ( )A . 18B . 20 C. 87 D .907. 某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:若以频率为概率,现从该批次机械元件随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为( ) A .1316 B .2764 C. 2532 D .27328.如图是某几何体的三视图,则该几何体的体积为 ( )A . 6B . 9 C. 12 D .18 9.已知12x π=是函数()()()()3sin 2cos 20f x x x ϕϕϕπ=+++<<图象的一条对称轴,将函数()f x 的图象向右平移34π个单位后得到函数()g x 的图象,则函数()g x 在,46ππ⎡⎤-⎢⎥⎣⎦上的最小值为 ( ) A . -2 B .-1 C. 2- D .3- 10.已知函数()2,011,1x f x x -<<⎧=⎨≥⎩,则不等式()2134log log 41log 15x x f x ⎛⎫--+≤ ⎪⎝⎭的解集为 ( )A .1,13⎛⎫⎪⎝⎭ B . []1,4 C. 1,43⎛⎤ ⎥⎝⎦D .[)1,+∞11.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,0,F c F c P -、是双曲线C 右支上一点,且212PF F F =.若直线1PF 与圆222x y a +=相切,则双曲线的离心率为( ) A .43 B .53C. 2 D .3 12.已知函数()()()xf x ex b b R =-∈.若存在1,22x ⎡⎤∈⎢⎥⎣⎦,使得()()0f x xf x '+>,则实数b 的取值范围是( )A . 8,3⎛⎫-∞ ⎪⎝⎭B .5,6⎛⎫-∞ ⎪⎝⎭ C. 35,26⎛⎫-⎪⎝⎭D .8,3⎛⎫+∞ ⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题 ,每小题5分,满分20分,将答案填在答题纸上13. 62x ⎛ ⎝的展开式中常数项为 .14.如果实数,x y 满足条件21024010x y x y y --≥⎧⎪+-≤⎨⎪-≥⎩,则2x y z x -=的最大值为 .15.设ABC ∆三个内角A B C 、、所对的边分别为a b c 、、,若()()()22sin 4sin ,sin sin sin a C A ca cb A B C c =+-=,则ABC ∆的面积为 .16.已知长方体1111ABCD A B C D -内接于球O ,底面ABCD 是边长为2的正方形,E 为1AA 的中点,OA ⊥平面BDE ,则球O 的表面积为 .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S ,且()1*63n n S a n N +=+∈. (1)求a 的值及数列{}n a 的通项公式;(2)若()()2311log n n n n b a a a +=-,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 18. (本小题满分12分)某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望; (2)请分析比较甲、乙两人谁面试通过的可能性大? 19. (本小题满分12分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点为M ,又04,,120PA AB AD CD CDA ===∠=,点N 是CD 的中点.(1)求证:平面PMN ⊥平面PAB ; (2)求二面角A PC B --的余弦值. 20. (本小题满分12分)已知右焦点为()2,0F c 的椭圆()2222:10x y C a b a b +=>>过点31,2⎛⎫⎪⎝⎭,且椭圆C 关于直线x c =对称的图形过坐标原点.(1)求椭圆C 的方程; (2)过点1,02⎛⎫⎪⎝⎭作直线l 与椭圆C 交于E F 、两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围. 21. (本小题满分12分)已知函数()()1ln ,af x x a xg x x+=-=-,其中a R ∈. (1)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (2)若存在[]01,x e ∈,使得()()00f x g x <成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程是2sin a ρθ=,直线l 的参数方程是3545x t a y t⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)若2,a M =为直线l 与x 轴的交点,N 是圆C 上一动点,求MN 的最大值; (2)若直线l 被圆C截得的弦长为,求a 的值. 23. (本小题满分10分)选修4-5:不等式选讲 设函数()1f x x =+.(1)求不等式()2f x x <的解集; (2)若()28f x x a+->对任意x R ∈恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: CBDDA 6-10: CDBBC 11、12:BA二、填空题13. 60 14.43 15. 3216. 16π 三、解答题17.解:(1)∵163n n S a +=+,∴当1n =时,11669S a a ==+,……………………………1分 当2n ≥时,()16623nn n n a S S -=-=,……………………………2分(2)由(1)得()()()()2311log 3231n n n n b a a a n n +=-=-+,………………………7分∴()()1211111114473231n n T b b b n n =+++=+++⨯⨯-+…………………………9分111111134473231n n ⎛⎫=-+-++- ⎪-+⎝⎭………………………………11分 31nn =+........................12分 18.解:(1)设甲正确完成面试的题数为ξ,则ξ的取值分别为1,2,3 (1)()124236115C C P c ξ===;()214236325C C P c ξ===;()304236135C C P c ξ===; (3)分应聘者甲正确完成题数ξ的分布列为()311232555E ξ=⨯+⨯+⨯=………………………………………4分设乙正确完成面试的题数为η,则η取值分别为0,1,2,3……………………………5分()()3120133112160;13273327P C P C ηη⎛⎫⎛⎫⎛⎫====== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, ()()2323332112282,33327327P C P C ηη⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……………………………7分 应聘者乙正确完成题数η的分布列为:()161280123227272727E η=⨯+⨯+⨯+⨯=.(或∵23,3B η⎛⎫⎪⎝⎭,∴()2323E η=⨯=)…………8分 (2)因为()()()()22213121222325555D ξ=-⨯+-⨯+-⨯=,……………………9分()23D npq η==……………………………………10分所以()()D D ξη<……………………………………………11分 综上所述,从做对题数的数学期望考查,两人水平相当; 从做对题数的方差考查,甲较稳定;从至少完成2道题的概率考查,甲获得面试通过的可能性大…………………………12分19.(1)证明:在正三角形ABC 中,AB BC =,在ACD ∆中,∵AD CD =,易证ABC CDB ∆≅∆,∴M 为AC 中点,………………………1分∵点N 是CD 的中点,∴//MN AD .