第7章 二元一次方程组测试题

合集下载

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题⼈:xxx1. 答题前填写好⾃⼰的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释⼀、单选题(注释)1、甲⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,则下列⽅程组中正确的是() A .B .C .D .2、已知有含盐20%与含盐5%的盐⽔,若配制含盐14%的盐⽔200千克,设需含盐20%的盐⽔x 千克,含盐5%的盐⽔y 千克,则下列⽅程组中正确的是() A .B .C .D .3、如果⼀个两位数的⼗位数字与个位数字之和为6,那么这样的两位数的个数是() A .3 B .6 C .5 D .44、已知x b+5y 3a 和-3x 2a y 2-4b是同类项,那么a,b 的值是()5、如果5x3m-2n-2y n-m+11=0是⼆元⼀次⽅程,则()A.m=1,n=2 B.m=2,n=1 C.m=-1,n=2 D.m=3,n=46、⽤加减法解⽅程组时,要使两个⽅程中同⼀未知数的系数相等或相反,有以下四种变形的结果:①②③④其中变形正确的是()A.①②B.③④C.①③D.②④7、⽤代⼊法解⽅程组使得代⼊后化简⽐较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x-58、四名学⽣解⼆元⼀次⽅程组提出四种不同的解法,其中解法不正确的是()A.由①得x=,代⼊②B.由①得y=,代⼊②C.由②得y=-,代⼊①D.由②得x=3+2y,代⼊①9、已知⽅程mx+(m+1)y=4m-1是关于x,y的⼆元⼀次⽅程,则m的取值范围是()A.m≠0B.m≠-1 C.m≠0且m≠1D.m≠0且m≠-110、⼆元⼀次⽅程3a+b=9在正整数范围内的解的个数是()A.0 B.1 C.2 D.3更多功能介绍/doc/be631667312b3169a451a4e8.html /zt/11、如图,10块相同的长⽅形墙砖拼成⼀个矩形,设长⽅形墙砖的长和宽分别为x厘⽶和y厘⽶,则依题意列⽅程组正确的是A .B .C .D .12、某车间有56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有x 名⼯⼈⽣产螺栓,y 名⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,下⾯所列⽅程组正确的是() A .B .C .D .13、已知⽅程组中x ,y 的互为相反数,则m 的值为()A .2B .﹣2C .0D .414、下列⽅程是⼆元⼀次⽅程的是() A .B .C .3x ﹣8y=11D .7x+2=15、关于x 、y 的⼆元⼀次⽅程组的解满⾜不等式>0,则的取值范围是() A .<-1 B .<1 C .>-1 D .>116、⽅程组的解是()A .B .C .D .由于疏忽,表格中捐款40元和50元的⼈数忘记填写了,若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可得⽅程组()A. B.C. D.18、将⽅程中的x的系数化为整数,则下列结果正确的是()A.B.C.D.19、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、⼄两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6⼈,⼄种帐篷每顶安置4⼈,共安置8000⼈.设该企业捐助甲种帐篷x顶、⼄种帐篷y顶,那么下⾯列出的⽅程组中正确的是A.B.C.D.20、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()A.14 B.-4 C.-12 D.12分卷II分卷II 注释⼆、填空题(注释)21、⽅程组的解是.22、在⽅程组中,若x >0,y <0,则m 的取值范围是.23、已知⽅程组的解为,则2a ﹣3b 的值为.24、若(x+y+4)2+|3x ﹣y|=0,则x= ,y= .25、已知⼆元⼀次⽅程2x+3y+1=0,⽤含x 的代数式表⽰y ,则y= .26、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,要求满⾜下列条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组是.27、⼀次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进⾏计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩⼈的说法都是正确的,②⾄少有⼀⼈说错了.真命题是(填写序号).28、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,且同时满⾜下列两个条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组可以是____________.按此规律,第n 个⽅程组为___________,它的解为___________(n 为正整数).30、⽅程组的解是_____________.三、计算题(注释)31、解⽅程组:.32、解⽅程组:(1)(2)33、解⽅程组:(1)(2)34、解⽅程组:35、若是⼆元⼀次⽅程ax -by=8和ax+2by=-4的公共解,求2a -b 的值.36、解下列⽅程:(1).(2)(3)(4)37、解⽅程组38、解⽅程组(5分)(1)39、解下列⼆元⼀次⽅程组(1) (2)40、(1)计算:(2)解⽅程组:四、解答题(注释)41、端午节期间,某校“慈善⼩组”筹集到1240元善款,全部⽤于购买⽔果和粽⼦,然后到福利院送给⽼⼈,决定购买⼤枣粽⼦和普通粽⼦共20盒,剩下的钱⽤于购买⽔果,要求购买⽔果的钱数不少于180元但不超过240元.已知⼤枣粽⼦⽐普通粽⼦每盒贵15元,若⽤300元恰好可以买到2盒⼤枣粽⼦和4盒普通粽⼦.(1)请求出两种⼝味的粽⼦每盒的价格;(2)设买⼤枣粽⼦x 盒,买⽔果共⽤了w 元.①请求出w 关于x 的函数关系式;②求出购买两种粽⼦的可能⽅案,并说明哪⼀种⽅案使购买⽔果的钱数最多.42、某农户原有15头⼤⽜和5头⼩⽜,每天约⽤饲料325kg ;两周后,由于经济效益好,该农户决定扩⼤养⽜规模,⼜购进了10头⼤⽜和5头⼩⽜,这时每天约⽤饲料550kg .问每头⼤⽜和每头⼩⽜1天各需多少饲料? 43、某种仪器由1种A 部件和1个B 部件配套构成.每个⼯⼈每天可以加⼯A 部件1000个或者加⼯B 部件600个,现有⼯⼈16名,应怎样安排⼈⼒,才能使每天⽣产的A 部件和B 部件配套?44、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资⾦为⽼师购买纪念品,其余资⾦⽤于在毕业晚会上给50位同学每⼈购买⼀件⽂化衫或⼀本相册作为纪念.已知每件⽂化衫⽐每本相册贵9元,⽤200元恰好可以买到2件⽂件衫和5本相册.(1)求每件⽂化衫和每本相册的价格分别为多少元?(2)有⼏种购买⽂化衫和相册的⽅案?哪种⽅案⽤于购买⽼师纪念品的资⾦更充⾜?45、解⽅程(组)(1)(2).46、某学校初⼆级甲、⼄两班共有学⽣150⼈,他们的期末考试数学平均分为64.4分,若甲班学⽣平均分为72分,⼄班学⽣平均分为57分,那么甲、⼄两班各有学⽣多少⼈?47、⼀辆汽车从A地驶往B地,前路段为普通公路,其余路段为⾼速公路.已知汽车在普通公路上⾏驶的速度为60km/h,在⾼速公路上⾏驶的速度为100km/h,汽车从A 地到B地⼀共⾏驶了2.2h.请你根据以上信息,就该汽车⾏驶的“路程”或“时间”,提出⼀个⽤⼆元⼀次⽅程组解决的问题,并写出解答过程.48、解⽅程组.49、⼩⽂在甲、⼄两家超市发现他看中的篮球的单价相同,书包单价也相同,⼀个篮球和三个书包的总费⽤是400元.两个篮球和⼀个书包的总费⽤也是400元.(1)求⼩⽂看中的篮球和书包单价各是多少元?(2)某⼀天⼩⽂上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市⼄全场购物满100元返30元购物券(不⾜100元不返券,购物券全场通⽤),如果他只能在同⼀家超市购买他看中的篮球和书包各⼀个,应选择哪⼀家超市购买更省钱?50、解⽅程组:试卷答案1.【解析】试题分析:根据等量关系:顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,即可列出⽅程组. 由题意可列⽅程组为,故选A.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.2.【解析】试题分析:根据等量关系:盐⽔总质量为200千克,配制前后的含盐量相同,即可列出⽅程组.由题意可列⽅程组为,故选C.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.3.【解析】试题分析:可以设两位数的个位数为x,⼗位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.设两位数的个位数为x,⼗位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选B.考点:本题考查了⼆元⼀次⽅程的应⽤点评:解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.4.【解析】试题分析:根据同类项的定义即可得到关于a、b的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是同类项点评:解答本题的关键是熟记同类项的定义:所含有的字母相同,并且相同字母的指数也相同的项叫同类项.5.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到关于m、n的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.6.【解析】试题分析:根据等式的基本性质把⽅程组中的每个⽅程分别变形,注意不能漏乘项.(1)第⼀个⽅程右边的1漏乘了3,第⼆个⽅程右边的8漏乘了2,故变形不正确;(2)第⼀个⽅程右边的1漏乘了2,第⼆个⽅程右边的8漏乘了3,故变形不正确;(3)是利⽤等式的性质把x的系数化为了互为相反数的数,变形正确;(4)是利⽤等式的性质把y的系数化为了互为相反数的数,变形正确.故选B.考点:本题考查的是解⼆元⼀次⽅程组点评:解答本题的关键是注意⽅程组中,两个⽅程中同⼀未知数的系数相等或互为相反数时,直接运⽤加减法求解.7.【解析】试题分析:⽤代⼊法解⽅程组的第⼀步:尽量⽤其中⼀个未知数表⽰系数较简便的另⼀个未知数.A、B、C、D四个答案都是正确的,但“化简⽐较容易的”只有D.故选D.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是注意在⽤其中⼀个未知数表⽰另⼀个未知数时,尽量避免出现分数.8.【解析】试题分析:此题中四位同学均利⽤了代⼊法求⽅程组的解,需对四个答案进⾏逐⼀分析求解.A、B、D均符合等式的性质,不符合题意;C、应该由②得y=,故错误,符合题意.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是熟练掌握代⼊法解⼆元⼀次⽅程组,同时注意⽅程在进⾏合理变形时要根据等式的性质.9.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到结果.由题意得m≠0且m+1≠0,解得m≠0且m≠-1,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.10.【解析】试题分析:根据题意,⼆元⼀次⽅程3a+b=9的解为正整数,分类讨论、解答出即可.根据题意,a ,b 为正整数,∴当a=1时,b=9-3=6,当a=2时,b=9-6=3,当a=3时,b=0,不符合题意,所以,⽅程在正整数范围内的解的个数是2个故选C.考点:本题主要考查了解⼆元⼀次⽅程点评:采⽤“给⼀个,求⼀个”的⽅法,即先给出其中⼀个未知数的值,再依次求出另⼀个的对应值. 11.【解析】试题分析:根据图⽰可得:长⽅形的长可以表⽰为x+2y ,长⼜是75厘⽶,故x+2y=75,长⽅形的宽可以表⽰为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联⽴两个⽅程得。

