精品解析:2018年安徽省六安市霍邱县中考数学一模试卷(原卷版)
安徽霍邱2018-2019学度度初二上年中考试数学试卷含解析

安徽霍邱2018-2019学度度初二上年中考试数学试卷含解析一、选择题〔本大题共有10小题,每题4分,共计40分〕1、函数xxy -=2中自变量x 旳取值范围是 A 、2≠x B 、2≥x C 、2≤x D 、2>x 2、以下曲线中不能表示y 是x 旳函数旳是3、将一次函数32-=x y 旳图象沿y 轴向上平移8个单位长度,所得直线旳【解析】式为 A 、52-=x y B 、52+=x y C 、82+=x y D 、82-=x y4、假设一次函数b ax y +=旳图象通过第【一】【二】四象限,那么以下不等式一定成立旳是A 、0<+b a B 、0>-b a C 、0>ab D 、0<ab5、c b a ,,是△ABC 旳三条边长,化简||||b a c c b a ----+旳结果为 A 、c b a 222-+B 、b a 22+ C 、0 D 、c 26、一次函数x m kx y 2--=旳图象与y 轴旳负半轴相交,且函数值y 随自变量x 旳增大而减小,那么以下结论正确旳选项是A 、0,2><m kB 、0,2<<m kC 、0,2>>m kD 、0,0<<m k 7、如图,函数x y 21-=与32+=ax y 旳图象相交于点)2,(m A ,那么关于x 旳不等式32+>-ax x 旳解集是A 、1->xB 、1-<xC 、2>xD 、2<x8、在同一平面直角坐标系中,直线14+=x y 与直线b x y +-=旳交点不可能在A 、第一象限B 、第二象限C 、第三象限D 、第四象限9、如图,某工厂有两个大小相同旳蓄水池,且中间有管道连通。
现要向甲池中注水,假设单位时刻内旳注水量不变,那么从注水开始,乙池水面上升旳高度h 与注水时刻t 之间旳函数关系旳图象可能是10、在平面直角坐标系中,点(,)P x y 通过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 旳终结点、点1P 旳终结点为2P ,点2P 旳终结点为3P ,点3P旳终结点为4P ,如此依次得到1P 、2P 、3P 、4P …n P ,假设点1P 旳坐标为(2,0),那么点2017P 旳坐标为、A 、〔﹣3,3〕B 、〔1,4〕C 、〔2,0〕D 、〔﹣2,﹣1〕 *选择题答题卡〔请同学们将选择题【答案】填在答题卡内〕 二、填空题〔此题共有4小题,每题5分,共计20分〕11、,在平面直角坐标系中,白棋()2,1A -,白棋()6,0B -,那么黑棋C 旳坐标为 ( , ).12、长度分别为2,7,x 旳三条线段能组成一个三角形,x 旳值能够是(写一个即可)、 13、一次函数2y x m =-+旳图象通过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,那么AOB △旳面积等于、14、小苏和小林在右图所示旳跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线旳距离y 〔单位:m 〕与跑步时刻〔单位:s 〕旳对应关系如下图所示.以下表达正确旳选项是〔填上你认为正确旳序号〕 ①两人从起跑线同时动身,同时到达终点;②小苏跑全程旳平均速度小于小林跑全程旳平均速度;③小苏前15s 跑过旳路程大于小林前15s 跑过旳路程;④小林在跑最后100m 旳过程中,与小苏相遇2次。
2018年安徽省中考数学一模试卷(解析版)

安徽省合肥市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是( )A.B.﹣C.D.﹣2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为( )A.160×108B.16×109C.1.6×1010D.1.6×10114.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°5.下列运算中,正确的是( )A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x46.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )A.B.C.D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:( )A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x元D.a(1﹣5%﹣2x)元9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:( )A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= .12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的 (从“平均数、众数、中位数、方差”中选择答案)13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是 km/h.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN以上结论中,正确的是 (请把正确结论的序号都填上)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.用配方法解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是 ;点B6的坐标是 ;(2)点A n的坐标是 ;正方形A n B n C n C n﹣1的面积是 .五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高米)度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.120.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:分组频数组号一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE 为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是( )A.B.﹣C.D.﹣【考点】相反数.【分析】根据相反数的定义,可以得知负数的相反数为负,绝对值没变,此题得解.【解答】解:﹣(﹣)=,故选A.2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形【考点】简单组合体的三视图;轴对称图形.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为( )A.160×108B.16×109C.1.6×1010D.1.6×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将160亿用科学记数法表示为:1.6×1010.故选:C.4.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3﹣∠1=95°﹣50°=45°,∵a∥b,∴∠2=∠4=45°.故选:C.5.