【南方新课堂】2015年高考数学(文)总复习课时检测:第5章 第4讲 简单的线性规划]

合集下载

2015年《南方新课堂》高考语文总复习 专题22 散文阅读课时检测

2015年《南方新课堂》高考语文总复习 专题22 散文阅读课时检测

专题二十二散文阅读一、阅读下面的文字,完成1~3题。

一棵葫芦爬过墙吴德欣①那还是我们家住在乡下的一段日子。

乡政府被叫作“人民公社”,几十个庄子上的男女老少一律叫“社员”,他们去供销社购物,到邻居家赊粮,手里用的工具是一只干瓢。

比如,买一瓢盐,用一瓢鸡蛋换回烟酒糖茶,或借一瓢玉米面。

这里实在有必要提一下,就是被借的那户人家,即便自己揭不开锅,只要罐底能刮出来多少就借给人家多少,是毫不含糊的。

而还粮的社员总要比先前多出来一个“牙印”儿。

细看那些出出入入的瓢儿,有的竟用细麻绳密密实实地补缀起来。

可见当时物资的匮乏、经济的拮据及贯穿其中的亲情。

②我家的水瓢有时候要被我拿出去装沙玩,在稻田里戽水捉泥鳅。

损坏了,我就会把它往家里一丢,再狼狈不堪地躲到外面,甚至一天都不敢露面。

坏了的水瓢也会被我妈用针线补起来。

可用它舀水,就会看见一道水流顺着裂缝滋滋地冒出。

这样坚持用了一个秋天和一个冬天,春暖花开的时节,母亲在墙根栽下了一棵秧苗,我们就经常给它浇水,上一点鸡粪,一心盼着它快快长大。

③一只葫芦能开两只瓢,用来舀水做饭,淘水浇地的叫水瓢,用来盛粮盛盐的叫干瓢,它们是孪生的姐妹,灶前灶后家里家外地忙活着,为老老少少理家过日子。

我们家的葫芦不负众望,藤秧沿着墙体越过了墙头,今天墙这边开花,后天就在墙那边结纽了。

隔几天,我就攀着青砖看见它在墙外一天大似一天。

我对妈说,要不要把藤秧扯过来?我妈说,强扭的瓜不甜,它愿那样随它去。

妈还号召我们勤浇水多施肥,我们不懂,发了一些怨言。

因为一墙之隔是公社的大院,那边也住了一户人家,况且他们顺着葫芦秧搭了一个凉棚,那只葫芦就吊在中央恣意地生长。

时隔多日,我又看见那只葫芦被草绳编织的网子揽底兜住。

他们是不是要占为己有?当我把这个想法当众说出,妈就用竹筷敲起我的头颅,说我的心眼只有针鼻儿那般大。

我心想,等着瞧吧,看咱一家瞎忙乎个啥劲儿?!④秋来了,霜降了,葫芦架也蔫了,墙那边的葫芦落到了咱家。

2015年《南方新课堂》高考语文总复习 专题9 选用、仿用、变换句式课时检测

2015年《南方新课堂》高考语文总复习 专题9 选用、仿用、变换句式课时检测

专题九选用、仿用、变换句式训练一选用句式1.根据语境,填入下列两句话中横线处的语句,最恰当的一项是( )①水生追回那个纸盒子,一只手高高举起,一只手用力拍打着水,好使自己不沉下去,对着荷花淀吆喝:“________”好像带着很大的气。

(a.出来吧,你们!b.你们出来吧!)②今天,当我站在古城墙上游目骋怀,才猛然悟到:________他们创造着古城墙新的内涵,创造着古城墙新的形象,并在这创造中重塑了自己。

(a.西安人民完成的岂止是对古城墙的修复?他们分明是在创造。

b.西安人民分明是在创造,他们完成的岂止是对古城墙的修复?)A.①a②b B.①a②aC.①b②a D.①b②b2.填入下面文字横线处的语句,衔接最恰当的一项是( )菲尔丁说:“不好的书也像不好的朋友一样,可能会把你戕害。

”这话没错。

但也不必为此走向另一个极端,夸大书籍对人的品格的影响。

更多的情况是,________A.好人读了坏书受害至深,坏人读了好书受益些微。

B.好人读了好书取其精华,坏人读了坏书取其糟粕。

C.好人读了好书好上加好,坏人读了坏书不可救药。

D.好人读了坏书仍是好人,坏人读了好书仍是坏人。

3.“我们要学习文件”是一句有歧义的句子,接在它后面能消除歧义的一项是( )A.请做好准备。

B.请把电视机关上。

C.小说不要带来。

D.请你告诉小王。

4.填入下面文字横线处的语句,表达效果最好的一项是( )不管生活给我以什么,我都报之以微笑。

给我以严寒,我就是一朵清新俏丽的红梅;给我以崎岖,我就是一条轻盈活泼的小溪;____________________。

A.给我以风雨,我就是一弯旖旎绚丽的彩虹B.给我以狂风,我就是一波汹涌澎湃的巨浪C.给我以考验,我就是一个坚强勇敢的斗士D.给我以阳光,我就是一只轻舞呢喃的燕子训练二仿用句式1.仿照画线句子的形式,另选对象,写一段话。

要求:字数与画线句子基本相等,意思与整段内容的话题保持一致。

“唯有埋头,乃能出头。

2015届高三数学湘教版一轮复习配套课件:解答题增分 系列讲座(四)

2015届高三数学湘教版一轮复习配套课件:解答题增分  系列讲座(四)

[失分警示]
易漏“面内相 交线”这一条 件导致应用线 面垂直判定定 理失误丢分.
数学
首页
上一页
下一页
末页
第五页,编辑于星期五:八点 五十分。
解答题增分 系列讲座(四) “立体几何”类题目的审题技 结束 巧与解题规范
[解题流程]
第二步
2法一:过C作CM∥AP,则CM⊥平面ABC.
确定原点建立空 如图,以点C为坐标原点,分别以直线CB,CA,
数学
首页
上一页
下一页
末页
第三页,编辑于星期五:八点 五十分。
第1问
解答题增分 系列讲座(四) “立体几何”类题目的审题技 结束 巧与解题规范
第2问
数学
首页
上一页
下一页
末页
第四页,编辑于星期五:八点 五十分。
解答题增分 系列讲座(四) “立体几何”类题目的审题技 结束 巧与解题规范
[解题流程]
第一步
[解题流程]
[失分警示]
第二步
由图形特
法二:过C作CM⊥AB于M, 因为PA⊥平面ABC,CM⊂平面ABC, 所以PA⊥CM,
易漏“面内相交 线”这一条件导 致应用线面垂直
征引辅助 又因为PA∩AB=A,且PA⊂平面PAB,
线,作出⇐AB⊂平面PAB,故CM⊥平面PAB. 7分
二面角的
过M作MN⊥PB于N,连接NC, 由三垂线定理得CN⊥PB,
数学
首页
上一页
下一页
末页
第六页,编辑于星期五:八点 五十分。
解答题增分 系列讲座(四) “立体几何”类题目的审题技 结束 巧与解题规范
[解题流程]
第三步
求出平面 的法向量