七年级数学第七章二元一次方程组单元测试

七年级数学第七章二元一次方程组单元测试

七年级数学第七章二元一次方程组测试题(时间120分钟,满分150分)一、选择题(每小题4分,共48分)1.在下列方程5x -1y =0,3x+2y =0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A.1个B.2个C.3个D.4个2.下列说法中,正确的是( )A.二元一次方程3x-2y=5的解为有限个B.方程3x+2y=7的解x ,y 为正整数的有无数对C.方程组⎩⎨⎧=+=-00y x y x 的解为0 D.方程组中各个方程的公共解叫做这个方程组的解 3.已知⎩⎨⎧==12y x 是关于x ,y 的二元一次方程3=-y kx 的解,那么k 的值为( )A.2B.-3C.1D.-14.如果方程组 ⎩⎨⎧=+=+162y x y x ★的解为⎩⎨⎧==※y x 6那么被“★”和“※”遮住的两个数分别为( )A.10和4B.4和10C.3和10D.10和35.已知关于x 、y 的方程组⎩⎨⎧-=-=+ay x a y x 214522,且1023=-y x ,则a的值为( )A.﹣4B.4C.3D.26.利用加减消元法解方程组,下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×27.若|3x ﹣2y ﹣1|+=0,则x ,y 的值为( )A .B .C .D .8.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图1所示,则第三束气球的价格为( )A. 19B. 18C. 16D. 159.如图:宽为50cm的长方形图案是由10个完全相同的小长方形拼成,则一个小长方形的面积为()。