∵PA ⊥面ABCD ,∴PA AD ⊥,…………………………………2分 ∵0120CDA ∠=,∴030DAC ∠=,…………………………3分 ∵060BAC ∠=,∴090BAD ∠=,即BA AD ⊥, ∵PAAB A =,∴AD ⊥平面PAB ,………………………………4分∴MN ⊥平面PAB ,又MN ⊂平面PMN ,∴平面PMN ⊥平面PAB ………………………5分(2)解:分别以直线,,AB AD AP 为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示, ∴()()()4,0,0,2,,,0,0,4B k C D P ⎛⎫⎪ ⎪⎝⎭. 由(1)可知,4,DB ⎛⎫= ⎪ ⎪⎝⎭为平面PAC 的一个法向量,………………………6分 ()()2,23,4,4,0,4PC PB =-=-,………………………7分设平面PBC 的一个法向量为(),,n x y z =,则00n PC n PB ⎧=⎪⎨=⎪⎩,即240440x z x z ⎧+-=⎪⎨-=⎪⎩,……………………………8分令3z =,解得3,x y ==,…………………………………………………9分则平面PBC 的一个法向量为()3,3,3n =,…………………………10分7cos ,7n DB n DB n DB==,…………………………………11分 由题知二面角A PC B --为锐二面角,∴二面角A PC B --余弦值为…………………………12分 20.(1)解:∵椭圆C 过点31,2⎛⎫ ⎪⎝⎭,∴221914a b+=,①…………………………1分 ∵椭圆C 关于直线x c =对称的图形过坐标原点,∴2a c =,………………………2分 ∵222a b c =+,∴2234b a =,②…………………………3分 由①②得224,3a b ==,……………………………………4分∴椭圆C 的方程为22143x y +=………………………………5分(2)依题意,直线l 过点1,02⎛⎫⎪⎝⎭且斜率不为零,故可设其方程为12x my =+…………………7分 由方程组2212143x my x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,并整理得()2243412450m y my ++-=………………………8分设()()()112200,,,,,E x y F x y M x y , ∴122334my y m +=-+,∴()120232234y y my m +==-+………………………………9分 ∴00212234x my m =+=+,∴020244y mk x m ==-+. ①当0m =时,0k =;②当0m ≠时,144k m m=+,……………………………………………10分∵44448m m m m+=+≥,∴110484m m<≤+. ∴108k <≤,∴1188k -≤≤且0k ≠. 综合①、②可知,直线MA 的斜率k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦………………………12分21.解:(1)()1ln ah x x a x x+=+-, ()()()()222211111x x a x ax a a a h x x x x x +-+⎡⎤--++⎣⎦'=--==, (1)分①当10a +>时, 即1a >-时,在()0,1a +上()0h x '<,在()1,a ++∞上()0h x '>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;……………………………3分②当10a +≤,即1a ≤-时,在()0,+∞上()0h x '>,所以,函数()h x 在()0,+∞上单调递增…………………………………………4分 (2)若存在[]01,x e ∈,使得()()00f x g x <成立,即存在[]01,x e ∈,使得()()()0000h x f x g x =-<,即函数()1ln ah x x a x x+=+-在[]1,e 上的最小值小于零……………………………………5分 由(1)可知:①当1a e +≥,即1a e ≥-时,()()0,h x h x '<在[]1,e 上单调递减, 所以()h x 的最小值为()h e ,由()10ah e e a e+=+-<可得211e a e +>-, 因为2111e e e +>--,所以211e a e +>-………………………………7分②当11a +≤,即0a ≤时,()h x 在[]1,e 上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <-…………………9分 ③当11a e <+<,即01a e <<-时,可得()h x 的最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 120h a a a a +=+-+>>,不合题意,…………………………………11分综上可得所求a 的范围是()21,2,1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭………………………………12分 22.解:(1)由24sin ρρθ=得圆C 可化为2240x y y +-=,……………………1分将直线l 的参数方程化为直角坐标方程,得()423y x =--,…………………………2分 令0y =,得2x =,即点M 的坐标为()2,0………………………………3分又圆C 的圆心坐标为()0,2,半径2r =,则MC =,………………………………4分所以MN 的最大值为2MC r +=…………………………………5分(2)因为圆()222:C x y a a +-=,直线:4340l x y a +-=,………………………………6分所以圆心C 到直线l 的距离3455a a a d -==,………………………………7分所以=9分 解得52a =±……………………………………10分 23.解:(1)由()2f x x <得12x x +<,则212x x x -<+<,………………………………………2分即1212x x x x +<⎧⎨+>-⎩,…………………………………………………3分 解得1x >,∴不等式()2f x x <的解集为()1,+∞…………………………………5分(2)∵()111f x x a x x a x x a a +-=++-≥+-+=+,……………………7分 又()3282f x x a +->=对任意x R ∈恒成立,即()3f x x a +->对任意x R ∈恒成立,………………8分 ∴13a +>,解得4a <-或2a >,∴实数a 的取值范围是()(),42,-∞-+∞………………………………10分。
2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。
广西2017年高考理科数学试题及答案(Word版)

广西2017年高考理科数学试题及答案(Word 版)(考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805. 已知双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆 221123x y += 有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f(x)=cos(x+3π),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a=A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.22C .5D.2二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