【南方新课堂】2015年高考数学(文)总复习课时检测:第5章 第3讲 算术平均数与几何平均数

【南方新课堂】2015年高考数学(文)总复习课时检测:第5章 第3讲 算术平均数与几何平均数

第3讲 算术平均数与几何平均数1.若A 为两正数a ,b 的等差中项,G 为两正数a ,b 的等比中项,则ab 与AG 的大小关系为( )A .ab ≤AGB .ab ≥AGC .ab >AGD .ab <AG2.(2012年陕西)小王从甲地到乙地的往返时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =abC.ab <v <a +b2D .v =a +b23.(2013年福建)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0]C .[-2,+∞)D .(-∞,-2]4.(2011年重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+ 2B .1+ 3C .3D .45.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值等于( )A .1B .2C .2 2D .2 36.(2013年山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x+1y -2z的最大值为( ) A .0 B .1 C.94D .3 7.(2012年上海)函数y =log 2x +4log 2x (x ∈[2,4])的最大值是________.8.设M 是△ABC 内一点,且AB →·AC →=2 3,∠BAC =30°,定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积.若f (M )=⎝⎛⎭⎫12,x ,y ,则1x +4y的最小值是________.9.已知函数f (x )=13x 3-ax 2+10x (x ∈R ).(1)若a =3,点P 为曲线y =f (x )上的一个动点,求以点P 为切点的切线斜率取最小值时的切线方程;(2)若函数y =f (x )在(0,+∞)上为单调增函数,试求a 的取值范围. 10.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图K5-3-1),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3平方米,且高度不低于3米.记防洪堤横断面的腰长为x (单位:米),外周长(梯形的上底线段BC 与两腰长的和)为y (单位:米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内?(3)当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.图K5-3-1所以m 的取值范围为⎝⎛⎭⎫-∞,67. 第3讲 算术平均数与几何平均数1.A 解析:∵A 为两正数a ,b 的等差中项,∴A =a +b2.又∵G 为两正数a ,b 的等比中项,∴G =ab .∵a +b 2≥ab ,∴AG =a +b2ab ≥ab ·ab =ab .2.A 解析:设从甲地到乙地的距离为s ,则全程的平均时速v =2s s a +s b=21a +1b.∵a <b ,a=21a +1a <21a +1b <ab .故选A. 3.D 解析:∵1=2x +2y ≥2·2x ·2y ,变形为2x +y ≤14,即x +y ≤-2,当且仅当x =y 时取等号.则x +y 的取值范围是(-∞,-2].4.C 解析:∵x >2,∴f (x )=x +1x -2=(x -2)+1x -2+2≥2 (x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.5.B 解析:由条件知:(b 2+1)-ab 2=0,∴ab =b 2+1b =b +1b ≥2,当且仅当b =1b,即b =1时等号成立.6.B 解析:∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数, ∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ·4yx-3=1(当且仅当x =2y 时取“=”), ∴⎝⎛⎭⎫xy z max =1,此时,x =2y .∴z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2.∴2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1. ∴2x +1y -2z 的最大值为1. 故选B.7.5 解析:设log 2x =t ∈[1,2],y =f (t )=t +4t在[1,2]上单调递减,∴f (t )max =f (1)=5.8.18 解析:∵AB →·AC →=|AB →|·|AC →|cos30°=32|AB →|·|AC →|=2 3,∴|AB →|·|AC →|=4.由f (M )的定义,知:S △ABC =12+x +y .又S △ABC =12|AB →|·|AC →|·sin30°=1,∴x +y =12(x >0,y >0),∴1x +4y=2(x +y )⎝⎛⎭⎫1x +4y =2⎝⎛⎭⎫5+y x +4x y ≥2(5+2 4)=18.当且仅当y x =4x y ,即y =2x =13时,等号成立.∴1x +4y的最小值为18.9.解:(1)设切线的斜率为k ,则f ′(x )=x 2-6x +10=(x -3)2+1. 显然当x =3时切线斜率取最小值1,又f (3)=12, ∴所求切线方程为y -12=x -3,即x -y +9=0. (2)f ′(x )=x 2-2ax +10.∵y =f (x )在x ∈(0,+∞)为单调递增函数,即对任意的x ∈(0,+∞),恒有f ′(x )≥0,即f ′(x )=x 2-2ax +10≥0,∴a ≤x 2+102x =x 2+5x.而x 2+5x ≥10,当且仅当x =10时,等号成立, ∴a ≤10.10.解:(1)9 3=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,∴9 3=12(2BC +x )·32x ,得BC =18x -x2.由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.∴y =BC +2x =18x +3x2(2≤x <6).(2)y =18x +3x2≤10.5,得3≤x ≤4.∵[3,4]⊂[2,6),∴腰长x 的范围是[3,4].(3)y =18x +3x 2≥2 18x ·3x 2=6 3,当且仅当18x =3x2,即x =2 3∈[2,6)时等号成立.∴外周长的最小值为6 3米,此时腰长为2 3米.。

《南方新课堂_高考总复习》数学(理科)一轮复习练习:第五章数列(含答案解析)

《南方新课堂_高考总复习》数学(理科)一轮复习练习:第五章数列(含答案解析)