《二元一次方程组》基础测试题及参考答案

《二元一次方程组》基础测试题及参考答案

《二元一次方程》基础测试题一、选择题1.方程2x+y =0,3x-xy =1,2x+y ﹣x =7,x −1y =0二元一次方程的个数是( ) A .1个 B .2个 C .3个 D .4个2.把方程2x-y=3改写成用含x 的式子表示y 的形式( )A .y=2x-3B .y=2x+3C .1322x y =+D .132x y =+ 3.若{x =5y =2是关于x 和y 的二元一次方程2x ﹣by =6的解,则b 的值是( ) A . 2 B .﹣2 C . 4 D .﹣44.关于二元一次方程组{y =x +1x −2y =7,消去y 可得( ) A .x-x ﹣1=7 B .x-2x ﹣1=7 C .x-2x ﹣2=7 D .x+2x-2=75.已知二元一次方程组{2x −y =7x −2y =−3,则x+y 的值为( ) A .﹣4 B .4 C .﹣5 D .56.若方程x+y =2,x ﹣2y =8和kx-y =6有公共解,则k 的值是( )A .1B .﹣1C .2D .﹣27.现在小强的年龄是小玲的2倍,2年前小强的年龄是小玲的3倍,今年小强和小玲的年龄是多少岁?设小强今年x 岁,小玲今年y 岁,可列方程组( )A .{x +2=3(y +2)x =2yB .{x −2=3(y −2)x =2yC .{x +2=2(y +2)x =3yD .{x −2=3(y −2)x =3y8.若|x+2y ﹣2|+√x −y +1=0,则x+y 的值为( )A .4B .2C .1D .09.一个两位数数位上的数字之和是8,将它的十位数字和个位数字交换后,得到新的两位数,若新两位数比原两位数小18,则原两位数为( )A .26B .53C .35D .6210.已知关于x 、y 的二元一次方程组的解3+2=+22+3=x y k x y k ⎧⎨⎩满足x+y=2,则k 的值为( ) A .0 B .1 C .2 D .411.已知方程组213616x y z x y z -+=-⎧⎨+-=⎩,则x+y 的值为( ) A .3 B .4 C .5 D .612.今有牛五、羊二,值金十两;牛二、羊五,值金八两,牛、羊各值金几何?题目大意是:5头牛、2只羊共值金10两,2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?解:设一头牛值金x 两,一只羊值金y 两,则列方程组( )A .{5y −2x =102y −5x =8B .{5y −2x =82y −5x =10C .{5y +2x =102y +5x =8D .{5y +2x =82y +5x =10二、填空题13.方程ax+(a +1)y =3a -1是关于x 、y 的二元一次方程,则a 的范围是_______。

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)

初中数学华师大版七年级下学期第第7章一次方程组单元测试卷(含解析)一、单选题1.已知方程组,则x+y+z的值为( )A. 6B. -6C. 5D. -52.已知方程组和方程组有相同的解,则的值是()A. 1B.C. 2D.3.下列方程组中是二元一次方程组的是()A. B. C. D.4.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔相遇一次,若同向而行,则每隔相遇一次,已知甲比乙跑得快,设甲每秒跑米,乙每秒跑米,则可列方程为()A. B. C. D.5.利用两块长方体木块测量两张桌子的高度.首先按图方式放置,再交换两木块的位置,按图方式放置.测量的数据如图,则桌子高度是()A. B. C. D.6.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为张.根据题意,下面所列方程正确的是()A. B. C. D.7.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A. 12人,15人B. 14人,13人C. 15人,12人D. 13人,14人8.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A. B. C. D.9.小明和小亮在一起探究一个数学活动.首先小亮站立在箱子上,小明站立在地面上(如图1),然后交换位置(如图2),测量的数据如图所示,想要探究的问题有:①小明的身高;②小亮的身高;③箱子的高度;④小明与小亮的身高和.根据图上信息,你认为可以计算出的是()A. ①B. ②C. ③D. ④10.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A,B,C,D表示的数分别是整数a、b、c、d,且满足,则的值为()A. B. C. D.二、填空题11.有A、B、C三种商品,如果购5件A、2件B、3件C共需513元,购3件A、6件B、5件C共需375件,那么购A、B、C各一件共需________元.12.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5 4则________,第2019个格子填入的整数为________13.陕北的放羊娃隔着沟唱着信天游,比他们养的羊数.一个唱到:“你羊没有我羊多,你若给我一只羊,我的是你的两倍”,另一个随声唱到:“你要给我一只养,咱俩的羊儿一样多” 听了他们的对唱,你能知道他们各有多少只羊吗?答:________.14.若方程2x2a+b-4+4y3a-2b-3=1是关于x,y的二元一次方程,则a=________,b=________.15.已知,方程是关于的二元一次方程,则________.三、计算题16.解下列方程组.(1)(2)四、解答题17.关于x、y的二元一次方程组与的解相同,求a、b的值.18.某景点的门票价格如下表:某校八年级(一)、(二)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?19.解方程组时,由于粗心,小天看错了方程组中的a,得到解为,小轩看错了方程组中的b,得到解为,求方程组正确的解.20.有一场足球比赛,共有九支球队参加,采取单循环赛,其记分和奖励方案如下表:甲队参加完了全部8场比赛,共得积分16分.(1)求甲队胜负的所有可能情况;(2)若每一场比赛,每一个参赛队员均可得出场费500元,求甲队参加了所有8场比赛的队员的个人总收入(奖金加上出场费).21.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在..哥哥和妹妹的年龄各是多少岁?答案解析部分一、单选题1.【答案】C【解析】【解答】解:∵,①+②+③,得x+y+z=5,故答案为:C.【分析】根据方程组,三个方程相加即可得到x+y+z的值.2.【答案】A【解析】【解答】解:解方程组,得,代入x+y+m=0得,m=1,故答案为:A.【分析】根据两方程组有相同的解,将方程组中两个已知方程组成方程组,求出x、y的值,然后将其代入x+y+m=0中,即可求出m.3.【答案】D【解析】【解答】解:A. ,不是二元一次方程组;B. ,不是二元一次方程组;C. ,不是二元一次方程组;D. ,是二元一次方程组;故答案为:D.【分析】根据二元一次方程组的定义逐项判定即可。

