第3章_一元二次方程单元备课
一元二次方程集体备课

一元二次方程集体备课一. 教学内容:复习目标:(辅导时各位老师要学生掌握的点,每节课可以视情况巩固两点)⑴了解一元二次方程的有关概念.⑵能灵活运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.⑶会根据根的判别式判断一元二次方程的根的情况.⑷知道一元二次方程根与系数的关系,并会运用它解决有关问题.⑸能运用一元二次方程解决简单的实际问题.⑹了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.二. 基础知识回顾1. 方程中只含有_______•个未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2. 解一元二次方程的一般解法有⑴_________;⑵________;⑶•_________;•⑷•求根公式法,•求根公式是______________.3. 一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:⑴x(5x+21)=20 ⑵x2+9=6x ⑶x2-3x=-54. 设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5. 设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.三. 重点讲解1. 了解一元二次方程的概念,对有关一元二次方程定义的题目,要充分考虑定义的三个(强调是三个)特点,即①是整式方程(重点强调);②化简后只含有一个未知数;③未知数的最高次数是2.2. 解一元二次方程时,应根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(通过教材课后习题的演练,可以很明显的发现利用十字相乘法解方程时二次项系数时常不是一,而有些学生十字相乘法中对于二次项系数不为一的题目会无所适从,不妨多加练习,但厦门近三年的中考中没有出现过类似的题目)3 .一元二次方程的根的判别式正反都成立.利用其可以⑴不解方程判定方程根的情况(有根,有两个根,有两个不同的根分别代表⊿的取值范围);⑵根据参系数的性质确定根的范围(有两正根,两负根,一根正一根负,只有一个根大于某常数);针对只有一个根大于某一常数的题型举例如下:⑶解与根有关的证明题(判断三角形的形状,某一恒等式证明).举例如下:4. 一元二次方程根与系数的应用很多:⑴已知方程的一根,不解方程求另一根及参系数;⑵已知方程,求含有两根对称式的代数式的值及有关未知数系数;⑶已知方程两根,求作以方程两根或其代数式为根的一元二次方程.5. 能够列出一元二次方程解应用题.能够发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.6. 本章解题思想总结:⑴转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.⑵从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.(对于理解力好的学生,可以要求其掌握公式法的求根公式的由来,以及怎样用两根推导根与系数的关系)⑶分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想(在目前单元测试的压轴性题目中出现的频率较高).举例如下:四. 易错点点拨易错点1:对一元二次方程的定义的理解.判断一个方程是否一元二次方程,关键是将整式方程化简后只含有一个未知数,且未知数的最高次数为2,特别地,当二次项的系数用字母表示时,二次项系数不为零不能漏掉(虽简单,但极易被学生忽略).易错点2:一元二次方程的一般形式.在确定一元二次方程的二次项、一次项及常数项时,一定要将一元二次方程化为一般形式(注意同类项的合并与等号右边不为零的情况).易错点3:关于解一元二次方程时的易错点.⑴是在解形如“”这样的方程时,千万不能在方程左右两边都除以,从而造成方程丢根(告知学生原因,即当x=0时,两边是不能同时除以0的,无意义);⑵用配方法时,当二次项的系数不为1时,应将二次项系数化为1,再将方程左边配成完全平方式;⑶利用公式法求一元二次方程的解时,要先判断必须非负才能求解;举例如下:⑷利用因式分解法求一元二次方程的解时,方程右边一定要变为0.易错点4:在用一元二次方程解决有关实际问题时,注意运用转化思想,如图形问题中,如何通过平移,旋转等变换把不规则的图形转化为规则的图形.另外,对于增长率问题,要把握基础数与总数的关系.