第五章数列、推理与证明第 1 讲数列的观点与简单表示法1.数列2,3,4,5,的一个通项公式是 () 1,3 5 79A. a n=nB. a n=n 2n+ 12n- 1C. a n=nD. a n=n 2n- 32n+ 32.设数列 {a n} 的前 n 项和 S n=n2,则 a8的值为 () A. 15B. 16C. 49D. 643.在数列 {a n} 中,已知= 1,且当 n≥2时, a= n2,则 a + a = () a11·a2· ·a n35761A.3B.163111C.15D. 44.(2013 年福建 )阅读如图 X5- 1-1 所示的程序框图,运转相应的程序,假如输入某个正整数 n 后,输出的S∈ (10,20),那么 n= ()图 X5- 1-1A. 3 B.4 C.5 D. 65. (2014 年新课标Ⅱ )数列 {a n} 知足 a n+1=1, a8= 2,则 a1= ________.1- a n6.已知数列 {a n} 知足: a4n-3= 1, a4n-1=0, a2n= a n, n∈ N*,则 a2009= ________, a2014= ________.7. (2013 年浙江乐清一模 )已知递加数列 {a n} 的通项公式为a n= n2+ kn+2,则实数 k 的取值范围为 ________.21,则 {a n} 的通项公式是a n=8. (2013 年新课标Ⅰ )若数列 {a n} 的前 n 项和 S n= a n+33________.9.已知数列 {a n} 的通项公式为a n=(n +1)10 n(n∈ N *),则当 n 为多大时, a n最大?1110. (2012 年纲领 )已知数列 {a n} 中, a1= 1,前 n 项和 S n=n+ 2a n. 3(1)求 a2, a3;(2)求 {a n} 的通项公式.第 2讲等差数列1. (2014 年福建 )设等差数列 {a n} 的前 n 项和为 S n,若 a1= 2, S3=12,则 a6=() A. 8 B.10C. 12 D. 142. (2013 年安徽 )设 S n为等差数列 {a n } 的前 n 项和, S8= 4a3, a7=- 2,则 a9= () A.- 6B.- 4C.- 2D. 23.(2014 年天津 )设 {a n} 是首项为 a1,公差为- 1 的等差数列, S n为其前 n 项和,若 S1,S2, S4成等比数列,则 a1= ()11A. 2 B.- 2 C.2D.-24.已知 S n为等差数列 {a n} 的前 n 项和,若 a1+ a7+ a13的值是一个确立的常数,则以下各式:①a21;② a7;③ S13;④ S14;⑤ S8- S5.其结果为确立常数的是()A.②③⑤ B .①②⑤C.②③④ D .③④⑤n2a1a n5. (2014 年辽宁 )设等差数列 {a } 的公差为 d,若数列 {} 为递减数列,则 () A. d<0 B . d>0C. a1d<0D. a1d>06. (2015 年北京 )设 {a n} 是等差数列 . 以下结论中正确的选项是()A.若 a1+ a2>0,则 a2+ a3>0B.若 a1+ a3<0,则 a1+a2<0C.若 0<a1<a2,则 a2>a1a3D.若 a1<0,则 (a2- a1)(a2- a3) > 017. (2015 年安徽 )已知数列 {a n} 中, a1= 1, a n= a n-1+2(n ≥ 2),则数列 {a n} 的前 9 项和等于 ________.8. (2015 年陕西 )中位数为1010 的一组数组成等差数列,其末项为2015,则该数列的首项为 ________.9. (2014 年湖北 )已知等差数列 {a n} 知足: a1= 2,且 a1, a2,a5成等比数列.(1)求数列{a n} 的通项公式;(2)记S n为数列{a n} 的前n 项和,能否存在正整数n,使得S n>60n+800?若存在,求n 的最小值;若不存在,说明原因.10. (2014年新课标Ⅰ)已知数列{a } 的前n 项和为S , a = 1, a ≠0, a a +=λS-1,n1nnn1nn其中λ为常数.(1)证明: a n+2- a n=λ;(2)能否存在λ,使得{a n}为等差数列?并说明原因.第 3讲等比数列1. (2013 年江西 )等比数列x,3x+ 3,6x +6,的第四项为() A.- 24 B.0C. 12D. 242.设在公差 d≠0的等差数列 {a n} 中, a1, a3, a9成等比数列,则a1+ a3+ a5= () a2+ a4+ a675A. 5B.734C.4D.33. (2014 年重庆 )对随意的等比数列{a n } ,以下说法必定正确的选项是 ()A. a1, a3, a9成等比数列B. a2, a3, a6成等比数列C. a2, a4, a8成等比数列D. a3, a6, a9成等比数列4.设各项都是正数的等比数列{a n} ,S n为前 n 项和,且S10=10, S30= 70,那么 S40等于 ()A. 150 B .- 200C. 150 或- 200D. 400 或- 505. (2013 年新课标Ⅰ )设首项为 1,公比为2的等比数列 {a n} 的前 n 项和为 S n,则 () 3A. S n= 2a n- 1 B . S n= 3a n- 2C. S n= 4- 3a n D . S n= 3- 2a n6. (2015 年浙江 )已知 {a n} 是等差数列,公差 d 不为零,前n 项和是 S n,若 a3, a4, a8成等比数列,则 ()A. a1d> 0, dS4> 0B. a1d< 0, dS4< 0C. a1d> 0, dS4< 0D. a1d< 0, dS4> 07. (2015 年浙江 )已知 {a n} 是等差数列,公差 d 不为零.若a2, a3, a7成等比数列,且2a1+a2=1,则 a1= ____________, d=__________.8. (2013 年江西 )某住所小区计划植树许多于100 棵,若第一天植 2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n∈N * )等于 __________ .9.(2015 年四川 )设数列 {a n }(n = 1,2,3, )的前 n 项和 S n 知足 S n = 2a n - a 3,且 a 1 ,a 2 +1, a 3 成等差数列.(1)求数列的通项公式;1(2)设数列 a n 的前 n 项和为 T n ,求 T n .10. (2015 年重庆 )已知等差数列 {a n } 知足 a 3= 2,前 3 项和 S 3 =92.(1)求 {a n } 的通项公式;(2)设等比数列 {b n } 知足 b 1= a 1, b 4=a 15,求 {b n } 前 n 项和 T n .第 4 讲数列的乞降1 12 1 2 312 3 911.已知数列 {a n } : 2,3+ 3, 4+ 4+4, ,10+10+10+ +10, ,若 b n= a n an +1 ,那么数列 {b n } 的前 n 项和 S n 为 ()n 4n 3n 5nA.B.C.D.n + 1n + 1n + 1n + 112.已知等差数列 {a n } 的前 n 项和为 S n ,a 5= 5,S 5= 15,则数列 a n a n + 1 的前 100 项和为()10099 99101 A.101B.101C.100D.1003.若数列 {a n } 的通项公式是 a n = (- 1)n·(3n - 2),则 a 1+ a 2+ + a 10=()A . 15B . 12C .- 12D .- 154. (2012 年新课标 )数列 {a n } 知足 a n + 1+ (- 1)n a n =2n - 1,则 {a n } 的前 60 项和为 () A . 3690 B . 3660 C . 1845 D .18305. (2013 年广东揭阳一模 )已知等差数列 {a n } 知足 a 1>0, 5a 8= 8a 13,则目前 n 项和 S n 取最大值时, n = ()A . 20B . 21C . 22D . 236.已知数列 {a n } 的前 n 项和 S n = n 2- 6n ,则数列 {|a n |} 的前 n 项和 T n 等于 ( )A . 6n - n 2B . n 2- 6n + 186n - n 2(1≤ n ≤3), D.6n - n 2(1≤ n ≤3),C.n 2- 6n(n > 3)n 2- 6n +18(n > 3)7. (2014 年湖北武汉模拟 )等比数列 {a n } 的前 n项和 S n = 2n - 1,则 a 12+ a 22+ + a n 2=________.8.如图 X5- 4-1,它知足:①第 n 行首尾两数均为n ;②图中的递推关系近似杨辉三角,则第 n(n ≥2)行的第 2 个数是 ______________.12 23 4 3477 45 11 14115图 X5- 4-19. (2013 年纲领 )在等差数列 {a n} 中, a7=4, a19=2a9 .(1)求 {a n} 的通项公式;1(2)设 b n=,求数列{b n}的前n项和S n.10. (2015 年山东 )已知数列 {a n} 是首项为正数的等差数列,数列n2n+ 1.(1)求数列 {a n} 的通项公式;(2)设 b n= (a n+ 1) ·2a n,求数列 {b n} 的前 n 项和 T n.1的前 n 项和为a n·a n+1第 5 讲合情推理和演绎推理1. (2015 年广东 )若空间中 n 个不一样的点两两距离都相等,则正整数n 的取值 ( )A .大于 5B .等于 5C .至多等于 4D .至多等于 32.(2014 年广东茂名一模 )已知 21×1= 2,22×1×3= 3×4,23×1×3×5= 4×5×6,24×1×3×5×7=5×6×7×8, ,依此类推,第 n 个等式为 ______________________________________________________________________________________________.3. (2013 年陕西 )察看以下等式:12 =11 2- 22=- 312- 22+ 32=612 -22+ 32- 42=- 10照此规律,第 n 个等式为 ______________________________________________ . 4.如图 X5- 5-1,在平面上,用一条直线截正方形的一个角,则截下的一个直角三角形按如图 X5- 5-1(1) 所标边长,由勾股定理,得c 2= a 2+ b 2.假想把正方形换成正方体,把截线换成如图 X5- 5-1(2)所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-ABC ,若 用 s 1 , s 2 , s 3 表 示 三 个 侧面 面 积 , s 4 表 示 截面 面 积 , 则 能够 类 比 得 到 的结 论 是 __________________ .(1)(2)图 X5- 5-1π 1 π 2π 1π 2π 3π 1, ,依据以上等式,可猜想出5.已知 cos = ,cos ·cos 5 = ,cos ·cos 7·cos 7 = 3 2 5 4 7 8的一般结论是 __________________________________________ .6.关于中国足球参加的某次大型赛事,有三名观众对结果作以下猜想:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.比赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________ 名.7.(2014 年福建龙岩模拟 )代数式1+1( “ ”表示无穷重复 )是一个固定值,能够11+1+令原式= t ,由1+1= t ,解得其值为t =5+1,用近似方法可得2+ 2+ 2+=t2______________.8. (2015 年陕西 )对二次函数f(x) = ax2+bx+ c(a 为非零常数 ),四位同学分别给出以下结论,其中有且仅有一个结论是错误的,则错误的结论是()A.- 1 是 f(x) 的零点B. 1 是 f(x) 的极值点C. 3 是 f(x) 的极值D.点 (2,8)在曲线 y= f(x) 上9.