七年级数学下册第7章二元一次方程组平行性测试题试题

七年级数学下册第7章二元一次方程组平行性测试题试题

二元一方程组选择题1.以下方程组中,是二元一次方程组的是〔 〕. 假设关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩的解满足x +y =1,那么k 的取值范围是 . 〔A 〕 2311089x y x y ⎧+=⎨-=-⎩ 〔B 〕426xy x y =⎧⎨+=⎩ 〔C 〕21734x y y x-=⎧⎪⎨-=-⎪⎩ 〔D 〕24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( )〔A 〕⎩⎨⎧==;3,4y x 〔B 〕⎩⎨⎧==;6,3y x 〔C 〕⎩⎨⎧==;4,2y x 〔D 〕⎩⎨⎧==.2,4y x 3.假如2315a b 与114x x y a b ++-是同类项,那么x ,y 的值是( ) 〔A 〕⎩⎨⎧==31y x 〔B 〕⎩⎨⎧==22y x 〔C 〕⎩⎨⎧==21y x 〔D 〕⎩⎨⎧==32y x 4.12x y =⎧⎨=⎩ 是方程组120.ax y x by +=-⎧⎨-=⎩, 的解,那么a +b = ( ).〔A 〕2 〔B 〕-2 〔C 〕4 〔D 〕-45. {21x y ==是二元一次方程组{81mx ny nx my +=-=的解,那么2m -n 的算术平方根为〔 〕 〔A 〕2± 〔B〔C 〕2 〔D 〕46. 假如二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )〔A 〕3 〔B 〕5 〔C 〕7 〔D 〕9二、填空题7.124312=-+-m n m y x 是二元一次方程,那么m = ______, n = _____8. 假设关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩的解满足x +y =1,那么k 的取值是 . 9. 是方程组的解,那么a =_______, b = ____10. 假设直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,那么a 的值是 .三、解答题解以下方程组:11. ⎩⎨⎧-=--=-.2354,42y x y x12.⎪⎩⎪⎨⎧=-+=+1323241y x x y四、1.一个星期天,小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。

第7章 二元一次方程组全章标准检测卷(含答案)-

第7章 二元一次方程组全章标准检测卷(含答案)-

第7章二元一次方程组全章标准检测卷(80分 50分钟)一、填空题:(每小题3分,共21分)1.已知1xy=-⎧⎨=⎩是方程组22222234mx nynx xy my⎧-=⎪⎨-+=-⎪⎩的解,则m+n=_______.2.若│2x+y-1│+(x-2y)2=0,则x2+xy+y2=________.3.在坐标平面内,一次函数y=kx+b的图象通过(1,-1)和(3,7), 则x= 12 时, y=_____.4.方程组234x yy zz x+=⎧⎪+=⎨⎪+=⎩的解为________.5.满足等式│a-b│+ab=1的非负整数对(a,b)的值应为______.6.如果21xy=⎧⎨=⎩是方程组75ax byax by+=⎧⎨-=⎩的解,那么a+b=_______.7.当2x+3y=2时,9y比4x大1,则x=______,y=______.二、选择题:(每小题3分,共21分)8.当x=1,y=-1时,ax+by=3,那么当x=-1,y=1时,ax+by+3的值为( )A.3B.-3C.0D.19.已知满足2x-3y=11-4m和3x+2y=21-5m的x,y也满足x+3y=20-7m,那么m的值为( )A.0B.1C.2D.1 210.若2x+5y+4z=0,3x+y-7z=0,则x+y-z的值等于( )A.0B.1C.2D.不能求出11.若两数之和为25,两数之差为23,这两个数是( )A.24,1B.-24,1C.24,-1D.12,1312.学校买排球、足球共25个,花费732元,足球每个36元,排球每个24元,设买排球x个,买足球y个,所列方程为( )A.253624732x yx y+=⎧⎨-=⎩;B.253624732x yx y+=⎧⎨+=⎩;C.253624732y xx y=+⎧⎨+=⎩;D.253624732x yy x+=⎧⎨+=⎩13.已知二元一次方程2x+3y-4=0,其中x与y互为相反数,则x、y的值为( )A.44xy=⎧⎨=-⎩B.44xy=-⎧⎨=⎩C.33xy=⎧⎨=-⎩D.33xy=-⎧⎨=⎩14.以12xy=-⎧⎨=⎩为解的二元一次方程组( )A.有且只有1个B.有且只有2个;C.有且只有3个D.有无数个三、解答题:(38分)15.(8分)若关于x、y的两个方程组2x y bx y a-=⎧⎨-=⎩与321358x y by x a-=+⎧⎨-=-⎩有相同的解,求a,b.16.(10分)解方程组:(1)37237x yx y+=⎧⎨-=⎩(2)5233484x yx y⎧-=⎪⎪⎨⎪+=⎪⎩17.(10分)甲、乙两人相距15千米,如果两人同时相向而行,过1小时30分相遇; 如果乙向相反方向走,甲同时追赶,经过7小时30分可以追上,求甲、乙二人的速度各是多少?18.(10分)用图象法解方程组35 342 x yx y-=-⎧⎨+=-⎩.全章标准检测卷答案:一、1.0 2.7253.434.315,,222x y z=== 5.(1,0),(0,1),(1,1) 6.4 7.11,23二、8.C 9.C 10.A 11.A 12.D 13.B 14.D三、15.a=1,b=316.(1)14379xy⎧=⎪⎪⎨⎪=⎪⎩(2)66xy=⎧⎨=-⎩17.解:设甲的速度是x千米/小时,乙的速度是y千米/小时,则11()15217()152x yx y⎧+=⎪⎪⎨⎪-=⎪⎩,解得64xy=⎧⎨=⎩答:甲的速度为6千米/小时,乙的速度是4千米/小时.18.图略,21 xy=-⎧⎨=⎩。

达标测试华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案解析)

达标测试华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案解析)