特别地,一元二次方程的两个解,一定要会判断检验其是否符合实际意义(两个解并非必须有一个是增根,二者都合适的情况也是存在的).【典型例题】考点1:一元二次方程的概念及一般形式相关知识:只含有一个未知数的整式方程,并且都可以化为ax2+bx+c=0(a、b、c 为常数,•a≠0)的形式,这样的方程叫做一元二次方程.一元二次方程的一般形式:ax2+bx+c=0(a≠0).复习策略:准确理解一元二次方程的定义,一元二次方程首先是整式方程,然后是经过化简后能得到一元二次方程的一般形式的方程才是一元二次方程.例1. ⑴下列方程是关于x的一元二次方程的是()A. B.C. D.⑵方程的一次项的系数是.【评注】概念性的问题关键是抓住概念的本质.一元二次方程必须符合三个条件:①是整式方程;②化简后只含一个未知数;③未知数的最高次数为2.考点2:一元二次方程的解相关知识:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解,或叫做一元二次方程的根.复习策略:要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程,看看方程左右两边是否相等即可.相等,则是方程的解;反之,则不是.例2. 如果关于x的一元二次方程有一个解是0,求m的值.【评注】已知方程的解确定方程中的待定系数的值,是逆向思维的运用,有时将方程的解代入方程中,可能还会出现含两个待定系数的方程,这时要注意整体思想方法的运用.考点3:了解方程并判定方程根的情况相关知识:一元二次方程根的判别:⑴当>0时,方程有两个不相等的实数根;⑵当=0时,方程有两个相等的实数根;⑶当<0时,方程没有实数根.反之也成立.复习策略:要掌握一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围;③求解与根有关的综合题.例3. ⑴(2007巴中市)一元二次方程的根的情况为()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根⑵(2007安徽泸州)若关于x的一元二次方程没有实数根,则实数m的取值范围是()A. m<lB. m >-1C. m >lD. m <-1考点4:解一元二次方程相关知识:我们知道,一元二次方程的解法有四种:直接开平方法、因式分解法、配方法和公式法.而解一元二次方程的关键是判断方程的特点,选择最佳解题方法,其基本思想是“降次”,把二次转化为一次.这四种方法各有千秋,在解一元二次方程时可根据方程的特点,选用最佳解法.复习策略:灵活选用一元二次方程的解法,可从以下几点考虑:⑴对于形如x2=a(a≥0)或(mx-n)2=a(m ≠0,a≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.⑵如果一元二次方程缺少常数项,或方程的右边为,左边很容易分解因式,可考虑用因式分解法.⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法.⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.例4. 解下列方程:⑴(x+1)2=⑵(2x+1)(3x-1)=1⑶2x(x+2)+1=0⑷16-x2-4x=0⑸3(x-2)2=x(x-2)由以上解析可以这样来总结:解一元二次方程,首先要把原方程变形为一般形式,然后计算b2-4ac,最后考虑用何种方法求解.如果b2-4ac是完全平方数,则用因式分解法,如果b2-4ac不是完全平方数且大于零,则用公式法,配方法实际是公式法的推导过程,因此,除题目要求,一般不用配方法.。
青岛版六年级数学第三单元单元备课

青岛版六年级数学第三单元单元备课【单元目标确定的依据】课标要求:1、让学生在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除法的计算方法,能正确计算分数除法以及分数连除和乘除混合运算的式题。
2、让学生能够运用分数除法知识解决简单的实际问题,体验用方程解决分数除法问题的优越性。
3、让学生经历探索分数除法的计算方法和应用相关分数知识解决简单实际问题的过程,进一步培养学生分析、比较、抽象、概括、归纳、类推的能力,使学生形成独立思考和探索的意识。
4、让学生在解决现实问题的过程中感受数学与生活的密切联系,增强自主探索与合作交流的意识,体验学数学、用数学的乐趣。
教材分析:1、本单元是在学习了和方程知识的基础上进行学习的,共安排四个信息窗和一个学习反思:窗1分数除以整数,窗2一个数除以分数,窗3用方程解决“已知一个数的几分之几是多少,求这个数”的实际问题,窗4分数乘除混合运算,及“我学会了吗”。