广西名校2017届高三上学期第一次摸底考试理数试题Word版含答案.doc

理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.知全集{}123456U =,,,,,,若{}12345A B =,,,,,{}345A B =,,,则UA 不可能是( ) A .{}126,,B .{}26,C .{}6D .∅数212i i-=+( )A .iB .i -C .22i -D .22i -+等差数列{}n a 中,()()1479112324a a a a a ++++=,则此数列前13项的和13S =( ) A .13B .26C .52D .1564.已知()162a b a b a ==-=,,,则向量a 与向量b 的夹角是( ) A .6πB .4π C .3π D .2π 个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48817+B .32817+C.48D .80点P 与定点()()1010A B -,,,的连线的斜率之积为1-,则点P 的轨迹方程是( ) A .221x y +=B .()2210x y x +=≠C .()2211x y x +=≠±D .21y x =-程序框图如图所示,若输出的57S =,则判断框内应填写( )A .4?k >B .5?k >C.6?k >D .7?k >知cot 33πα⎛⎫+=- ⎪⎝⎭,则tan 23πα⎛⎫-= ⎪⎝⎭( )A .13B .13-C .43D .34-知()f x 是定义在R 上的偶函数,且3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭恒成立,当[]23x ∈,时,()f x x =,则当()20x ∈-,时,()f x =( ) A .21x ++B .31x -+C .2x -D .4x +10.在ABC △中,已知1310tan cos 2A B ==,,若ABC △10 ) A 2B 3 5 D .2P 是椭圆221259y x +=上一点,F 是椭圆的右焦点,()142OQ OP OF OQ =+=,,则点P 到抛物线215y x =的准线的距离为( ) A .154B .152C.15 D .10颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所有涂法共有( ) A .24种B .48种 C.64种D .72种第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.计算:()()sin15cos15sin15cos15︒+︒︒-︒=.知变量x y ,满足约束条件22221010x y x y x y ⎧+--+≤⎪⎨--≤⎪⎩,则2z x y =+的最大值为 .棱柱的底面连长为2,高为2,则它的外接球的表面积为 .知函数()322sin cos 44f x x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)数列{}n a 满足下列条件:()*11221122n n n a a a a a n +++===∈N ,,,. (1)设1n n n b a a +=-,求数列{}n b 的通项公式; (2)若2log n n n c b b =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据: 日期12月1日12月2日 12月3日 12月4日 12月5日 温差x (℃) 10 11 13 12 8 发芽数y (颗) 2325302616该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y bx a =+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?(注:()()()1122211nni iiii i nniii i x yn x y xxyyb a y bx xn xxx====---===---∑∑∑∑,)19.(本小题满分12分)如图,在四棱锥P ABCD -中,已知2122AB CD PA AB AD DC AD AB PD PB ====⊥==∥,,,,,点M 是PB 的中点.(Ⅰ)证明:CM PAD ∥平面;(Ⅱ)求直线CM 与平面PDC 所成角的正弦值. 20.(本小题满分12分)如图,过抛物线()220y px p =>上一点()12P ,,作两条直线分别交抛物线于()11A x y ,,()22B x y ,,当PA 与PB 的斜率存在且倾斜角互补时:(Ⅰ)求12y y +的值;(Ⅱ)若直线AB 在y 轴上的截距[]13b ∈-,时,求ABP △面积ABP S △的最大值. 21.(本小题满分12分)已知函数()2ln R f x x ax x a =+-∈,(Ⅰ)若函数()f x 在[]12,上是减函数,求实数a 的取值范围;(Ⅱ)令()()2g x f x x =-,当(0]x e ∈,(e 是自然数)时,函数()g x 的最小值是3,求出a 的值; (Ⅲ)当(0]x e ∈,时,证明:()2251ln 2e x x x x ->+. 22.(本小题满分10分)选修4-1:几何证明选讲:如图,在ABC △中,作平行于BC 的直线交AB 于D ,交AC 于E ,如果BE 和CD 相交于点O ,AO 和DE 相交于点F ,AO 的延长线和BC 相交于G .证明:(Ⅰ)DF EFBG GC=; (Ⅱ)DF FE =23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.已知曲线M 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),曲线N 的极方程为sin 83πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)分别求曲线M 和曲线N 的普通方程; (Ⅱ)若点A M B N ∈∈,,求AB 的最小值. 24.(本小题满分10分)选修4-5:不等式选讲. 已知函数()f x x a =-.(Ⅰ)若不等式()3f x ≤的解集为{}15x x -≤≤,求实数a 的值;(Ⅱ)当1a =时,若()()5f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.2017年高考广西名校第一次摸底考试理科数学参考答案及评分标准一、选择题1.D ,解析:由已知得A 可能为{}345,,,故选D . 2.B .解析:()1221212i i i i ii-+-==-++.3.B .解析:由()()1479112324a a a a a ++++=,得4104a a +=,于是()()1134101313132622a a a a S ++===. 4.C .解析:由条件得22a b a -=,所以223cos 16cos a b a a b αα=+===⨯⨯,所以1cos 2α=,即3πα=.5.A .解析:由三视图可知几何体是底面为正方形,侧面为等腰梯形的棱台,等腰梯形的上底为2,下底为4,高为4,另两个侧面为矩形,所以两等腰梯形面积和为244424⨯+⨯=,其余四面的面积为()24424172248172+⨯⨯+⨯⨯=+,所以几何体的表面积为48817+,故选A .6.C .解析:由斜率的存在性可选C . 7.A .解析:当5k =时,有57S =.8.D .解析:由cot 33πα⎛⎫+=- ⎪⎝⎭,得tan 36πα⎛⎫-= ⎪⎝⎭,所以3tan 2tan 364ππαα⎛⎫⎛⎫-=2-=- ⎪ ⎪⎝⎭⎝⎭.9.B .解析:由已知有函数()f x 是周期为2,当()01x ∈,时,有()223x +∈,,故()()22f x f x x =+=+,同理,当[]21x ∈--,时,有()()44f x f x x =+=+,又知()f x 是偶函数,故()10x ∈-,时,有()01x -∈,,故()()2f x f x x =-=-,即()20x ∈-,时,有()31f x x =-+,故选B . 