某同学在一次研究性学习中发现,以下 5 个式子的值都等于同一个常数.①sin213°+ cos217°- sin13 cos17° °;②sin215°+cos215°-sin15 cos15° °;③ sin218°+ cos212°- sin18 cos12° °;④sin2(-18°)+cos248°-sin(-18°)cos48 ;°⑤ sin2(- 25°)+cos255°-sin(- 25°)cos55 .°(1)试从上述 5 个式子中选择一个,求出这个常数;(2)依据 (1) 的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.10.(2014 年广东广州一模 )在等差数列 {a n} 中, a1+ a2= 5,a3= 7,记数列1的前 n a n a n+1项和为 S n.(1)求数列 {a n} 的通项公式;(2)能否存在正整数m, n,且 1<m<n ,使得S1, S m, S n成等比数列?若存在,求出所有切合条件的m, n 的值;若不存在,请说明原因.第 6 讲直接证明与间接证明1.用反证法证明命题:若整系数一元二次方程ax 2+ bx +c = 0(a ≠0)存在有理数根,那么 a , b , c 中起码有一个是偶数.以下假定正确的选项是 ________.①假定 a , b , c 都是偶数;②假定 a , b , c 都不是偶数;③假定 a , b , c 至多有一个偶数;④假定 a , b , c 至多有两个偶数.2.以下条件:① ab>0;② ab<0;③ a>0, b>0 ;④ a<0, b<0.其中能使 b aa + ≥2建立的条b 件的序号是 ________.3. 6+ 7与2 2+5的大小关系为 ________.4. (2014 年山东 )用反证法证明命题 “设 a ,b 为实数,则方程x 2+ ax + b =0 起码有一个实根 ”时,要做的假定是 ()A .方程 x 2+ax + b = 0 没有实根B .方程 x 2+ ax + b = 0 至多有一个实根C .方程 x 2+ ax + b = 0 至多有两个实根D .方程 x 2+ax + b = 0 恰巧有两个实根5.凸函数的性质定理: 假如函数 f(x) 在区间 D 上是凸函数, 则关于区间 D 内的随意 x 1,x 2, ,x n ,有 f(x 1)+ f(x 2 )+ + f(x n ) x 1+ x 2+ +x n.已知函数 y = sinx 在区间 (0,π)上是 n ≤fn凸函数,则在△ ABC 中, sinA + sinB + sinC 的最大值为 ________.6. α, β是两个不一样的平面, m , n 是平面 α及 β以外的两条不一样的直线,给出四个论断:① m ⊥ n ;② α⊥ β;③ n ⊥ β;④ m ⊥ α以.其中的三个论断作为条件,余下一个论断作为结论,写出你以为正确的一个命题:____________________.7.下表中的对数值有且仅有一个是错误的: x358915lgx2a - ba + c3- 3a - 3c4a - 2b3a - b + c +1请将错误的一个更正为________________.8.(2014年福建)已知会合{a ,b ,c} = {0,1,2} ,且以下三个关系: ① a ≠2;② b = 2;③ c ≠0有且只有一个正确,则100a + 10b + c =__________.9. (2014 年浙江 )已知等差数列 {a n} 的公差 d>0 ,设 {a n} 的前 n 项和为 S n, a1= 1, S2·S3=36.(1)求 d 及 S n;(2)求 m, k(m , k∈ N* )的值,使得a m+ a m+1+a m+2++a m+k=65建立.1* 10. (2015 年广东肇庆一模)已知数列 {a n} 知足: a1=, 3a n+1- 2a n(n∈ N );数列 {b n} 满足: b n= a n+1- a n(n∈ N * ).(1)求数列 {a n} 的通项公式及其前n 项和 S n;(2)证明:数列 {b n} 中的随意三项不行能成等差数列.第 7 讲数学概括法1.用数学概括法证明: (n + 1)(n + n × 1× 3× ×+(2n1)(n *2) · ·+(nn)= 2 ∈ N ),从 “n= k ”到 “n= k + 1”左端需乘的代数式是 ()A . 2k + 1B . 2(2k + 1)2k + 12k +3C.k + 1D.k + 1222222n(2n + 1)2.用数学概括法证明: 1 + 2 ++n + + 2 + 1 =,第二步证明由 “k 到 k+ 1”时,左侧应加 ()A . k 2B . (k + 1)2C . k 2+ (k + 1)2+ k 2D . (k + 1)2+ k 23.对全部正整数 n , n 2 与 2n的大小关系为 ()A .对全部 n ∈ N * ,恒有 n 2<2nB .对全部 n ∈ N *2 n,恒有 n ≤22 n2nC .当 n = 1 或 n ≥5时,当 n <2 ,n = 2,3,4 时, n ≥2D .以上都不对4. f(n) 和 g(n) 都是定义在正整数集上的函数,知足:①f(1) = g(1);②对 n ∈N * , f(n) -f(n - 1)= g(n)-g(n - 1).那么猜想对 n ∈N *时,有 ()A . f(n)>g(n)B . f(n)<g(n)C . f(n) = g(n)D . f(n) 与 g(n) 大小关系不可以确立5.用数学概括法证明 1+2+ 22+ +25n - 1是 31 的整数倍时, 当 n = 1 时,上式等于 ()A . 1+2B .1+ 2+222+2 3D .1+234C . 1+ 2+22+ 2 +2 +26.已知 S k = 1 + 1 +k +1 k + 2 A . S k +12k +1C . S k + 1 - 1+ 2k + 22k 1 1+ +1(k = 1,2,3, ),则 S k +1= ()k + 3 2kB . S k + 1 - 12k +2 k +1 D . S k + 1 + 12k +1 + 2 2k7.若不等式 1 +1 +1 + + 1 m关于全部 n ∈ N * 建立,则正整数m 的最n + 1 n + 2 n + 32n >2015大值为 __________ .1+1 +1+ +12,则以下说法正确的选项是 ________.8.已知 f(n) =n n + 1 n + 2n ① f(n)中共有 n 项,当 n = 2 时, f(2)= 1+1; 2 3② f(n)中共有 n + 1 项,当 n = 2 时, f(2) =1+ 1+ 1;2 3 4③ f(n)中共有 n 2-n 项,当 n = 2 时, f(2)= 1+1;2 32-n + 11 1 1 ④ f(n)中共有 n 项,当 n =2 时, f(2) =++ .2349. (2014 年广东 )设数列 {a n } 的前 n 项和为 S n ,知足 S n = 2na n + 1- 3n 2- 4n , n ∈N * 且 S 3= 15.(1)求 a 1, a 2, a 3 的值;(2)求数列 {a n } 的通项公式.ax10. (2014 年纲领 )函数 f(x) = ln(x + 1)-x + a (a>1) .(1)议论 f(x) 的单一性;(2)设 a 1= 1, a n + 1= ln(a n +1) ,证明:2<a n ≤3.n +2n + 2第五章数列、推理与证明第 1 讲数列的观点与简单表示法1. B2.A分析: a 8= S 8- S 7=82-72= 64- 49= 15.3. B4. B 分析:依据题意,该算法的功能为第一步: k = 1,S = 2×0+ 1= 1, k = 2;第二步: S = 2×1+ 1= 3, k = 3;第三步: S = 2×3+ 1= 7, k = 4;第四步: S = 2×7+ 1= 15, k = 5.此时 S = 15∈(10,20) ,应当退出程序.那么此时判断框中的条件是5>4,故 n 的值为 4.1 分析:由已知,得a n =1- 1, a 8= 2,5.a n + 1 2∴ a 7= 1- 1 = 1, a 6= 1- 1 =- 1, a 5= 1- 1= 2.a 8 2a 7a 611同理, a 4= 2, a 3=- 1,a 2= 2, a 1= 2.6.1 0分析: a 2009= a 4×503-3= 1, a 2014=a 2×1007= a 1007= a 4×252 -1= 0.7. (- 3,+ ∞) 分析:由 {a n } 为递加数列,得a n + 1- a n = (n + 1)2+ k(n + 1)+ 2-n 2- kn- 2= 2n +1+ k>0 恒建立,即 k> - (2n +1) 恒建立,即 k>[ - (2n + 1)]max =- 3.n 122 a-分析:当 n = 1 时, a 1= 1;当 n ≥2时, a n = S n - S n - 1= 3a n - 3a n - 1,故 n=8.(- 2)a n -1 - 2,故 a n = (- 2) n -1 a n = (- 2)n - 1 n - 1.当 n = 1 时,也切合 .综上, a n = (- 2).9.解:∵ a n +1 -a n = (n + 2)10 n+1- (n + 1)10n1111=10n ·9-n,而10n>0,111111∴当 n<9 时, a n + 1- a n >0 ,即 a n + 1>a n ;当 n =9 时, a n +1- a n = 0,即 a 10= a 9;当 n>9 时, a n + 1- a n <0 ,即 a n + 1<a n .所以 a 1<a 2<<a 9=a 10>a 11>a 12> .∴当 n = 9 或 n = 10 时,数列 {a n } 有最大项,最大项为a 9 或 a 10.10.解: (1)由 a1= 1 与 S n=n+2a n可得3S2=2+2a2= a1+ a2? a2= 3a1= 3,33+ 22S3=3a3= a1+ a2+ a3? 3a3= a1+ a2= 4? a3= 6故所求 a2, a3的值分别为3,6.n+ 2(2)当 n≥2时, S n=3a n,①n+ 1S n-1=3a n-1,②①-②可得 S n-S n-1=n+2n+ 13 a n-3a n-1即a n=n+ 2n+ 1n- 1n+ 1n n+ 1a n-a n-1?a n=3a n-1? a =n- 1 333a n-1故有 a n=a n a n-1a2n+ 1n3n2+ n,×× × ×a1=×× ××1=2a n-1 a n-2a1n- 1 n-2112+ 1n2+ n而= 1= a1,所以 {a n} 的通项公式为a n=.22第 2讲等差数列1.C分析:设等差数列{a n} 的公差为d,a1= 2,S3= (a1+a3)+ a2= 3a2= 12,a2= 4,d=2,则 a6= a1+ 5d= 12.8×72. A分析:S8=8a1+d= 4a3= 4(a1+ 2d), 4a1=- 20d, a1=- 5d.又∵ a7= a1+ 6d =d=- 2,∴ a1= 10,a9= a1+ 8d= 10+8×(- 2)=- 6.3.D分析:因为S1,S2,S4成等比数列,有S22=S1S4,即 (2a1- 1)2= a1(4a1-6),解1得 a1=-2.4.A分析:由a1+ a7+ a13是一个确立的常数,得3a7是确立的常数,故②正确;S13=13(a1+a13)= 13a7是确立的常数,故③正确; S8- S5= a6+ a7+ a8= 3a7是确立的常数,故⑤2正确.5.C分析:由已知,得 2 a1a n< 2a1a n 1,即2a1a n<1, 2a1( a n a n 1) <1. 又 a n- a n-1= d,故2a1d <1,2a1a n 1进而 a1d<0.6.C分析:先剖析四个答案, A. 若 a1= 2,a2=- 1,a3=- 4,a1+ a2>0,而 a2+ a3 <0,A 错误; B.若 a1= 2,a2=- 1,a3=- 4,a1+ a3<0,而 a1+ a2>0,B 错误; C.{a n} 是等差数列,若 0<a1<a2,则 a1>0,设公差为 d,则 d>0,数列各项均为正,因为22-a1(a1 a2- a1a3=(a1+ d)22222a1a3,C 正确.D.