2、本单元教学的重点是:分数除法的计算方法;学习用列方程的方法解决“已知一个数的几分之几是多少,求这个数”的实际问题;简单的分数乘除混合运算。
3、难点:是解决“已知一个数的几分之几是多少,求这个数”的实际问题。
学情分析:本单元是在学习了分数乘法和方程知识的基础上进行教学的。
这部分内容是今后学生学习分数四则混合运算和解决与分数有关的实际问题的基础。
因此,教师要特别注重从学生已有的认知基础和生活经验出发,结合教材创设的情境,组织丰富、有效的数学活动,引导学生理解分数除法的意义,学习分数除法的计算方法。
【学习目标】1、让学生在解决具体问题的过程中,借助直观图示,理解分数除法的意义,探索分数除法的计算方法,能正确计算分数除法以及分数连除和乘除混合运算的式题。
2、让学生能够运用分数除法知识解决简单的实际问题,体验用方程解决分数除法问题的优越性。
3、让学生经历探索分数除法的计算方法和应用相关分数知识解决简单实际问题的过程,进一步培养学生分析、比较、抽象、概括、归纳、类推的能力,使学生形成独立思考和探索的意识。
一元二次方程单元备课教案

一元二次方程单元备课教案教学目标:1.理解一元二次方程的概念与性质。
2.掌握解一元二次方程的方法与技巧。
3.能够运用一元二次方程解决实际问题。
教学重点:1.一元二次方程的定义与特点。
2.解一元二次方程的常用方法。
3.实际问题应用。
教学难点:1.解一元二次方程的复杂题目。
2.通过实际问题应用解一元二次方程。
一、导入(5分钟)1.引导学生回顾一元一次方程的解法。
2.提问:一元二次方程与一元一次方程有何不同?二、讲授一元二次方程的定义与性质(10分钟)1.通过投影片介绍一元二次方程的定义和一般形式。
2.引导学生分析一元二次方程的性质,如二次项系数不为零时方程为二次方程等。
三、解一元二次方程的常用方法(20分钟)1.提供几个简单的一元二次方程示例,引导学生运用因式分解法解题。
2.通过引导解释公式法求解一元二次方程。
3.制作一个表格总结三种方法的比较,让学生明确各种方法的使用场景。
四、解一元二次方程的练习(15分钟)1.给学生发放一些练习题,旨在巩固所学知识和技巧。
2.指导学生用适当的方式解决每个问题。
五、一元二次方程在实际问题中的应用(20分钟)1.通过一些实际问题引导学生提取一元二次方程。
2.引导学生利用所学方法解决实际问题。
3.鼓励学生在解决问题后反思解题思路和方法。
六、总结与拓展(10分钟)1.提问:通过今天的学习,你对一元二次方程有了哪些新的认识?2.总结一元二次方程的定义、性质和解法。
3.拓展:介绍更高阶次方程的解法。
七、课堂小结(5分钟)1.回顾今天的学习内容,对学生的学习情况进行简要总结。
2.出一个小小测验,以检查学生对一元二次方程的理解。
教学反思:本节课通过引导学生分析和解决实际问题,帮助学生理解一元二次方程的定义与性质,并掌握解一元二次方程的方法与技巧。
在教学过程中,要注意引导学生灵活运用不同的解法,同时将数学与实际问题结合起来,提高学生的学习兴趣和应用能力。
同时,也可以适当增加一些拓展内容,让学生对数学方程的解法有更深入的了解。
最全数学九年级上册重点知识点

最全数学九年级上册重点知识点数学九年级上册重点知识点一元二次方程1、认识一元二次方程只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程①配方法<即将其变为(x+m)2=0的形式>配方法解一元二次方程的基本步骤:把方程化成一元二次方程的一般形式;将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成的形式;两边开方求其根。
3、用公式法求解一元二次方程②公式法(注意在找abc时须先把方程化为一般形式)4、用因式分解法求解一元二次方程③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)5、一元二次方程的根与系数的关系①根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根。
②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:③一元二次方程的根与系数的关系的作用:已知方程的一根,求另一根;不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:已知方程的两根x1、x2,可以构造一元二次方程:x2-(x1+x2)x+x1x2=0已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根6、应用一元二次方程在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等价关系(一般题目会包含一个表达等价关系的句子,只需要找到这个句子就可以根据它列出方程)。