10.A .解析:由1tan 02A =>,得cos sin 55A A =,cos 010B >,得sin 10B = cos cos()cos cos sin sin 02C A B A B A B =-+=-+=<,即C ∠为最大角,故有10c =b ,于是由正弦定理sin sin b cB C=,求得2b =. 11.B .解析:设()5cos 3sin P αα,,由()142OQ OP OF OQ =+=,,得2245cos 3cos 1622αα+⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即216cos 40cos 390αα+-=,解得3cos 4α=或13cos 4α=-(舍去),即点P 的横坐标为154,故点P 到抛物线215y x =的距离为152. 12.D .解析:法一:假设四种颜色为红、黑、白、黄,先考虑三点S 、A 、B 的涂色方法,有432⨯⨯种方法,若C 点与A 不同色,则C 、D 点只有1种涂色的方法,有24种涂法,若C 点与A 同色,则D 点有2种涂色的方法,共48种涂法,所以不同的涂法共有72种.法二:用3种颜色涂色时,即AC 、BD 同色,共有3424A =种涂色的方法,用4种颜色时,有AD 和BC 同色2种情况,共有44248A =,故共有72种. 二、填空题 13.32-,解析:()()3sin15cos15sin15cos15cos 302︒+︒︒-︒=-︒=-.14.35+.解析:如图作出可行域,有圆心()11,到切线的距离等于半径1,可求得的最大值为35+.15.283π73,故它的外接球的表面积为283π. 16.3.解析:()32sin 232cos 22sin 226f x x x x x x ππ⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,当02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,,故1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,,即函数()f x 的值域为[]12-,,故答案为3. 三、解答题17.【解析】(1)由已知有()()1121121222n n n n n n n n n b a a a a a a a b ++++++-=-=--=-=,又12112b a a =-=-, ∴{}n b 是首项为12-,公比为12-的等比数列,即1112nn n b b q -⎛⎫==- ⎪⎝⎭.………………………………6分(2)由已知有21log 2nn n n c b b n ⎛⎫==-- ⎪⎝⎭,即()123111111123122222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=------------ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭…………………①于是()23411111111231222222nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=------------ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………②-①②得1231311111222222nn n S n+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---------+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭…11112211212nn n +⎡⎤⎛⎫⎛⎫---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+- ⎪⎛⎫⎝⎭-- ⎪⎝⎭∴21212119232n n n S +⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦.…………………………………………12分18.(本小题满分12分)解:(Ⅰ)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况有4种, 所以()431105P A =-=,故选取的2组数据恰好是不相邻的2天数据的概率是35.…………………………4分(Ⅱ)由数据,求得()()111113121225202627397233x y x y =++==++==,,. 31112513*********i i i x y ==⨯+⨯+⨯=∑,322221111312434i i x ==++=∑,23432x =,由公式求得3132219779725343443223i i i i i x yb a y bx x x==-====-=---∑∑,.19.(Ⅰ)证明:取PA 的中点N ,连接MN ,有MN 平行且等于12AB , 于是MN 平行且等于DC ,所以四边形MNCD 是平行四边形,即CM DN ∥,又DN ⊆平面PAD ,故CM ∥平面PAD .………………………………………………6分(Ⅱ)依题意知:222PA AB PD +=,所以PA AB ⊥,PA AD ⊥,即PA ⊥平面ABCD ,建立如图所示空间坐标系O xyz -,()()()()210011200002C M D P ,,,,,,,,,,,, 于是有()201CM =-,,,()010DC =,,,()202DP =-,,, 设平面PDC 的法向量为()n a b c =,,,由0n DC n DP ⎧=⎪⎨=⎪⎩,有0220b a c =⎧⎨-+=⎩,得()101n =,,, 所以10cos 10n CM n CM n CM<≥=-,, 故直线CM 与平面PDC 所成角的正弦值为1010. 小题满分12分解(Ⅰ)由抛物线()220y px p =>过点()12P ,,得2P =,设直线PA 的斜率为PA k ,直线PB 的斜率为PB k ,由PA 、PB 倾斜角互补可知PA PB k k =-, 即12122211y y x x --=--, 将22112244y x y x ==,,代入得124y y +=-.…………………………………………5分(Ⅱ)设直线AB 的斜率为AB k ,由22112244y x y x ==,, 得()211221124AB y y k x x x x y y -==≠-+,由(Ⅰ)得124y y +=-,将其代入上式得1241AB k y y ==-+.因此,设直线AB 的方程为y x b =-+,由24y xy x b⎧=⎨=-+⎩,消去y 得()22240x b x b -++=,由()222440b b ∆=+-≥,得1b ≥-,这时,2121224x x b x x b +=+=,,AB ==P 到直线AB的距离为d =所以311412222ABP b S AB d b -==+=△ 令()()()[]()21313f x x x x =+-∈-,,则由()2'3103f x xx =-+,令()'0f x =,得13x =或3x =. 当113x ⎛⎫∈- ⎪⎝⎭,时,()'0f x >,所以()f x 单调递增,当133x ⎛⎫∈ ⎪⎝⎭,时,()'0f x <,所以()f x 单调递减,故()fx 的最大值为1256327f ⎛⎫= ⎪⎝⎭,故ABP △面积ABP S △=…………………………………………12分(附:()()()()()3322133821333b b b b b ++-+-⎡⎤⎛⎫+-≤=⎢⎥ ⎪⎝⎭⎣⎦,当且仅当13b =时取等号,此求解方法亦得分)21.