七年级数学下册第7章一次方程组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x ,y 的方程()716mx m y ++=是二元一次方程,则m 的值为( ) A .﹣1 B .0 C .1 D .22、下列方程组中,属于二元一次方程组的是( )A .659x y xy +=⎧⎨=⎩B .123230x y x y ⎧+=⎪⎨⎪-=⎩C .3511643x y x y =⎧⎪⎨+=⎪⎩D .3826x y y z -=⎧⎨-=⎩3、方程x +y =6的正整数解有( )A .5个B .6个C .7个D .无数个4、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4-B .4C .2-D .2 5、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( )A .16B .-1C .-16D .16、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 7、如图,已知长方形ABCD 中,8cm AD =,6cm AB =,点E 为AD 的中点,若点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动.同时,点Q 在线段BC 上由点C 向点B 运动,若AEP △与BPQ 全等,则点Q 的运动速度是( )A .6或83 B .2或6 C .2或23 D .2或838、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x 人,有y 辆车,根据题意,所列方程组正确的是( )A .()229x x y x y ⎧-=⎨+=⎩B .()3229y x y x ⎧-=⎨+=⎩C .()3229x y y x ⎧-=⎨+=⎩D .()3229y x x y ⎧-=⎨+=⎩ 9、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=10、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x 人,y 辆车,可列方程组为( )A .()3229y x x y ⎧-=⎨=-⎩B .()3229y x x y ⎧+=⎨=+⎩C .()3229y x x y ⎧-=⎨=+⎩D .()3229y x x y ⎧+=⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若()232565803x y x y -+++-=,则22x xy y -+的值为______. 2、写出二元一次方程组 310x y += 的所有正整数解________________.3、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.4、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文2+a b ,2b c +,22c d +,4d .例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.5、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x ﹣5y =7的等模解是____.三、解答题(5小题,每小题10分,共计50分)1、2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资,某口罩厂现安排A 、B 两组工人共150人加工口罩,A 组工人每小时可加工口罩50个,B 组工人每小时可加工口罩70个,A 、B 两组工人每小时一共可加工口罩9100个,试问:A 、B 两组工人各多少人?2、对于一个四位正整数n ,如果n 满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“幸运数”.例如:n 1=8455,∵8+4+5﹣5=12,∴8455是“幸运数”;n 2=2021,∵2+0+2﹣1=3≠12,∴2021不是“幸运数”.(1)判断3753,1858是否为“幸运数”?请说明理由.(2)若“幸运数”m =1000a +100b +10c +203(4≤a ≤8,1≤b ≤9,1≤c ≤5且a ,b ,c 均为整数),s 是m 截掉其十位数字和个位数字后的一个两位数,t 是m 截掉其千位数字和百位数字后的一个两位数,若s 与t 的和能被7整除,求m 的值.3、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg ;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?解:设平均每头大牛和每头小牛1天各需用饲料为x kg和y kg;根据题意列方程:3015675 4220940x yx y+=⎧⎨+=⎩,解得:___________所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.4、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价5、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.-参考答案-一、单选题1、C【解析】【分析】 根据二元一次方程的定义得出1m =且10m +≠,再求出答案即可.【详解】解:∵关于x ,y 的方程()716mx m y ++=是二元一次方程, ∴1m =且10m +≠,解得:m =1,故选C .【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.2、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A 、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意; B 、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意; C 、该方程组符合二元一次方程组的定义,故本选项符合题意;D 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x=进而求得对应y的值即可【详解】解:方程的正整数解有15xy=⎧⎨=⎩,24xy=⎧⎨=⎩,33xy=⎧⎨=⎩,42xy=⎧⎨=⎩,51xy=⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.4、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:51234a ba b+=⎧⎨-=⎩①②,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、C【解析】【分析】把x 与y 的值代入方程组,求出a +b 与a -b 的值,代入原式计算即可求出值.【详解】解:把21x y =-⎧⎨=⎩代入方程组得2127a b b a -+=⎧⎨-+=⎩, 两式相加得8a b +=-;两式相差得:2a b -=,∴()()16a b a b +-=-,故选C .【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.7、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q 的运动速度为x cm/s ,①经过y 秒后,△AEP ≌△BQP ,则AP =BP ,AE =BQ ,26248y y xy -⎧⎨-⎩==, 解得,3283x y ⎧=⎪⎪⎨⎪=⎪⎩, 即点Q 的运动速度83cm/s 时能使两三角形全等.②经过y 秒后,△AEP ≌△BPQ ,则AP =BQ ,AE =BP ,28462y xy y -⎧⎨-⎩==, 解得:61x y ⎧⎨⎩==, 即点Q 的运动速度6cm/s 时能使两三角形全等.综上所述,点Q 的运动速度83或6cm/s 时能使两三角形全等.故选:A .【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t 和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.8、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得:()3229y x y x ⎨-+⎧⎩== 故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9、C【解析】【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.10、C【解析】【分析】根据题意,找到关于x 、y 的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:3(2)y x -=.由每2人共乘一车,最终剩余9个人无车可乘可得:29x y =+.∴该二元一次方程组为:()3229y xx y ⎧-=⎨=+⎩.故选:C .【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.二、填空题1、749##439【解析】【分析】 根据绝对值和平方的非负性,列出方程组,可得132x y ⎧=-⎪⎨⎪=⎩,再代入,即可求解. 【详解】 解:∵()232565803x y x y -+++-=, ∴325036580x y x y -+⎧=⎪⎨⎪+-=⎩ , 解得:132x y ⎧=-⎪⎨⎪=⎩ ,222211127224433939x xy y ⎛⎫⎛⎫=---⨯+=++= ⎪ ⎪⎝⎭⎝⎭-+. 故答案为:749【点睛】本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.2、17x y =⎧⎨=⎩ 24x y =⎧⎨=⎩,, 31x y =⎧⎨=⎩ 【解析】【分析】先把方程3x +y =10变形为 y =10-3x ,再根据整除的特征,逐一尝试即可求解.【详解】解:∵3x +y =10,∴y =10-3x ,∴原方程的所有正整数解是17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩, 故答案为:17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.3、 代入 加减 二元 二元一次方程组 一元一次方程【解析】略4、5,2,5,7【解析】【分析】设解密得到的明文为a ,b ,c ,d ,加密规则得出方程组,求出a ,b ,c ,d 的值即可.【详解】解:设明文为a ,b ,c ,d ,由题意得:29292224428a b b c c d d +=⎧⎪+=⎪⎨+=⎪⎪=⎩, 解得:5257a b c d =⎧⎪=⎪⎨=⎪⎪=⎩, 则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.5、7373x y ⎧=-⎪⎪⎨⎪=-⎪⎩或11x y =⎧⎨=-⎩ 【解析】【详解】解:根据题意得:257x y x y =⎧⎨-=⎩或257x y x y =-⎧⎨-=⎩,解得:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩,故答案为:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.三、解答题1、A组工人有70人, B组工人80人.【解析】【分析】设A组工人有x人,B组工人有y人,根据A、B两组工人共150人,每小时可加工口罩9100个,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设A组工人有x人,B组工人有y人,依题意得:150 ********x yx y+=⎧⎨+=⎩,解得:7080xy=⎧⎨=⎩.答:A组工人有70人,B组工人有80人.【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.2、 (1)3753是幸运数,1858不是幸运数,见解析(2)m的值为8343,7353【解析】【分析】(1)读懂“幸运数”的意思,再根据定义代入3773和1858进行验证;(2)m是一个四位数,s、t分别是两位数,都是可以用字母a、b、c表示,这样就可以用a、b、c 表示s和t.再根据m是满月数,化简得到a+c=12-b.最后s和t的和能被7整除,再代入求出值.(1)解: 3753是幸运数,1858不是幸运数,理由如下:∵3+7+5﹣3=12,1+8+5﹣8=6,∴3753是幸运数,1858不是幸运数.(2)①当1≤b≤7时,∵m=1000a+100b+10c+203=1000a+100(b+2)+10c+3,∴s=10a+b+2,t=10c+3,∴s+t=10a+10c+b+2+3=10(a+c)+b+5.∵m为“幸运数”,∴a+(b+2)+c﹣3=12,∴a+c=13﹣b,∴10(a+c)+b+5=135﹣9b.∵135﹣9b能被7整除,且1≤b≤9,∴b=1,∴a+c=12.∵4≤a≤8,1≤c≤5,∴当a=8时,c=4,m=8×1000+100×(2+1)+10×4+3=8343;当a=7时,c=5,m=7×1000+100(2+1)+10×5+3=7353.②当8≤b≤9时,m=1000(a+1)+100(b﹣8)+10c+3,∴a+1+b﹣8+c﹣3=12,∴a+b+c=22,当b=8时,a+c=14(舍去);当b=9时,则a+c=13,∴85ac=⎧⎨=⎩,∴m=9153,而91+53=146不能被7整除,答:3764是幸运数,2858不是幸运数;m的值为8343,7353.【点睛】本题主要考查了学生的阅读理解能力,根据题目给的新定义去求解,而找到字母之间的关系,用代入消元和整体法消元是解题的关键.3、205 xy=⎧⎨=⎩【解析】略4、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为()6x+元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y 支,所以毛笔则为()60y -支,求出方程的解不是整数则说明算错了;②设钢笔为y 支,毛笔则为()60y -支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,由题意得:()302061070x x ++=,解得:19x =.625x +=,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y 支,所以毛笔则为()60y -支.根据题意,得()1925601322y y +-=, 解得893y =(不符合题意), ∴陈老师肯定算错了;②设钢笔为y 支,签字笔的单价为a 元,则根据题意,得()1925601322y y a +-=-,∴6178y a =+,∵a 、y 都是整数,∴178a +应被6整除,∴a 为偶数,∵a 为小于10元的整数,∴a 可能为2、4、6、8,当2a =时,6180y =,30y =,符合题意;当4a =时,6182y =,913y =,不符合题意; 当6a =时,6184y =,923y =,不符合题意; 当8a =时,6186y =,31y =,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.5、 (1)12,24,36,48;(2)8k(3)11+=m n【解析】【分析】(1)设这个本原数的十位数字为x ,个位数字为y ,有()104x y x y +=+,得x y ,的关系,进而得到答案.(2)设这个本原数的十位数字为x ,个位数字为y ,有()103x y x y +=+,得x y ,的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x ,个位数字为y .则由题意可列方程组()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①②,两式相加求解即可.(1)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()104x y x y +=+解得2y x =∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()103x y x y +=+解得72x y =∴满足条件的数为27,它的奇异数是72 ∴72872k∴8k;(3)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①② ①+②得()()()11x y m n x y +=++∴11+=m n【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.。