一元二次方程单元备课教案

一元二次方程单元备课教案教案名称:一元二次方程教学目标:1.学生能够理解一元二次方程的概念和性质;2.学生能够掌握一元二次方程的解法;3.学生能够灵活运用一元二次方程解决实际问题。
教学重点:1.一元二次方程的概念和性质;2.一元二次方程的解法。
教学难点:1.一元二次方程的解法;2.实际问题与一元二次方程的联系。
教学准备:教师:教学课件,教学板书学生:课本,练习册教学过程:Step 1:引入教师通过简单的问题引入一元二次方程的概念,例如:“小明的年龄是x岁,5年后他的年龄将是(x+5)岁,那么现在小明的年龄是多少岁?”请学生思考并回答。
引导学生发现了一个x的一次方程,并告诉学生这就是一元二次方程的概念。
Step 2:一元二次方程的定义和性质教师向学生简要介绍一元二次方程的定义和性质,并给出一些例子进行说明。
例如,教师可以提问:“x^2=9这是一个一元二次方程吗?请解释原因。
”学生思考并回答后,教师给予解释和指导。
Step 3:一元二次方程的解法教师引入一元二次方程的解法,先讲解一元二次方程的标准形式,让学生理解一元二次方程的各个部分的含义。
然后介绍用因式分解法、配方法和求根公式等方法来解一元二次方程,并通过例题进行演示。
在解题过程中,教师着重培养学生的观察能力和分析问题的能力,通过多种解法的比较,加深学生对一元二次方程的理解。
Step 4:实际问题与一元二次方程的联系教师将一元二次方程与实际问题的联系进行对比分析,并通过一些实例让学生练习应用一元二次方程解决实际问题的能力。
例如,教师可以提问:“一个矩形的长是宽的2倍,周长为20cm,求该矩形的面积。
”学生思考并求解后,教师给予解析和指导。
Step 5:拓展练习教师布置拓展练习,让学生在课后进一步巩固和提高解一元二次方程的能力。
同时,教师提供相关的学习资源和习题集,鼓励学生独立学习和自主思考。
Step 6:总结教师通过复习课堂内容,让学生总结一元二次方程的概念、性质和解法,并解答学生提出的问题。
例谈初中数学章起始课单元教学设计

例谈初中数学章起始课单元教学设计摘要:单元教学就是从单元知识的整体出发,打破传统的教学模式,凸显知识建构的重要性。
知识建构是在遵循学生认知规律的基础上,帮助学生建立知识网络和知识体系的过程,有助于学生更好地掌握和理解知识,同时提高学生的归纳和逻辑推理能力,实现高效课堂,本文以“一元二次方程”章起始课单元教学设计为例,浅析在知识建构下的单元教学设计与思考。
关键词:单元教学,章起始课,教学设计一、问题的提出在当前的初中数学教学中,部分教师是先单独对每一课进行教学,然后再单元复习课时,对前面的学习过程进行总结、归纳和提升,走的是先分后总的归纳之路,行的是“先见树木,后见森林”的逻辑程序。
这种教学方式下学生难以把许多个“单体”的知识点有机地联系起来,每个知识点都是呈碎片化状态,不利于学生识记、理解和运用。
而采用单元教学设计这一形式就可以很好地解决这一问题。
二、单元教学设计(一)单元教学法源自李庾南老师的“自学·议论·引导”教学法,是以培养和发展学生的自学能力为核心目标的教学法,即根据知识的内涵及学生的可接受水平将学材进行再加工重组,将有着内在联系的知识进行整体建构,设计成新的小单元进行教学的方法。
单元教学法变单向传输的传统教学模式为生动活泼的主动学习模式,重视知识、方法、技能的传授,让学生学会学习,发展学生的自学能力。
数学单元教学设计基本环节是从单元知识的整体出发,根据教学内容、《标准》要求、知识难易程度、学生学情等要素进行知识重组、再构的教学过程,打破传统的教学模式,凸显知识建构的重要性,帮助学生建立知识网络和知识体系。
下文梳理《一元二次方程(第1课时)》(沪科版八年级下册)几个重要教学设计片段,例谈单元教学。
(二)一元二次方程起始课的单元教学片断片断1:实际问题引入,激发学生学习兴趣。
师:同学们:2019新型冠状病毒,2020年1月12日,世界卫生组织正式将其命名为2019-nCoV 。
苏教版二年级数学第一单元集体备课活动记录范文

苏教版二年级数学第一单元集体备课活动记录范文
活动日期:20xx年x月x日
参加人员:xxx、xxx
缺勤:无
集体备课内容:
本次备课包括部分内容:第一章有理数、第二章整式的加减、第三章一元一次方程、第四章几何图形初步。