解:(Ⅰ)()2121'20x ax f x x a x x+-=+-=≤在[]12,上恒成立,令()221h x x ax =+-,有()()1020h h ⎧≤⎪⎨≤⎪⎩,得172a a ≤-⎧⎪⎨≤-⎪⎩,得72a ≤-.…………………………………………………………4分(Ⅱ)由()ln g x ax x =-,(0]x e ∈,,得()11'ax g x a x x-=-=, ①当0a ≤时,()g x 在(0]e ,上单调递减,()()min 13g x g e ae ==-=,4a e=(舍去), ②当10e a <<时,()g x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1(]e a ,上单调递增,∴()min 11ln 3g x g a a ⎛⎫==+= ⎪⎝⎭,2a e =,满足条件.③当1e a ≥时,()g x 在(0]e ,上单调递减,()()min 413g x g e ae a e==-==,(舍去), 综上,有2a e =.…………………………………………………………8分(Ⅲ)令()2ln F x e x x =-,由(Ⅱ)知,()min 3F x =,令()()2ln 51ln '2x x x x x x ϕϕ-=+=,, 当0x e <≤时,()()'0x h x ϕ≥,在(0]e ,上单调递增,∴()()max 15153222x e e ϕϕ==+<+=, ∴2ln 5ln 2x e x x x ->+,即()2251ln 2e x x x x ->+.……………………………………12分 小题满分10分.选修4-1:几何证明选讲:解(Ⅰ)∵DF BC ∥,∴ADC ABG △∽△,即DF AF BG AG =, 同理AF FE AG GC =,于是DF FE BG GC=.…………………………………………5分(Ⅱ)∵DF BC ∥,∴DFO CGO △∽△,即DF FO GC GO =,同理FE FO BG GO=, 所以DF FE DF GC GC BG FE BG=⇒=, 又由(Ⅰ)有DF FE GC FE BG GC BG DF =⇒=, 所以DF FE FE DF=,即DF FE =.…………………………………………10分 23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.解:(Ⅰ)曲线M 的普通方程为()2224x y +-=,由sin 83πρθ⎛⎫+= ⎪⎝⎭有sin cos cos sin 833ππρθρθ+=,又cos sin x y ρθρθ=⎧⎨=⎩, ∴曲线N 3160x y +-=.……………………………………5分 (Ⅱ)圆M 的圆心()02M ,,半径2r =.点M 到直线N 的距离为216731d -==+,故AB 的最小值为725d r -=-=.………………………………………………………………10分24.(本小题满分10分)选修4-5:不等式选讲. 解:(Ⅰ)由()3f x ≤得3x a -≤,解得33a x a -≤≤+,又已知不等式()3f x ≤的解集为{}15x x -≤≤,所以3135a a -=-⎧⎨+=⎩,解得2a =.…………5分 (Ⅱ)当1a =时,()1f x x =-,设()()()5g x f x f x =++,于是,()23414541231x x g x x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩,,,,故当4x <-时,()5g x >,当41x -≤≤时,()5g x =,当1x >时,()5g x >, 所以实数m 的取值范围为5m ≤.…………………………………………10分。
广西名校2017届高三上学期第一次摸底考试数学(理)试题(解析版)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{}123456U =,,,,,,若{}12345A B =,,,,,{}345AB =,,,则U A ð不可能是( )A .{}126,,B .{}26,C .{}6D .∅ 【答案】D 【解析】试题分析:由已知得A 可能为{}3,4,5,故选D. 考点:集合的元素及交并补运算.2.=( )A .iB .i -C .i -D .i -+ 【答案】B考点:复数的运算.3.在等差数列{}n a 中,()()1479112324a a a a a ++++=,则此数列前13项的和13S =( )A .13B .26C .52D .156 【答案】B 【解析】试题分析:由1479112()3()24a a a a a ++++=,得4104a a +=,于是1134101313()13()2622a a a a S ++===,故选B.考点:等差数列的性质,等差数列求和.4.已知()162a b a b a ==-=,,,则向量a 与向量b 的夹角是( ) A .6πB .4πC .3πD .2π【答案】C考点:向量的数量积运算.5.一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48+B .32+ C.48 D .80 【答案】A 【解析】试题分析:由三视图可知几何体是底面为正方形,侧面为等腰梯形的棱台,等腰梯形的上底为2,下底为4,高为4,另两个侧面为矩形,所以两等腰梯形面积和为244424⨯+⨯=,其余四面的面积为(24)4242242+⨯⨯+=+,所以几何体的表面积为48+,故选A .考点:空间几何体四棱台的特征.6.动点P 与定点()()1010A B -,,,的连线的斜率之积为1-,则点P 的轨迹方程是( ) A .221x y +=B .()2210x y x +=≠C .()2211x y x +=≠±D .y =【答案】C考点:直接法求轨迹.【思路点晴】本题主要考察直接法求轨迹的方法,根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简,即把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程了.设出点(,)P x y ,表示出两线的斜率,利用其乘积为1-建立方程化简即可得到点P 的轨迹方程.7.某程序框图如图所示,若输出的57S =,则判断框内应填写( )A .4?k >B .5?k > C.6?k > D .7?k > 【答案】A 【解析】试题分析:当2,4;3,11;4,26;5,57.k S k S k S k S ========即当5k =退出循环,所以判断框内应填“4?k >”.故本题正确答案为A. 考点:算法的含义和程序框图.8.已知cot 33πα⎛⎫+=- ⎪⎝⎭,则tan 23πα⎛⎫-= ⎪⎝⎭( )A .13B .13-C .43D .34-【答案】D 【解析】试题分析:由cot()33πα+=-,得tan()36πα-=,所以3tan(2)tan 2()364ππαα-=-=-,故选D . 考点:诱导公式;二倍角的正切公式. 9.已知()f x 是定义在R 上的偶函数,且3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭恒成立,当[]23x ∈,时,()f x x =, 则当()20x ∈-,时,()f x =( )A .21x ++B .31x -+C .2x -D .4x + 【答案】B考点:函数的奇偶性;周期性;求函数的解析式.10.在ABC △中,已知1tan cos 2A B ==,,若ABC △,则最短边长为( )A B D . 【答案】A 【解析】试题分析:由1tan 02A =>,得cos A A ==,由cos B =,cos 0B =>,得sinB =cos cos()cos cos sin sin 0C A B A B A B =-+=-+=<,即C ∠为最大角,故有c =,又sin sin ,B A b a <∴<,最短边为b ,于是由正弦定理sin sin b cB C=,求得b =,故选A.