达标测试华东师大版七年级数学下册第7章一次方程组专项练习试题(精选)

达标测试华东师大版七年级数学下册第7章一次方程组专项练习试题(精选)

七年级数学下册第7章一次方程组专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中,是关于x的一元二次方程的是()A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=02、若21xy=⎧⎨=⎩为1xy=-⎧⎨=⎩都是方程ax+by=1的解,则a+b的值是()A.0 B.1 C.2 D.33、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.561656x yx y y x+=⎧⎨+=+⎩B.561645x yx y y x+=⎧⎨+=+⎩C.651665x yx y y x+=⎧⎨+=+⎩D.651654x yx y y x+=⎧⎨+=+⎩4、下列方程组中,二元一次方程组有()①4223x yx y+=⎧⎨-=-⎩;②211x yy z-=⎧⎨+=⎩;③350xy=⎧⎨-=⎩;④22331x yx y⎧-=⎨+=⎩.A.4个B.3个 C.2个 D.1个5、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A .2个B .3个C .4个D .5个7、用加减法将方程组4311455x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ). A .2y =6 B .8y =16 C .﹣2y =6 D .﹣8y =168、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x 名,捐10元的有y 名,则可列方程组为( )A .40510275x y x y -=⎧⎨+=⎩B .40105275x y x y +=⎧⎨-=⎩C .40510275x y x y +=⎧⎨+=⎩D .40105275x y x y +=⎧⎨+=⎩ 9、有下列方程:①xy =1;②2x =3y ;③12x y-=;④x 2+y =3; ⑤314x y =-;⑥ax 2+2x +3y =0 (a =0),其中,二元一次方程有( )A .1个B .2个C .3个D .4个10、方程x +y =6的正整数解有( )A .5个B .6个C .7个D .无数个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.2、方程组43139x yx y+=-⎧⎨+=⎩的解是:_____.3、一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.4、5237x yx y+=⎧⎨-=⎩,这个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做____.二元一次方程组的条件:共含有____个未知数;每个方程都是____方程.5、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15 000元,铁路运费97 200元.这批产品的销售款比原料费与运输费的和多多少元?解:设产品重x吨,原料重y吨.由题意可列方程组1.5(2010)15000 1.2(110120)97200x yx y⨯+=⎧⎨⨯+=⎩解这个方程组,得___________因为毛利润-销售款-原料费-运输费所以这批产品的销售款比原料费与运输的和多___________元.三、解答题(5小题,每小题10分,共计50分)1、解方程组:212530x yx y zx y z-=-⎧⎪++=⎨⎪--=⎩.2、目前,新型冠状病毒在我国虽可控可防,但不可松懈,某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共7500元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1800人,平均每人每天都需使用10ml的免洗手消毒液,则这批消毒液可使用多少天?3、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱1500元,B种防疫物资每箱1200元.若购买B种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).4、某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?5、对于任意一个四位数m ,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称m 是“2倍和数”.如3504m =,因为352(04)+=⨯+,所以3504是“2倍和数”;6824m =,因为682(24)+≠⨯+,所以6824不是“2倍和数”.(1)判断6423,4816是否为“2倍和数”?并说明理由;(2)对于“2倍和数”n ,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记()3n F n =.求()F n 的最大值和最小值.-参考答案-一、单选题1、A【解析】【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A 、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B 、含有两个未知数,不是一元二次方程,不符合题意;C 、210x +=,含有一个未知数,不是一元二次方程,不符合题意;D 、当0a =时,不是一元二次方程,不符合题意;故选:A【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.2、C【解析】【分析】把21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩代入ax +by =1,建立方程组,再解方程组即可. 【详解】 解: 21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩都是方程ax +by =1的解, 21,1a b a ①②解②得:1,a =-把1a =-代入①得:3,b =1.3a b13 2.a b故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.3、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x 两,燕每只y 两则五只雀为5x ,六只燕为6y共重16两,则有5616x y +=互换其中一只则五只雀变为四只雀一只燕,即4x +y六只燕变为五只燕一只雀,即5y +x且一样重即45x y y x +=+由此可得方程组561645x y x y y x+=⎧⎨+=+⎩. 故选:B .【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.4、C【解析】【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:①、符合二元一次方程组的定义,故①符合题意;②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;③、符合二元一次方程组的定义,故③符合题意;④、该方程组中第一个方程是二次方程,故④不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.5、C【解析】【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.6、C【解析】【分析】设原两位数的个位为,x 十位为,y 则这个两位数为10,y x 所以交换其个位数与十位数的位置,所得新两位数为10,x y 再列方程101045,x y y x 再求解方程的符合条件的正整数解即可.【详解】解:设原两位数的个位为,x 十位为,y 则这个两位数为10,y x交换其个位数与十位数的位置,所得新两位数为10,x y 则101045,x y y x整理得:5,x y -=,x y 为正整数,且09,09,x y94x y 或83x y ==⎧⎨⎩或72x y 或61x y =⎧⎨=⎩ 所以这个两位数为:49,38,27,16.故选C【点睛】本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.7、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组4311455x y x y -=⎧⎨+=-⎩①②中的未知数x 消去,则有①-②得:﹣8y =16; 故选D .【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.8、C【解析】【分析】根据题意,x+y=40,5x+10y=275,判断即可. 【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为40 510275x yx y+=⎧⎨+=⎩,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.9、C【解析】略10、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x=进而求得对应y的值即可【详解】解:方程的正整数解有15xy=⎧⎨=⎩,24xy=⎧⎨=⎩,33xy=⎧⎨=⎩,42xy=⎧⎨=⎩,51xy=⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.二、填空题【解析】【分析】设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.