这些内容是学习数学的基础,对于帮助学生理解数与代数、建立空间观念,提高学生的数学能力起着重要的作用。
本次集体备课分工情况:
(1)xxx第一章有理数
(2)xxx第二章:正式的加减
(3)xxx:第三章一元一次方程(3。
1-3。
2);xxx:第三章一元一次方程(3。
3-3。
4)
(4)xxx:第四章几何图形初步
备课要求:
(1)各学校要严格按照基地的要求,认真研读《课标》,通读教材,了解教材的编写体例和意图,完成备课和导学案的编写;导学案要突出重点、难点,讲究实用性,其实体现学生的主体性,适合学生的年龄特点。
(2)导学案的个案务于7月14日前完成,以供14日全体教师研究讨论,形成共案。
五中基地初一数学集体备课组
20xx年x月x日。
初中数学教学设计

初中数学教学设计初中数学教学设计「篇一」教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
教学过程:板书设计:一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a 是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章一元二次方程(单元备课)
一、教学内容:
本章主要内容包括:一元二次方程的概念、一元二次方程的一般形式、一元二次方程的解法、应用一元二次方程解决简单的实际问题等.
二、教材分析:
本章设计了较多的数学活动(实验、观察、猜测、推理、交流等),为学生提供了思考和探索的空间;本章渗透了方程、转化、分类等数学思想,应当使学生领会这些方法思想的重要性及作用。
本章对学生的发展具有至关重要的作用。
三、教学目标:
1、了解一元二次方程有关概念;理解配方法,会用配方法、公式法、因式分解法解简单的数字系数的一元二次方程;了解一元二次方程根的判别式,会用根的判别式判断一元二次方程根的情况。
能根据具体问题中的数量关系列一元二次方程解决实际问题,体会方程是刻画现实世界的一个有效的数学模型;能根据具体问题的实际意义,检验结果是否合理。
2.过程与方法
(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.
(2)结合整式中的有关概念介绍一元二次方程的概念,如二次项等.
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.
(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通过复习《乘法公式与因式分解》这一章中的因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.
(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.
3.情感、态度与价值观
经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
四、重点、难点
重点
1.一元二次方程及其它有关的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.难点
1.一元二次方程配方法解题.
2.用公式法解一元二次方程时的讨论.
3.选择合适的解法。
4.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.
五、策略方法分析
1、以学生为主体,充分让学生参与每一个环节的学习活动。
2、搞好例题教学,掌握分析解决问题的方法
例题教学的目的不是为了求得解答结果,而是通过题目的解答过程为学生掌握分析问题和解决问题的方法提供原形和模式,教学中应重视题目分析过程的作用,引导学生思考题目的特点,探索解题思路;例题解答之后,要引导学生反思思考过程,总结解题的经验教训,对一些常用的数学思想方法、解题策略要予以归纳概括,提示学生今后注意运用,让学生学会综合运用知识,增强综合运用知识的能力,拓宽知识面。
3、灵活选用一元二次方程的解法,可从以下几点考虑:
⑴对于形如x2=a(a≥0)或(mx-n)2=a(m ≠0, a≥0)的方程,可根据平方根的意义求解.
⑵如果一元二次方程缺少常数项,或方程的右边为0,左边很容易分解因式,可考虑用因式分解法.
⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法.
⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.
六、单元课时安排:
章节课时数
3.1 2
3.2 3
3.3 2
3.4 1
3.5 2
回顾与思考 2。