考点:正弦定理;同角三角函数间的基本关系.【方法点晴】根据cos B 的值及B 的范围,利用同角三角函数间的基本关系求出sin B 的值,由tan A 的值,利用同角三角函数间的基本关系求出sin ,cos A A 的值,根据三角形的内角和定理及诱导公式表示出cos C ,由cos C 的值为负数及C 的范围得到C 为钝角即最大角,即c =,又sin sin ,B A b a <∴<,∴b 为最小边,根据正弦定理,由sin ,sin B C 及c 的值即可求出b 的值.11.点P 是椭圆221259y x +=上一点,F 是椭圆的右焦点,()142OQ OP OF OQ =+=,,则点P 到抛物线215y x =的准线的距离为( ) A .154 B .152C.15 D .10 【答案】B考点:抛物线的定义;椭圆的参数方程.12.用4种颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所 有涂法共有( )A .24种B .48种 C.64种 D .72种 【答案】D 【解析】试题分析:法一:假设四种颜色为红、黑、白、黄,先考虑三点S A B 、、的涂色方法,有432⨯⨯种方法,若C 点与A 不同色,则C 、D 点只有1种涂色的方法,有24种涂法,若C 点与A 同色,则D 点有2种涂色的方法,共48种涂法,所以不同的涂法共有72种.法二:用3种颜色涂色时,即AC BD 、同色,共有3424A =种涂色的方法,用4种颜色时,有AD 和BC 同色2种情况,共有44248A =,故共有72种,故选D .考点:分类计数原理,排列组合.【方法点晴】排列组合中的涂色问题是高考的一个难点,解决这类问题大致有两种方法:一是直接法,一个区域一个区域的来解决,但要考虑先从哪个区域入手,往往是与其他区域都相邻的区域首先考虑,同时要注意这类题往往要求相邻区域不同色,所以在涂色的过程需要分类讨论;二是从颜色入手,条件中的颜色种数可能大于区域块数,也可能小于区域块数,但是不是所有颜色都用上,因此可以从颜色入手,分类讨论.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.计算:()()sin15cos15sin15cos15︒+︒︒-︒= .【答案】【解析】试题分析:2330cos )15cos 15)(sin 15cos 15(sin -=-=-+ . 考点:二倍角公式.14.已知变量x y ,满足约束条件22221010x y x y x y ⎧+--+≤⎪⎨--≤⎪⎩,则2z x y =+的最大值为 .【答案】3+考点:线性规划,数形结合.15.正三棱柱的底面边长为2,高为2,则它的外接球的表面积为 . 【答案】283π考点:棱柱的几何特征,球的表面积,空间位置关系和距离.【方法点晴】解决本题的关键是确定球心的位置,进而确定半径.因为三角形的外心到三角形的三个顶点的距离相等,所以过三角形的外心且垂直于此三角形的所在平面的垂线上的任意一点到次三角形三个顶点的距离相等,所以过该三角形的三个顶点的球的球心必在垂线上.所以本题中球心必在上下底面外心的连线上,进而利用球心距,截面圆半径,球半径构成的直角三角形,即可算出.16.已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为 . 【答案】3 【解析】试题分析:()2sin 22cos 22sin(2)26f x x x x x x ππ⎛⎫=++=+=+⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,故1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦,即函数()f x 的值域为[]1,2-,故答案为3. 考点:二倍角公式,两角和公式,正弦函数的值域.【方法点晴】本题中主要考察了学生三角化简能力,涉及有二倍角公式和两角和公式,()2sin 22cos 22sin(2)26f x x x x x x ππ⎛⎫=++=+=+ ⎪⎝⎭,进而利用02x π⎡⎤∈⎢⎥⎣⎦,的范围得到72,666x πππ⎡⎤+∈⎢⎥⎣⎦,即为换元思想,把26x π+看作一个整体,利用sin y x =的单调性即可得出最值,这是解决sin sin y a x b x =+的常用做法.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)数列{}n a 满足下列条件:()*11221122n n n a a a a a n +++===∈N ,,,.(1)设1n n n b a a +=-,求数列{}n b 的通项公式; (2)若2log n n n c b b =,求数列{}n c 的前n 项和n S . 【答案】(1)n n n q b b )21(11-==-;(2)212121[1()]()9232n n n S+=--+⋅-.(2)由已知有nn n n n b b c )21(log 2--=⋅=, 即nn n n n S )21()21()1()21(3)21(2)21(11321-⋅--⋅----⋅--⋅--⋅-=- ………………① 于是1432)21()21()1()21(3)21(2)21(121+-⋅--⋅----⋅--⋅--⋅-=-n n n n n S …………②-①②得1321)21()21()21()21()21(23+-+---------=n n n 1)21()21(1])21(1)[21-(+-⋅+----=n n n12)21(32])21(1[92+-⋅+--=∴n n n S .…………………………………………12分考点:数列递推求通项公式;数列求和. 18.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录 了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被 选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的 线性回归方程y bx a =+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回 归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?(注:()()()1122211nni iiii i nniiii x yn x y xxyyb a y bx xn xxx====---===---∑∑∑∑,)【答案】(Ⅰ)53;(Ⅱ)325-=∧x y ;(Ⅲ)可靠.3,254324349729773312231-=-==--=-=∧∧==∧∑∑x b y a xx yx b i i i i i .所以y 关于x 的线性回归方程为325-=∧x y .……………………………………………………8分(Ⅲ)当10=x 时,22322,22325<-=-=∧x y ,同样地,当8=x 时,21617,173825<-=-⨯=∧y ,所以,该研究所得到的线性回归方程是可靠的.……………………………………………………12分 考点:回归分析的初步应用;等可能事件的概率.【方法点晴】(1)考察了等可能事件的概率,根据组合的思想,从5组数据中选取2组数据共有10种情况,用正难则反的思想找到4种相邻的情况,根据等可能事件的概率得出结果;(2)利用题中所给出的回归方程系数的公式,用第一个(第二个也可以)得到回归方程系数,写出线性回归方程;(3)根据题意,用检验数据利用回归方程算出估计值,判断误差即可. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,已知21AB CD PA AB AD DC AD AB PD PB ====⊥==∥,,,,, 点M 是PB 的中点.(Ⅰ)证明:CM PAD ∥平面;(Ⅱ)求直线CM 与平面PDC 所成角的正弦值. 