若 a1<0,则 (a2- a1) ·(a2+ 2d)= a1+ 2a1d+ d - a1-2a1d=d >0,则 a2>a1a3? a2>- a3) =d·(- d)=- d2≤0, D 错误.应选 C.7.27分析:∵ n≥2时, a n= a n-1+1,且 a2= a1+1,∴ {a n} 是以 a1为首项,1为公差的2229×8 1等差数列.∴S9= 9×1+× =9+18=27.2 28.5分析:若这组数有 (2n+ 1)个,则 a n+1= 1010,a2n+1= 2015 ,又 a1+ a2n+1= 2a n+1,所以 a1=5;若这组数有2n 个,则 a n+ a n+1=1010×2= 2020,a2n= 2015.又 a1+ a2n= a n+ a n+1,所以 a1=5.故答案为 5.9.解: (1) 设数列 {a n} 的公差为d,依题意, 2,2+ d,2+4d 成等比数列,故有 (2+ d)2= 2(2+4d).化简,得 d2- 4d= 0.解得 d= 0 或 d= 4.当 d=0 时, a n= 2;当 d=4 时, a n= 2+ (n- 1) ·4= 4n- 2,进而求得数列{a n} 的通项公式为a n= 2 或 a n= 4n-2.(2)当 a n= 2 时, S n= 2n. 明显 2n<60n + 800,此时不存在正整数n,使得 S n>60n +800 建立.当 a n= 4n- 2 时, S n=n[2+(4n-2)]= 2n2.2令 2n2 >60n+ 800,即 n2- 30n-400>0 ,解得 n>40 或 n<- 10(舍去 ).此时存在正整数n,使得 S n>60n + 800 建立, n 的最小值为 41.综上,当 a n= 2 时,不存在知足题意的n;当 a n= 4n- 2 时,存在知足题意的n,其最小值为 41. 10.解: (1)由题设, a n a n 1=λS- 1, a1a n=λS - 1.++++两式相减,得 a1(a n- a)=λa1.+++因为 a n+1≠0,所以 a n+2-a n=λ.(2)由题设, a1= 1, a=λS- 1,可得 a =λ- 1.1a212由 (1)知, a3=λ+ 1.令 2a2= a1+ a3,解得λ=4.故 a n+2- a n= 4,由此可得{a 2n-1} 是首项为 1,公差为 4 的等差数列, a2n-1= 4n-3;{a 2n} 是首项为3,公差为 4 的等差数列,a2n= 4n- 1.所以 a n=2n- 1, a n-1- a n= 2.所以存在 λ=4,使得数列 {a n } 等差数列.第 3讲 等比数列6x + 6= 2= q ,有3x + 3= 2,3x + 3= 2x ,即 x =- 3,则等比数列 1.A 分析:方法一, 3x + 3x- 3,- 6,- 12, 的第四项为- 24.方法二, (3x +3) 2= x(6x + 6), 9x 2+ 18x + 9= 6x 2+ 6x , 3x 2+ 12x + 9=0, x =- 3 或 x =- 1(舍 ).则等比数列- 3,- 6,- 12, 的第四项为- 24.2. C 3.D 分析:因为数列 {a n } 是等比数列, a 26= a 3a 9,所以 a 3, a 6, a 9 成等比数列.4.A分析:依题意,数列S 10,S 20- S 10, S 30- S 20,S 40-S 30 成等比数列,所以有 (S 20- S 10)2= S 10(S 30- S 20),即 (S 20- 10)2= 10(70- S 20).故 S 20=- 20 或 S 20= 30;又 S 20>0 ,所以 S 20=30, S 20- S 10= 20,S 30-S 20=40.故 S 40- S 30= 80.S 40=150.应选 A.5.D 分析:方法一,在等比数列{a n } 中,21- a n ·S n = a 1-an q =3= 3- 2a n .1-q 21- 3方法二,在等比数列{a n } 中, a 1= 1,q = 23,∴ a n = 1×2 n -1= 2 n -1.3 32 nS n = 1×1- 3=3 1-2 n231- 3= 3 1- 2 2 n -1 = 3- 2a n .3 36. B 分析: {a n } 是等差数列, a 3 , a 4, a 8 成等比数列,有 (a 1 + 3d)2= (a 1+ 2d)(a 1+ 7d)? a 1=- 5 (a 1+a 4) ×422 2, a 1d =- 52d ,S 4= = 2(2a 1+3d)=- d , dS 4=- d <0 3 d <0.应选 B.3 2 3 3 2 - 1 分析:由题可得, (a 1+ 2d) 2= (a 1+ d)(a 1+ 6d),故有 3a 1+ 2d = 0,又因为 2a 1 7. 32+ a 2= 1,即 3a 1+d = 1,所以 d =- 1, a 1= 3.8. 6 分析:a 1= 2,S n =2(1-2n )= 2n +1- 2, S 5= 62, S 6= 126.所以起码需要 6 天.q = 2,1-29.解:由已知 S n = 2a n - a 1,有 a n = S n - S n - 1=2a n - 2a n - 1(n ≥2),即 a n = 2a n -1(n ≥ 2). 进而 a 2=2a 1 ,a 3= 2a 2= 4a 1.又因为 a 1, a 2+ 1, a 3 成等差数列, 即 a 1+ a 3= 2(a 2+ 1).所以 a 1+4a 1 =2(2a 1+1).解得 a 1= 2.所以,数列 {a n } 是首项为 2,公比为 2 的等比数列,故 a n = 2n .11 n111 1 12 1- 21(2)由 (1),得 a n= n= + 2 n= 1 = 1- n2 ,所以 T n2 2+ + 2 2 .1-210.解: (1)设 {a n } 的公差为 d ,则由已知条件,得a 1+ 2d =2,3a 1+ 3×22d =92.3化简,得 a 1+ 2d =2, a 1+ d = .解得 a =1, d = 11.2故 {a n } 的通项公式 a n = 1+n - 1,即 a n =n +1.22(2)由 (1),得 b 1= 1,b 4 =a 15= 15+ 1= 8.2设 {b n } 的公比为 q ,则 q 3= b4= 8,进而 q = 2. b 1故 {b n } 的前 n 项和 T n =b 1(1-q n )= 1×(1-2n )= 2n - 1. 1-q1- 2第 4 讲数列的乞降1. B 分析: a n = 1+ 2+3+ + n = n ,n + 1 2 ∴ b n = 1= 4 = 4 1 - 1,4a n a n + 1 n(n + 1) n + 1∴ S n =411 1 1 11- 2 + 2-3 + + n - n + 114n=4 1-n+1=n+1.2.A分析:由 a5= 5,S5= 15,得 a1= 1,d= 1.∴a n= 1+ (n- 1)= n.故1=1n(n+ 1)a n a n+1 11111111111100=n-n+ 1.∴a1a2++a100a101=1-2+2-3++100-101=1-101=101.应选 A.3.A4.D分析:方法一,由题设知a2- a1= 1①a3+ a2= 3②a4- a3= 5③a5+ a4= 7,a6- a5= 9,a7+a6=11,a8-a7=13,a9+ a8= 15,a10- a9= 17,a11+ a10=19,a12- a11= 21,∴②-①,得a1+a3= 2,③+②,得a4+ a2= 8.同理可得 a5+ a7= 2, a6+ a8= 24, a9+ a11= 2, a10+ a12= 40, .∴ a1+ a3, a5+ a7, a9+ a11,,是各项均为2 的常数列.a2+ a4, a6+ a8, a10+ a12,是首项为8,公差为16 的等差数列.1∴ {a n} 的前 60 项和为 15×2+ 15×8+2×16×15×14= 1830.方法二,可证明:b n+1= a4n+1+ a4n+2+ a4n+3+ a4n+4= a4n-3+ a4n-2+ a4n-2+ a4n+ 16= b n+16,15×14b1= a1+ a2+ a3+ a4= 10? S15= 10×15+×16=1830.5. B分析:由5a8= 8a13,得 5(a1+ 7d)= 8(a1+ 12d).3·-3641∴ d=-61a1.由 a n= a1+ (n- 1)d=a1+ (n-1)61a1≥0?n≤3= 213.∴数列 {a n} 的前 21 项都是正数,此后各项都是负数.故 S n取最大值时,n 的值为 21.应选 B.26. C分析:∵由S n= n - 6n 得 {a n} 是等差数列,∴a n=- 5+ (n- 1) ×2= 2n- 7.∴n≤3时, a n<0,n>3 时, a n>0.26n- n (1≤ n≤3),∴ T=n2n - 6n+18(n> 3).1n7.3(4 - 1)分析:当n=1 时, a1= S1= 1,当 n≥2时, a n=S n- S n-1=2n- 1- (2n-1- 1)= 2n-1,又∵ a 1=1 合适上式.n -12n - 1∴ a n = 2 .∴ a n = 4 .∴数列 {a n 2} 是以 a 21= 1 为首项,以4 为公比的等比数列.2 22 1·(1- 4n)1 n- 1).∴ a 1 + a 2+ + a n == (41- 43n 2- n +2 分析:设第 n(n ≥2)行的第 2 个数组成数列 {a n } ,则有 a 3- a 2= 2,a 4-a 3= 3,8. 22+ n - 1, a n - a n - 1 = n - 1,相加,得 a n - a 2= 2+ 3+ + (n - 1)= ×(n - 2)= 2(n + 1)(n -2)(n + 1)(n - 2) n 2- n +2. 2, a n = 2+=229.解: (1)设等差数列 {a n } 的公差为 d ,则 a n = a 1+ (n - 1)d.∵a 7=4, a 1+ 6d = 4,∴a 1+ 18d = 2(a 1+ 8d).a 19= 2a 9,1解得 a 1=1, d = 2.n + 1∴ {a n } 的通项公式为a n =2 .(2)b n = 1 = 2 = 2 1- 1 ,na n n(n + 1) n n + 1 ∴S =2 1- 1+1-1+ +1- 1n2 23 n n + 1= 2n.n + 110.解: (1)设数列 {a n } 的公差为 d ,11令 n =1,得 a 1 a 2= 3.所以 a 1 a 2=3.令 n =2,得 1 + 1 = 2.所以 a 2a 3= 15.a 1 a 2 a 2a 3 5 解得 a 1=1, d = 2.所以 a n = 2n -1.(2)由 (1)知, b n = 2n ·22n -4= n ·4n .所以 T n = 1·41+ 2·42+ + n ·4n .所以 4T n = 1·42+ 2·43++(n -1) ·4n + n ·4n -1.两式相减,得- 3T n = 41+ 42+ + 4n - n ·4n +14(1- 4n ) n +1 = 1- 3n n +14=- n ·4 3×4- .1- 433n - 14n +1n +1= 4+ (3n - 1) ·4. 所以 T n =9 ×4+99第 5 讲合情推理和演绎推理1. C 分析:明显正三角形和正四周体的极点是两两距离相等的,即n = 3 或 n = 4 时命题建立,由此可清除A ,B ,D.应选 C.2. 2n × 1× 3× 5× ×-1)(2n = (n + 1) ×(n + 2) ×(n + 3) × ×+(nn)2 22n -12 n +1n(n + 1)3. 1 -2 +3 - + (- 1)n =(- 1)42= S 12+ S 22+ S 324. S5. cos π 2π n π 1*cos · · cos = n , n ∈N2n + 1 2n + 1 2n + 1 26.一分析: 由上可知: 甲、乙、丙均为 “p 且 q ”形式, 所以猜对一半者也说了错误 “命题 ”,即只有一个为真,所以可知丙是真命题,因其中国足球队得了第一名.7. 