【详解】解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:(10×0.02+10m+10n)×(1+30%)=2.6,解得m+n=0.18,则甲种干果的成本价为10×0.02+10m+10n=2(元),乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),设甲种干果x袋,乙种干果y袋,根据题意得:2x×30%+1.3y×20%=(2x+1.3y)×24%,解得,1330xy=,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.故答案为:13:30.【点睛】本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.2、285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【解析】②×3-①求出x的值,再把x的值代入②求出y的值即可.【详解】解:431 39x yx y+=-⎧⎨+=⎩①②②×3-①,得5x=28∴x=28 5把x=285代入②得,283+95y⨯=∴395 y=-∴方程组的解为285395 xy⎧=⎪⎪⎨⎪=-⎪⎩故答案为:285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3、63【解析】【分析】设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组3536x ax b-=⎧⎨+=⎩,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.解:设每行5人的队列有a 列,每行6人的队列有b 列,班级共x 人,则3536x a x b -=⎧⎨+=⎩, ∴队列的人数是5的倍数,也是6的倍数,即30的倍数,∵班级的学生人数超过40人但又不多于80人,∴队列人数为60人,∴班级人数为x =60+3=63人,故答案为:63.【点睛】此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.4、 二元一次方程组 两 一次【解析】略5、 300400x y =⎧⎨=⎩14 【解析】略三、解答题1、3,2,3x y z ===-【解析】【详解】解:212530x y x y z x y z -=-⎧⎪++=⎨⎪--=⎩①②③, ②+③得:325x y -=④,由④和①组成一个二次一次方程组21325x y x y -=-⎧⎨-=⎩, 解得:32x y =⎧⎨=⎩, 把32x y =⎧⎨=⎩代入③360z --=, 解得:3z =-,所以原方程组的解是:3,2,3x y z ===-.【点睛】此题考查了解三元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、 (1)甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)这批消毒液可使用10天.【解析】【分析】(1)设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶,由甲、乙两种免洗手消毒液共400瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶,列二元一次方程组求解即可;(2)设这批消毒液可使用a 天,由该校在校师生共1800人,平均每人每天都需使用10ml 的免洗手消毒液,然后列出方程可求解即可.(1)解:设甲种消毒液购买了x 瓶,乙种消毒液购买了y 瓶,依题意得:40015207500x y x y +=⎧⎨+=⎩,解得:100300x y =⎧⎨=⎩.答:甲种消毒液购买了100瓶,乙种消毒液购买了300瓶.(2)解:设这批消毒液可使用a天,由题意可得:1800×10×a=100×300+300×500,解得:a=10,答:这批消毒液可使用10天.【点睛】本题主要考查了二元一次方程组的应用、一元一次方程的应用,根据题意设出合适未知数、正确列出方程和方程组是解答本题的关键.3、 (1)甲公司150人,乙公司180人(2)共有两种方案,①A种物资购买8箱,B种物资购买20箱;②A种物资购买4箱,B种物资购买25箱【解析】【分析】(1)设甲公司x人,乙公司y人,根据题意列出二元一次方程组,求解即可;(2)设A种物资购买m箱,B种物资购买n箱,根据题意列出二元一次方程,求出整数解即可.(1)解:设甲公司x人,乙公司y人,根据题意得:30 120100x yx y=-⎧⎨=⎩,解得:150180xy=⎧⎨=⎩,答:甲公司150人,乙公司180人;(2)设A 种物资购买m 箱,B 种物资购买n 箱,由题意得:15001200150120180100m n +=⨯+⨯, 整理得:4245m n =-,20n ,且m 、n 是正整数, 当20n =时,8m =;当25n =时,4m =;答:共有两种方案,①A 种物资购买8箱,B 种物资购买20箱;②A 种物资购买4箱,B 种物资购买25箱.【点睛】本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.4、每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨【解析】【分析】设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨,列方程得5214034224x y x y +=⎧⎨+=⎩,计算即可. 【详解】解:设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨根据题意得:5214034224x y x y +=⎧⎨+=⎩, 解得: 850x y =⎧⎨=⎩.答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.【点睛】此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.5、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;(2)最大值是3117,最小值是1107.【解析】【分析】(1)根据定义进行判断即可(2)设n 的个位上的数字为a ,十位上的数字为b ,则百位上的数字为3a ,千位上的数字为2()32a b a b a +-=-,进而求得n 的各数位上的数字之和,根据()3n F n =,可得a b +能被3整除,进而求二元一次方程的整数解即可,进而列出()F n ,即可求得()F n 的最大值和最小值.(1)642(23)+=⨯+,∴6423是“2倍和数”,482(16)+≠⨯+,∴4816不是“2倍和数”;(2)设n 的个位上的数字为a ,十位上的数字为b ,则百位上的数字为3a ,千位上的数字为2()32a b a b a +-=-,03a ,0b 6,2a b <,a ,b 为整数),n ∴的各数位上的数字之和为233()b a a b a a b -+++=+, n 各数位上的数字之和能被9整除,a b ∴+能被3整除,3a b ∴+=或6a b +=,011233,2,5,4,3a a a a a b b b b b ⎧⎧⎧=====⎧⎧⎪⎪∴⎨⎨⎨⎨⎨=====⎩⎩⎪⎩⎪⎩⎩, 6030,3321,9351,6642,3933n ∴=,()2010,1107,3117,2214,13113n F n ∴==, ()F n ∴的最大值是3117,最小值是1107.【点睛】本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组 测试题
一、选择题(每小题3分,共30分)
1.下列方程组中,是二元一次方程组的是( ) A.
3x +y=5 B. x -2y -xy=1 C. x=2 D. x+2
y
=3 X -
3z=7 4x -5y=2 y=1 x
1
-y=-3
2.用代入法解方程组 3x+4y=2 ① 使得代入后简化比较容易的变形是( ) 2x -y=5 ②
A.由①得x=
342y - B. 由①得y=432x
- C. 由②得x=2
5
+y D. 由②得y=2x -5
3. 方程组 的解为⎩⎨⎧=
=y x 2
,则被遮盖的两个数分别为( )
(A)1,2 (B)5,1 (C)2,3 (D)2,4
4. 方程kx+3y=5有一组解2
1x y =⎧⎨=⎩
,则k 的值是( )
(A)1 (B)-1 (C)0 (D)2 5. 已知21x y =⎧⎨
=⎩是二元一次方程组7
1ax by ax by +=⎧⎨-=⎩
的解,则a b -的值为( ) A .1 B .-1 C . 2 D .3 6.二元一次方程2x+y =7的正整数解有( ) A.一组 B.二组 C.三组 D.四组
7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,
那么这个队胜了( )
(A)3场 (B)4场 (C)5场 (D)6场 8. 已知代数式13
3m x
y --与5
2
n m n x y +是同类项,那么m n 、的值分别是( )
A .2
1m n =⎧⎨=-⎩
B .21
m n =-⎧⎨=-⎩
C .21
m n =⎧⎨=⎩
D .21
m n =-⎧⎨=⎩
9.如果4
(1)6x y x m y +=⎧⎨--=⎩
中的解x 、y 相同,则m 的值是( )
(A)1 (B)-1 (C)2 (D)-2
10.如果二元一次方程组⎩
⎨⎧=+=-a y x a
y x 3的解是二元一次方程0753=--y x 的解,那a 的值是( )
A .3
B .5
C .7
D .9
二、选择题(每小题3分,共24分)
1. 如果一个二元一次方程的一个解是⎩
⎨⎧-==11
y x ,请你写出一个符合题意的二元一次方程组 .(要求写出一个)
2.已知二元一次方程21x y +-=0,用含y 的代数式表示x ,则x =____ _____ 3.已知点A(x-y ,x+y),点B(3,-7)关于x 轴对称,则x= y= 。