【答案】(Ⅰ)证明见解析;试题解析:(Ⅰ)证明:取PA 的中点N ,连接MN ,有MN 平行且等于AB21,于是MN 平行且等于DC ,所以四边形MNCD 是平行四边形,即DN CM //,又⊆DN 平面PAD ,故//CM 平面PAD .………………………………………………6分考点:线面平行的判定,直线和平面所成角. 20.(本小题满分12分)如图,过抛物线()220y px p =>上一点()12P ,,作两条直线分别交抛物线于()11A x y ,,()22B x y ,, 当PA 与PB 的斜率存在且倾斜角互补时:(Ⅰ)求12y y +的值;(Ⅱ)若直线AB 在y 轴上的截距[]13b ∈-,时,求ABP △面积ABP S △的最大值.【答案】(I )421-=+y y ;(Ⅱ)9616.试题解析:解(Ⅰ)由抛物线)0(22>=p px y 过点)2,1(P ,得2=p , 设直线PA 的斜率为PA k ,直线PB 的斜率为PB k ,由PA 、PB 倾斜角互补可知PB PA k k -=,即12122211--=--x y x y , 将2221214,4x y x y ==,代入得421-=+y y .…………………………………………5分(Ⅱ)设直线AB 的斜率为AB k ,由2221214,4x y x y ==,令()()])3,1[(31)(2-∈-+=x x x x f ,则由3103)(2'+-=x x x f ,令0)('=x f ,得31=x 或3=x .当)31,1(-∈x 时,0)('>x f ,所以)(x f 单调递增,当)3,31(∈x 时,0)('<x f ,所以)(x f 单调递减,故)(x f 的最大值为27256)31(=f ,故ABP ∆面积ABP S ∆的最大值为9616)312=f .…………………………………………12分(附:332)38(3)3()3(1(2)3)(1(2=⎥⎦⎤⎢⎣⎡-+-++≤-+b b b b b ),当且仅当31=b 时取等号,此求解方法亦得分)考点:直线与抛物线的位置关系;面积公式;函数的最值. 21.(本小题满分12分)已知函数()2ln R f x x ax x a =+-∈,.(Ⅰ)若函数()f x 在[]12,上是减函数,求实数a 的取值范围;(Ⅱ)令()()2g x f x x =-,当(0]x e ∈,(e 是自然数)时,函数()g x 的最小值是3,求出a 的值;(Ⅲ)当(0]x e ∈,时,证明:()2251ln 2e x x x x ->+. 【答案】(Ⅰ)72a ≤-;(Ⅱ)2a e =;(Ⅲ)证明见解析.(Ⅱ)由],0(,ln )(e x x ax x g ∈-=,得x ax x a x g 11)('-=-=,①当0≤a 时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,e a 4=(舍去),②当e a <<10时,)(x g 在)1,0(a 上单调递减,在],1(e a 上单调递增,∴3ln 1)1()(min =+==a a g x g ,2e a =,满足条件.③当e a ≥1时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,e a 4=(舍去),综上,有2e a =.…………………………………………………………8分 (Ⅲ)令x x e x F ln )(2-=,由(Ⅱ)知,3)(min =x F ,令2'ln 1)(,25ln )(x xx x x x -=+=ϕϕ,考点:利用导函数研究函数的单调性,求函数的最值,利用单调性证明不等式.【方法点晴】本题是函数导数的一个综合考察,既有函数的单调性,也考察了分情况讨论在区间上找最值,也用到了构造函数证明不等式,第一问中给出函数单调减,转成'()0f x ≤在区间[]1,2上恒成立,等号是一个易错点,进而转成二次函数的恒成立,本题中二次函数开口向上,在闭区间恒小于等于0,故只需保证两个端点即可;第二问中常规的讨论,需讨论在(0,]e 单调性研究最值即可;第三问中先分析不等式结构,发现同时除以x 后,左右两个函数有max 1515()()3222x e e φφ==+<+=,易得结果. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲:如图,在ABC △中,作平行于BC 的直线交AB 于D ,交AC 于E ,如果BE 和CD 相交于点O ,AO 和DE 相交于点F ,AO 的延长线和BC 相交于G .证明:(Ⅰ)DF EFBG GC =; (Ⅱ)DF FE =【答案】(I )证明见解析;(II )证明见解析. 【解析】试题分析:(I )利用三角形相似易得;(II )由DFO ∆∽CGO ∆,即DF FO GC GO =,同理FE FOBG GO=,易得DF FE =.试题解析:解(Ⅰ)BC DF // ∵,ADC ∴∽ABG ∆,即AG AF BGDF =,同理GC FE AG AF =,于是GC FEBG DF =.…………………………………………5分(Ⅱ)BC DF // ,∴DFO ∆∽CGO ,即GO FO GC DF =,同理GO FO BG FE =, 所以BG GCFE DF BG FE GCDF =⇒=, 又由(Ⅰ)有DF FEBG GC GCFE BG DF =⇒=, 所以DF FEFEDF =,即FE DF =.…………………………………………10分 考点:三角形相似判定和性质.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.已知曲线M 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),曲线N 的极方程为sin 83πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)分别求曲线M 和曲线N 的普通方程; (Ⅱ)若点A M B N ∈∈,,求AB 的最小值.【答案】(Ⅰ)曲线M 的普通方程为22(2)4x y +-=,曲线N 160y +-=(Ⅱ)5.考点:参数方程,极坐标方程,普通方程的互化;直线与圆的位置关系. 24.(本小题满分10分)选修4-5:不等式选讲. 已知函数()f x x a =-.(Ⅰ)若不等式()3f x ≤的解集为{}15x x -≤≤,求实数a 的值;(Ⅱ)当1a =时,若()()5f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围. 【答案】(Ⅰ)2=a ;(Ⅱ)5m ≤. 【解析】试题分析:(I )由()3f x ≤得3x a -≤,解得33a x a -≤≤+,可得出2a =;(II )对23,4()|1||4|5,4123,1x x g x x x x x x --≤⎧⎪=-++=-≤≤⎨⎪+>⎩,分段解不等式即可.试题解析:解:(Ⅰ)由3)(≤x f 得3≤-a x ,解得33+≤≤-a x a ,又已知不等式3)(≤x f 的解集为{}51|≤≤-x x ,所以⎩⎨⎧=+-=-5313a a ,解得2=a .…………5分 (Ⅱ)当1=a 时,1)(-=x x f ,设)5()()(++=x f x f x g ,于是, ⎪⎩⎪⎨⎧>+≤≤-≤--=++-=1,3214,54,32|4||1|)(x x x x x x x x g ,故当1-<x 时,5)(>x g ,当14≤≤-x 时,5)(=x g ,当1>x 时,5)(>x g , 所以实数m 的取值范围为5m ≤.…………………………………………10分 考点:绝对值不等式的解法.:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广西名校高考数学猜题试卷(理科)
一、选择题(本大题共12小题,每小题5分,共60分)
1.设集合M={x|x2﹣3x﹣4<0},N={x|lgx<1},则M∩N=()
A.(﹣1,4)B.(0,4)C.(0,10)D.(4,10)
2.若i是虚数单位,复数的虚部为()
A.B.C.D.