2 分析:近似令原式= t ,有 2+ t =t,2+t = t 2,解得 t =- 1(舍去 )或 t = 2.8.A分析:若选项A 错误时,选项B 、C 、D 正确, f ′ (x)=2ax + b ,因为 1 是 f(x) 的极值点, 3 是 f(x) 的极值,所以f (1)′ =0, 2a + b = 0, b =- 2a , 因为点 (2,8) 在f(1) = 3,即解得a +b +c = 3.c = 3+ a.曲线 y = f(x) 上,所以 4a +2b + c = 8,即 4a + 2×(-2a)+ a + 3= 8,解得 a = 5,所以 b =- 10,c = 8,所以 f(x) = 5x 2- 10x + 18.因为 f( - 1)= 5×(- 1)2- 10×(- 1) +8= 23≠0,所以- 1 不是f(x) 的零点,所以选项A 错误,选项B 、C 、D 正确.应选 A.221339.解: (1) 选择②,由 sin 15 °+ cos 15°- sin15 cos15° °= 1- 2sin30 =°4,故这个常数是 4.(2)推行,获得三角恒等式223sin α+ cos (30 °- α)-sin α cos(30- α)°=4.证明: sin 2α+ cos 2(30 °- α)-sin α cos(30- α)°= sin 2 ° cos +αsin30 2- sin α(cos30 °cos +αsin30 °sin α)α+(cos30 ° sin α)2 3 2 3 1 2 3 1 23 2 3 23.= sin α+ cos α+sin α cos +αsin α- sin α cos -αsinα= sinα+ cos α=42 42 244410.解: (1)设等差数列 {a n } 的公差为 d , 因为a 1+ a 2= 5,2a 1+ d =5,a 1= 1,a 3= 7,即解得a 1+ 2d =7.d = 3.所以 a n =a 1+(n - 1)d = 1+ 3(n - 1)=3n - 2. 所以数列 {a n } 的通项公式为 a n = 3n -2(n ∈ N * ).1 =1=11-1,(2)因为a n a n + 1(3n - 2)(3n + 1) 3 3n - 2 3n + 1所以数列 1的前 n 项和a n a n +1S n =1+1+1++1 +1a 1a 2a 2a 3 a 3a 4aaa an -1 n n n +111 1 1 1 1 1 1 1 1 - 1 1 1 - 1 =3 1- 3n -2 +3n + 14 + 3 4- 7 + 3 7- 10 + +3 3n - 5 3 3n - 2 1 1 n= 3 1- 3n + 1 = 3n + 1.假定存在正整数 m , n ,且 1<m<n ,使 S 1, S m , S n 成等比数列,则 S 2m = S 1S n ,即m 2= 1× n .3m + 1 4 3n + 1- 4m 2所以 n = 3m 2- 6m - 1. 因为 n>0 ,所以 3m 2 -6m - 1<0.23因为 m>1,所以 1<m<1+ 3 <3. 因为 m ∈N * ,所以 m = 2.- 4m 2此时n =3m 2- 6m - 1=16.故存在知足题意的正整数 m , n ,且只有一组值,即 m = 2, n = 16.第 6 讲 直接证明与间接证明1.②2.①③④分析:要使 b a ≥2,只要 b a+ >0 且 >0 建立,即 a , b 不为 0 且同号即可,故a b a b①③④能使 b a+ ≥2建立.a b3. 6+ 7>2 2+ 5 分析:要比较 6+ 7与 22+ 5的大小,只要比较 ( 6+7)2 与 (2 2+ 5)2 的大小,只要比较 6+ 7+ 2 42与 8+ 5+ 4 10的大小,只要比较42与 2 10的大小,只要比较 42 与 40 的大小,∵ 42>40,∴ 6+ 7>2 2+ 5.4. A 分析:反证法的步骤第一步是假定命题的反面建立,而“起码有一个实根”的否定是 “没有实根 ”.应选 A.3 3分析:∵ f(x) = sinx 在区间 (0, π)上是凸函数,且 A , B , C ∈(0, π).5. 2f(A) + f(B) + f(C)A+B+C= f ∴≤f33π 33即 sinA + sinB + sinC ≤3sin=.32π3 ,所以 sinA + sinB + sinC 的最大值为332.6.若①③④,则②(或若②③④,则①)分析:依题意可得以下四个命题:(1)m⊥ n,α⊥ β, n⊥β? m⊥ α; (2)m ⊥ n,α⊥β, m⊥ α? n⊥ β;(3)m⊥ n, n⊥ β,m⊥ α? α⊥β; (4) α⊥β,n⊥ β, m⊥ α? m⊥ n.不难发现,命题(3) ,(4) 为真命题,而命题(1), (2)为假命题.7. lg15 =3a- b+ c分析:假如lg3 = 2a-b 是正确的,那么lg9= 2lg3 = 2(2a-b) = 4a- 2b;假如 lg3 = 2a- b 是错误的,那么lg9 = 4a- 2b 也是错误的,这与题意矛盾.反过来,lg9 =4a- 2b 也不是错误的,不然lg3 = 2a- b 是错误的.相同,假如lg5=a+c,那么 lg8 =3lg2 = 3(1- lg5) = 3(1- a-c),假如 lg5= a+ c 是错误的,那么lg8 =3- 3a- 3c,也错误,这与题意矛盾;明显lg8 =3- 3a- 3c 也不是错误的,不然lg5 = a+ c 也错误.∴ lg15 = lg(3 ×5)= lg3+ lg5 = (2a- b)+ (a+ c)= 3a- b+ c.∴应将最后一个更正为lg15 =3a- b+ c.8.201分析:由已知,若a≠2正确,则 a= 0 或 a= 1,即 a= 0,b= 1,c= 2 或 a= 0,b= 2, c=1 或 a=1, b= 0, c= 2 或 a= 1,b= 2, c= 0 均与“三个关系有且只有一个正确”矛盾;若 b= 2 正确,则 a≠2正确,不切合题意;所以 c≠0正确, a= 2,b= 0,c= 1,故 100a+10b+ c=201.9.解: (1)S2·S3= (2a1+ d)(3a1+ 3d)= 36,将 a1= 1 代入上式,解得d=2 或 d=- 5.∵公差 d>0 ,∴ d= 2, a n=1+ 2(n- 1)= 2n-1,S n= (1+ 2n- 1)n=n2(n∈N*).2(2)由 (1)知, a m+ a m+1+ a m+2++a m+k=[2m - 1+2(m + k)- 1](k + 1)2=(2m+ k-1)(k +1) = 65.∵m, k∈N *, 2m+ k- 1>1 , k+ 1>1 ,2m+ k- 1= 5,m=- 3,∴解得(舍去 ).k+ 1= 13.k= 12,2m+ k- 1= 13,解得m= 5,或k= 4.k+ 1= 5.综上所述, m = 5,k = 4.210.解: (1)由 3a n + 1- 2a n = 1,得 a n + 1- 1= 3(a n - 1).13因为 a 1=4,所以 a 1- 1=- 4.所以数列 {a n -1} 是以- 3为首项, 2为公比的等比数列.43所以 a n -1=- 3 2 n -1 4×3 ,即 a n = 1- 34·23n-1(n ∈ N * ).所以 S n = a 1+ a 2++ a n= n -3 1+ 2 1+ + 2n -14332 n3 1- 32 n - 29 *) .= n -×=3+ n - (n ∈ N41- 243(2)由 (1),得 b n = a n + 1- a n = - 3 2 n3 2 n - 1 1 2 n - 1 4·3 - 1- 4·3 =4·3 . 下边用反证法证明:数列{b n } 中的随意三项不行能成等差数列.假定数列 {b n } 中存在三项 b r , b s , b t (r < s < t)按某种次序成等差数列,因为数列 {b n } 是首项为 1,公比为2的等比数列,43于是有 b r > b s > b t ,则只好有 2b s = b r + b t 建立.1 2 s -11 2 r -11 2 t -1,所以 2××3= ×3+ ×3444两边同乘3t -121-r ,化简,得 2·2s - r ·3t - s = 3t - r + 2t - r .因为 r < s < t ,所以上式左侧为偶数,右侧为奇数,故上式不行能建立,致使矛盾. 故数列 {b n } 中的随意三项不行能成等差数列.第 7 讲数学概括法1. B 2.D 3.C 4.C5.D分析:原等式共有5 -14,选 D.5n 项,当 n = 1 时, 2 = 26.C 分析:S k + 1= 1 + 1 + + 1 =1 + 1 + + 1 = 1 +k +1+ 1 k + 1+ 2 2(k + 1) k + 2 k + 32k + 2 k + 1 1 + + 1 + 1 +1 -1=S +1 - 1 k + 22k 2k + 1 2k + 2 k + 1k2k + 1 2k + 2.1 + 1 +1++1,7. 1007 分析:记 f(n)= n + 1 n + 2 n + 32n 则 f(n + 1)- f(n) =1 +1-1=1 -12n + 1 2n + 2 n + 1 2n + 12n + 2>0,数列 {f(n)} 是递加数列,则1f(n) min = f(1) = ,∴ m ≤1007.8.④9.解: (1)S 2=4a 3- 20, S 3=S 2+ a 3=5a 3- 20,又 S 3=15,∴ a 3= 7,S 2= 4a 3- 20=8,又 S 2=S 1+ a 2= (2a 2-7)+ a 2= 3a 2- 7.∴ a 2= 5,a 1= S 1= 2a 2- 7= 3, 综上知 a 1= 3, a 2= 5, a 3=7. (2)由 (1)猜想 a n = 2n +1,①当 n = 1 时,结论明显建立;②假定当 n = k(k ≥1)时, a k = 2k +1,则 S k =3+ 5+ 7+ + (2k + 1)=3+ (2k + 1)×k =k(k +2), 2又 S k =2ka k + 1- 3k 2 - 4k.∴ k(k +2) =2ka k + 1- 3k 2-4k ,解得 2a k +1= 4k + 6.∴ a k +1= 2(k + 1)+ 1,即当 n = k +1 时,结论建立;由①②知, ? n ∈ N * , a n = 2n + 1.2x[x - (a - 2a)]①当 1<a<2 时,若 x ∈ (- 1, a 2-2a),则 f ′(x)>0, f(x) 在 (- 1, a 2- 2a)上是增函数;若 x ∈(a 2- 2a,0), f ′(x)<0, f(x) 在 (a 2-2a,0)上是减函数;若 x ∈(0,+ ∞),则 f ′(x)>0, f(x) 在 (0,+ ∞)上是增函数.②当 a = 2 时, f ′(x) ,≥0f ′(x)= 0 建立当且仅当 x = 0,f(x) 在 (- 1,+ ∞)上是增函数.③当 a>2 时,若 x ∈ (- 1,0),则 f ′(x)>0, f(x) 在 (-1,0)上是增函数;若 x ∈(0, a 2- 2a),则 f ′(x)<0, f(x) 在 (0, a 2- 2a)上是减函数;若 x ∈(a 2- 2a ,+ ∞),则 f ′(x)>0, f(x) 在 (a 2- 2a ,+ ∞)上是增函数.(2)由 (1)知,当 a =2 时, f(x) 在 (- 1,+ ∞)是增函数.当 x ∈(0,+ ∞)时, f(x)>f(0) = 0,2x即 ln(x + 1)>x + 2(x>0) .又由 (1)知,当 a = 3 时, f(x) 在 [0,3) 上是减函数;当 x ∈(0,3)时, f(x)<f(0) = 0,3x即 ln(x + 1)<x + 3(0<x<3) .下边用数学概括法证明2 <a n ≤3 .n + 2 n +2①当 n = 1 时,由已知2<a 1 =1,故结论建立;3②假定当 n = k 时结论建立,即2 <a k ≤ 3.k + 2 k + 2222×2+1= ln(a k + 1)>ln+ 1> 2 k + 2 = ,当 n =k + 1 时, a kk + 2k + 3+ 2k + 23× 3a k + 1= ln(a k + 1) ≤ln3 + 1k +23≤ 3= ,k + 2+ 3 k + 3 k + 2 即当 n = k + 1 时有 2 <a k +1≤ 3 ,结论建立.k + 3 k +3依据①②知对任何n ∈N*结论都建立.。