4. 已知 x=1 和 x=3都是方程x+y=b 的解,则c= y=2 y=c
5. 大数和小数的差为12,这两个数的和为60,则大数是 ,小数是 。

6.如果|21||25|0x y x y -++--=,则x y +的值为
7.方程(m -3)x + 2
m
-8
y =1是二元一次方程,则m =_________
8. 若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,则a 的值是 . 三、解答题
1.(每小题4分,共24分)解下列方程组
(1)⎩⎨⎧=-=+.
82,7y x y x (2)⎩⎨
⎧-==+73825x y y x (3)⎩⎨⎧=-=+423732y x y x
(4)⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x
(5)⎪⎩⎪
⎨⎧+=-+=-153
15)1(3x y y x (6)
⎩⎨
⎧=+=+32y x y x x +y -z =11 y +z -x =5 z +x -y =1
2. 已知方程组⎩
⎨⎧+=+=+23223k y x k
y x 的解x ,y 的和是6,,求 k 的值.(6分)
3.一个两位数的十位上的数与个位上的数的和是5,如果这个两位数减去27,则恰好等于十位上的数与个位上的数对调后组成的两位数,求这个两位数. (6分)
4.(本题7分)经营户小熊在蔬菜批发市场上了解到以下信息内容:(8分)
他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完。

请你计算出小熊能赚多少钱?
5.如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:(12分)
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(4分) (2)两人在途中行驶的速度分别是多少?(2分) (3)他们几时相遇?(2分)
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式。

(4分)
6. (10分)(1)求一次函数的坐标的交点的图象与的图象P l x y l x y 2112
1
22-=
-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.
蔬菜品种 红辣椒 西红柿 批发价(元/公斤) 4 1.6 零售价(元/公斤) 5 2.0。

相关文档
最新文档