3.若x,y满足,则使得z=2x+y取最大值时的最优解为()
A.(0,3)B.(3,0)C.(1,2)D.(2,1)
4.几何体三视图如图所示,则该几何体的体积为()
A.B. C.D.
5.已知向量=(3,1),=(1,3),=(k,﹣2),若(﹣)∥,则向量与向量的夹角的余弦值是()
A.B.C.D.
6.执行右面的程序框图,若输入的n=6,m=4那么输出的p是()
A.120 B.240 C.360 D.720
7.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()
A.2 B.lg50 C.10 D.5
8.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,22),从中随机取一件,其长度误差落在区间(2,4)内的概率为()(若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)
A.4.56% B.13.59% C.27.18% D.31.74%
9.已知φ∈(,π),且sinφ=,若函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条
对称轴之间的距离等于,则f()的值为()
A.﹣ B.﹣ C.D.
10.过双曲线﹣=1(a>0,b>0)的一个焦点F作一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若=2,则此双曲线的离心率为()
A.B.C.2 D.
11.已知球的直径SC=2,A,B是该球球面上的两点,若AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的表面积为()
A.22 B.16 C.12 D.10
12.函数f(x)的导函数为f′(x),对∀x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e的解集是()
A.(1,+∞)B.(0,ln4)C.(ln4,+∞)D.(0,1)
二、填空题(本大题共4小题,每小题5分,共20分)
13.6的展开式中,x4y2的系数为.
14.已知抛物线x2=2py上的点M(m,3)到它的焦点的距离为5,则该抛物线的准线方程为.15.已知函数f(x)是R上的偶函数,且满足f(x+2)=﹣f(x),当x∈[0,1]时,f(x)=2﹣x,则f(2016)+f(﹣2017)的值为.
16.已知数列{a n}是各项均不为0的等差数列,S n为其前n项和,且满足a n2=S2n
(n∈N+).若
﹣1
不等式≤对任意的n∈N+恒成立,则实数λ的最大值为.
三、解答题
17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且.
(1)求角A的值;
(2)若∠B=,BC边上中线AM=,求△ABC的面积.
18.(12分)随着科技的发展,手机已经成为人们不可或缺的交流工具,除传统的打电话外,手机的功能越来越强大,人们可以玩游戏,看小说,观电影,逛商城等,真是“一机在手,天下我有”,所以,有人把喜欢玩手机的人冠上了名号“低头族”,低头族已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取100名市民,按年龄情况进行统计的频率分布表和频率分布直方图.
(I)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名市民的平均年龄;
(II)在抽出的100名中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[30,35)的人
数为ξ,求ξ的分布列及数学期望.
19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是平行四边形,且PA⊥平面ABCD,PA=AB=AD=2,PC与底面ABCD所成角为30°.
(I)证明:平面PBD⊥平面PAC;
(II)求平面APB与平面PCD所成二面角(锐角)的余弦值.
20.(12分)已知椭圆+=1(a>b>0)的右焦点为F,M为上顶点,O为坐标原点,
若△OMF的面积为,且椭圆的离心率为.
(1)求椭圆的方程;
(2)是否存在直线l交椭圆于P,Q两点,且使点F为△PQM的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.
21.(12分)已知函数f(x)=x2﹣alnx(a∈R).
(I)若f(x)在[1,3]上是单调递增函数,求实数a的取值范围;
(II)记g(x)=f(x)+(2+a)lnx﹣2(b﹣1)x,并设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥1+,求g(x1)﹣g(x2)的最小值.
四、选修4-4:坐标系与参数方程选讲
22.(10分)已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),
直线l经过定点P(1,1),倾斜角为.
(Ⅰ)写出直线l的参数方程和圆锥曲线C的标准方程;
(Ⅱ)设直线l与圆锥曲线C相交于A,B两点,求|PA|•|PB|的值.
五、解答题(共1小题,满分0分)
23.已知函数f(x)=|x+a|+|x﹣2|.
(1)当a=﹣4时,求不等式f(x)≥6的解集;
(2)若f(x)≤|x﹣3|的解集包含[0,1],求实数a的取值范围.
2017年广西名校高考数学猜题试卷(理科)
参考答案与试题解析
一、选择题(本大题共12小题,每小题5分,共60分)
1.设集合M={x|x2﹣3x﹣4<0},N={x|lgx<1},则M∩N=()
A.(﹣1,4)B.(0,4)C.(0,10)D.(4,10)
【考点】1E:交集及其运算.
【分析】根据题意,解x2﹣3x﹣4<0可得集合M,解lgx<1可得集合N,进而由交集的意义,计算可得答案.
【解答】解:根据题意,x2﹣3x﹣4<0⇒﹣1<x<4,
则M={x|x2﹣3x﹣4<0}=(﹣1,4);
lgx<1⇒0<x<10,
则N={x|lgx<1}=(0,10);
故M∩N=(0,4);
故选:B.
【点评】本题考查集合交集的运算,关键是求出集合A、B.
2.若i是虚数单位,复数的虚部为()
A.B.C.D.
【考点】A5:复数代数形式的乘除运算.
【分析】根据复数的运算法则计算即可.
【解答】解:复数===+i,
∴复数的虚部为,
故选:D.
【点评】本题考查了复数的运算法则,以及复数的概念,属于基础题.
3.若x,y满足,则使得z=2x+y取最大值时的最优解为()。