2015年高考数学总复习新课标课件:第五章

2015年高考数学总复习新课标课件:第五章

1)

n(n-1)
故 an=2 2 .
第二十四页,编辑于星期五:十一点 二十三分。
(2)递推公式 an+1=2an+3 可以转化为 an+1+3=2(an+3). 令 bn=an+3,则 b1=a1+3=4,且bbn+n 1=aan+ n+1+33=2, 所以数列{bn}是以 4 为首项,2 为公比的等比数列. 所以 bn=4×2n-1=2n+1, 即 an=2n+1-3.
第十页,编辑于星期五:十一点 二十三分。
4.已知数列{an}的通项公式是 an=22· n-3n5-(1(n为n为奇偶数数)),则 a3a4= ___5_4____. 解析:a3=2×3-5=1,a4=2·34-1=54,a3a4=54.
第十一页,编辑于星期五:十一点 二十三分。
5.若数列 {an}的通项公式为
第二十三页,编辑于星期五:十一点 二十三分。
3.根据下列条件,求数列的通项公式an.
(1)a1=1,an+1=2nan;
(2)a1=1,an+1=2an+3.
解:(1)由于aan+ n 1=2n,
故aa12=21,aa23=22,…,aan-n 1=2n-1,
将这 n-1 个等式叠乘,
得aa1n=21+2+…+(n-1)=2n(n2-
-n1,n为正奇数, 也可写为 an= n3,n为正偶数.
第十四页,编辑于星期五:十一点 二十三分。
观察法求数列通项公式的技巧: 观察归纳法求数列的通项公式,关键是找出各项的共同规律 及项与项数n的关系,当项与项之间的关系不明显时,可采用 适当变形或分解,以凸显规律,便于归纳,当各项是分数时 ,可分别考虑分子、分母的变化规律及联系,正负相间出现 时,可用(-1)n或(-1)n+1调节.

【南方新课堂】2015年高考数学(文)总复习课时检测:第15章 第1讲 随机抽样]

【南方新课堂】2015年高考数学(文)总复习课时检测:第15章 第1讲 随机抽样]

第十五章统计第1讲随机抽样1.(2013年湖南)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法2.用系统抽样法(按等距离的规则),要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是() A.7B.5C.4D.33.(2012年四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808C.1212D.20124.为了解参加一次知识竞赛的3204名学生的成绩,决定采用系统抽样的方法抽取一个容量为80的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4D.55.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样6.(2013年浙江模拟)学校高中部共有学生2000名,高中部各年级男、女生人数如下表,已知在高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,现用分层抽样的方法在高中部抽取高一级高二级高三级女生人数/人373y x男生人数/人327z 340A.14人B.C.16人D.17人7.(2012届广东惠州第三次调研)为了保证食品安全,现采用分层抽样的方法对某市场的甲、乙、丙、丁四个厂家生产的奶粉进行检测,若甲、乙、丙、丁四个厂家生产的奶粉分别为120袋、100袋、80袋、60袋,已知甲、乙两个厂家抽取的袋数之和为22袋,则四个厂家一共抽取____________袋.8.(2012年福建)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________人.9.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.10.(2012年广东韶关第二次调研)某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名.为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为5个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其(1)(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.第十五章 统 计 第1讲 随机抽样 1.D 2.B 3.B4.C 解析:因为3204=80×40+4,所以应随机剔除4个个体,故选C. 5.D6.B 解析:因为高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,所以x 2000=0.18,解得x =360.所以高一人数为373+327=700(人),高三人数为360+340=700(人),所以高二人数为2000-700-700=600(人).所以高一、高二、高三的人数比为700∶600∶700=7∶6∶7,所以利用分层抽样从高中部抽取50人,则应在高二抽取的人数为50×66+7+7=50×620=15(人).7.368.12 解析:设应抽取的女运动员人数是x ,则x 98-56=2898,易得x =12.9.解:(1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a 1,a 2,大于40岁的为b 1,b 2,b 3,从中随机取2名,基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共10个,设恰有1名观众年龄在20至40岁为事件A ,则A 中含有基本事件6个:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),∴P (A )=610=35.10.解:(1)共有1400名学生,高二级抽取的人数为4601400×70=23(人).(2)“服务满意度为3”时的5个数据的平均数为3+7+8+8+45=6,所以方差s 2=(3-6)2+(7-6)2+2×(8-6)2+(4-6)25=4.4.(3)符合条件的所有学生共7人,其中“服务满意度为2”的4人记为a ,b ,c ,d ,“服务满意度为1”的3人记为x ,y ,z .在这7人中抽取2人有如下情况:(a ,b ),(a ,c ),(a ,d ),(a ,x ),(a ,y ),(a ,z ),(b ,c ),(b ,d ),(b ,x ),(b ,y ),(b ,z ),(c ,d ),(c ,x ),(c ,y ),(c ,z ),(d ,x ),(d ,y ),(d ,z ),(x ,y ),(x ,z ),(y ,z ),共21种情况.其中至少有一人的“服务满意度为1”的情况有15种.所以至少有一人的“服务满意度”为1的概率为p =1521=57.。

2015高考数学试卷(广东卷)文数(有答案、解析版)

2015高考数学试卷(广东卷)文数(有答案、解析版)

一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C考点:集合的交集运算.2.已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 【答案】D 【解析】试题分析:()221121212i i i i i +=++=+-=,故选D .考点:复数的乘法运算.3.下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原考点:函数的奇偶性.4.若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C 【解析】试题分析:作出可行域如图所示:作直线0:l 230x y +=,再作一组平行于0l 的直线:l 23x y z +=,当直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,所以点A 的坐标为()4,1-,所以()max 24315z =⨯+⨯-=,故选C .考点:线性规划.5.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且 b c <,则b =( )A .3B .2C .22D .3 【答案】B 【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以()22232232232b b =+-⨯⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .考点:余弦定理.6.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列 命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A 【解析】试题分析:若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A . 考点:空间点、线、面的位置关系.7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率 为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B . 考点:古典概型.8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =, 则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10.若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D 【解析】试题分析:当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D . 考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式.12.已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的 均值为 . 【答案】11考点:均值的性质.13.若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4-【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15.(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的 切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4A B =,C 23E =,则D A = .【答案】3【解析】试题分析:连结C O ,则C D O ⊥E ,因为D D A ⊥E ,所以C//D O A ,所以C D O OE=A AE,由切割线定理得:2C E =BE⋅AE ,所以()412BE BE+=,即24120BE +BE -=,解得:2BE =或6BE =-(舍去),所以C 26D 34O ⋅AE ⨯A ===OE ,所以答案应填:3. 考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16.(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1. 【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+-,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+-,代入数值,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+-- ()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的 方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18.(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直, D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3)372. 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DCP 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P (3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在R t D ∆P E 中,22D D PE =P -E22437=-=,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是372考点:1、线面平行;2、线线垂直;3、点到平面的距离.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =, 且当2n ≥时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n n a a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122n n n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围; 若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34±=k . 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点.所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x . (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线. 结合图形,49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 表示的是一段关于X 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫ ⎝⎛352,35的圆弧.根据对称性,只需讨论在X 轴对称下方的圆弧.设P⎪⎪⎭⎫ ⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,.2314232=+-k k k ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <结合图形,可得对于X 轴对称下方的圆弧,当0752≤≤-k 或34=k 时,直线L 与X 轴对称下方的圆弧有且只有一个交点,根据对称性可知752752≤≤-k 或34±=k . 综上所述:当752752≤≤-k 或34±=k 时,直线L:()4y k x =-与曲线C 只有一交点. 考点:1、圆的标准方程;2、直线与圆的位置关系;3、圆锥曲线与圆的位置关系.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x +在区间()0,+∞内的零点个数. 【答案】(1)21≤a ;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x+有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x +在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a综上所述,a 的取值范围是21≤a . (2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x a x x a x x f ,2)12(,12)(22 对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增; 对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减. 综上,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==. (i)当2=a 时,2)2()(min-==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f 令()4f x x +=0,即xx f 4)(-=(x>0). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f 而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x +有一个零点x=2. (ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以aa a a f 4)(2-<-=结合图像不难得当2>a ,)(x f y =与x y 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 简单的线性规划
1.已条变量x ,y 满足⎩⎪⎨⎪

x ≥1,y ≤2,
x -y ≤0,
则x +y 的最小值是( )
A .4
B .3
C .2
D .1
2.(2012年广东广州一模)在平面直角坐标系中,若不等式组⎩⎪⎨⎪

x +y -2≥0,x -y +2≥0,
x ≤t 所表示的
平面区域的面积为4,则实数t 的值为( )
A .1
B .2
C .3
D .4
3.(2012年四川)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧
x -y ≥-3,
x +2y ≤12,
2x +y ≤12,
x ≥0,y ≥0,
则z =3x +4y 的最大值
是( )
A .12
B .26
C .28
D .33
4.(2013年陕西)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )
A .-6
B .-2
C .0
D .2
5.(2012年江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩(1亩≈666.7平方米)
植面积(单位:亩)分别为( )
A .50,0
B .30,20
C .20,30
D .0,50
6.设二元一次不等式组⎩⎪⎨⎪

2x +y -19≥0,x -y -8≤0,
x +2y -14≤0
所表示的平面区域为M ,使函数y =
log a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( )
A .[1,3]
B .[2,10]
C .[2,9]
D .[10,9]
7.(2011年四川)某运输公司有12名驾驶员和19名工人,有8辆载重为10吨的甲型卡车和7辆载重为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为( )
A .4650元
B .4700元
C .4900元
D .5000元
8.(2012年广东广州调研)已知实数x ,y 满足⎩⎪⎨⎪

x ≥0,y ≤1,
2x -2y +1≤0.若目标函数z =ax +y (a ≠0)
取得最小值时的最优解有无数个,则实数a 的值为( )
A .-1
B .-12 C.1
2
D .1
9.已知变量x ,y 满足约束条件⎩⎪⎨⎪

x -y +2≤0,x ≥1,
x +y -7≤0,
则y
x
的取值范围是________. 10.某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
第4讲 简单的线性规划
1.C 解析:如图D52,得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x +y 最小值是1+1=2.故选C.
图D52
2.B
3.C 解析:画出可行域如图D53,目标函数z =3x +4y 可以变形为y =-34x +z
4
,作
函数y =-3
4
x 的平行线,当其经过点B (4,4)时,z 有最大值为z =3x +4y =3×4+4×4=28.
图D53
4.A 解析:画出可行域,如图D54所示.
解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z ,则直线经过点A 时z 取得最小值;所以z min =2×(-2)-2=-6.故选A.
图D54
5.B 解析:设黄瓜和韭菜的种植面积分别为x ,y 亩,种植总利润为z 万元,则目标函数z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y .
作出约束条件如图D55的阴影部分. 易求得点A (0,50),B (30,20),C (45,0).
平移直线x +0.9y =
0,当直线x +0.9y =0经过点B (30,20)时,z 取得最大值为48.故选B.
图D55
6.C 解析:区域M 是一个三角形区域,三个顶点的坐标是(8,3),(10,2),(9,1),结合图形检验可知:当a ∈[2,9]时,符合题目要求.
7.C 解析:设派用甲型卡车x (单位:辆),乙型卡车y (单位:辆),获得的利润为u (单位:元),u =450x +350y ,
x ,y 满足关系式⎩⎪⎨⎪⎧
x +y ≤12,
2x +y ≤19,10x +6y ≥72,
0≤x ≤8,
0≤y ≤7,x ∈Z ,y ∈Z ,
作出相应的可行区域
u =450x +350y =50(9x +7y ),在由⎩
⎪⎨⎪⎧
x +y ≤12,
2x +y ≤19确定的交点(7,5)处取得最大值4900
元.故选C.
8.A 解析:若目标函数z =ax +y (a ≠0)取得最小值时的最优解有无数个,则直线y =-ax +z 与直线2x -2y +1=0平行,有-a =1,即a =-1.故选A.
9.⎣⎡⎦⎤95,6 解析:由⎩
⎪⎨⎪⎧
x +y -7=0,x -y +2=0,得A ⎝⎛⎭⎫52,92. ∴k OA =95.由⎩⎪⎨⎪⎧
x +y -7=0,x =1,
得B (1,6).∴k OB =6.
∵y
x
表示过可行域内一点(x ,y )及原点的直线的斜率, ∴由约束条件画出可行域(如图D56),
则y
x
的取值范围为[k OA ,k OB ],即⎣⎡⎦⎤95,6.
图D56
10.解:设该儿童分别预订x ,y 个单位的午餐和晚餐,共花费z 元,则z =2.5x +4y .
可行域为⎩⎪⎨⎪⎧
12x +8y ≥64,
6x +6y ≥42,
6x +10y ≥54,
x ≥0,x ∈N ,y ≥0,y ∈N ,
即⎩⎪⎨⎪⎧
3x +2y ≥16,
x +y ≥7,
3x +5y ≥27,
x ≥0,x ∈N ,y ≥0,y ∈N .
作出可行域如图D57:
经检验发现,当x =4,y =3时,花费最少,
最少花费为z =2.5x +4y =2.5×4+4×3=22(元).
图D57。

相关文档
最新文档