下列运算中,正确的是( )A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x4【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.【解答】解:A、3x3•2x2=6x5,故选项错误;B、(﹣x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;D、x5÷x=2x4,故选项正确.故选:D.6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )A.B.C.D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:( )A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x元D.a(1﹣5%﹣2x)元【考点】列代数式.【分析】根据降价后的价格=降价前的价格(1﹣降价的百分率),二月份的价格为a(1﹣5%),3,4每次降价的百分率都为x,后经过两次降价,则为(1﹣5%)a (1﹣x)2.【解答】解:由题意得,4月份该商业街商铺的出租价格为(1﹣5%)a(1﹣x)2元故选B.9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=【考点】相似三角形的判定;矩形的性质;解直角三角形.【分析】由AE=AD=BC,又AD∥BC,所以==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE= BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【解答】解:A、∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,共有4个,故C正确,不符合题意;D、设AD=a,AB=b由△BAE∽△ADC,有=.∵tan∠CAD===,故D错误,符合题意.故选D.10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边对等角得出∠B=∠C,再证明∠BED=∠CDF=135°﹣∠BDE,那么△BED∽△CDF,根据相似三角形对应边成比例求出y与x的函数关系式,结合函数值的取值范围即可求解.【解答】解:∵∠BAC=90°,AB=AC=3,∴∠B=∠C=45°,BC=3.∴∠BDE+∠BED=180°﹣∠B=135°,∵∠EDF=45°,∴∠BDE+∠CDF=180°﹣∠EDF=135°,∴∠BED=∠CDF,∴△BED∽△CDF,∴=.∵BD=2CD,∴BD=BC=2,CD=BC=,∴=,∴y=,故B、C错误;∵E,F分别在AB,AC上运动,∴0<x≤3,0<y≤3,故A错误.故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= 2ab(b+2)(b﹣2) .【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(b2﹣4)=2ab(b+2)(b﹣2),故答案为:2ab(b+2)(b﹣2)12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的 中位数 (从“平均数、众数、中位数、方差”中选择答案)【考点】统计量的选择.【分析】根据题意和平均数、众数、中位数、方差的含义可以解答本题.【解答】解:由题意可得,11个班级中取前5名,故只要知道参加决赛的11个班级最终成绩的中位数即可,故答案为:中位数.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是 72 km/h.【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验.【解答】解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN以上结论中,正确的是 ①②③④ (请把正确结论的序号都填上)【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE==2S△AMN故④正AN,根据相似三角形的性质得到EF=MN,于是得到S确.【解答】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故②正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH,∴∠ANM=∠AEB,∴∠AEB=∠AEF=∠ANM;故①正确;∵AC⊥BD,∴∠AOM=∠ADF=90°,∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO,∴△OAM∽△DAF,故③正确;连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°,∵∠EAN=45°,∴∠NAE=∠NEA=45°,∴△AEN是等腰直角三角形,∴AE=AN,∵△AMN∽△BME,△AFE∽△BME,∴△AMN∽△AFE,∴=,∴EF=MN,∵AB=AO,∴S△AEF=S△AHE=HE•AB=EF•AB=MN AO=2×MN•AO=2S△AMN.故④正确.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.16.用配方法解一元二次方程:x2﹣6x+6=0.【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方,写成完全平方式,再开方即可得.【解答】解:∵x2﹣6x=﹣6,∴x2﹣6x+9=﹣6+9,即(x﹣3)2=3,则x﹣3=±,∴x=3.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.【考点】作图﹣旋转变换;轨迹;作图﹣平移变换.【分析】(1)利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)先计算出OA,然后利用弧长公式计算.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是 A6(32,31) ;点B6的坐标是 (32,63) ;(2)点A n的坐标是 (2n﹣1,2n﹣1) ;正方形A n B n C n C n﹣1的面积是 22n﹣2 .【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标,然后根据正方形的面积公式即可得到结论.【解答】解:(1)观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1),∴B6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n(2n﹣1,2n﹣1﹣1)(n为正整数),∴正方形A n B n C n C n﹣1的面积是(2n﹣1)2=22n﹣2,故答案为:(2n﹣1,2n﹣1)(n为正整数).五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG 长,加上1.6m即为主教学楼的高度AB.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=24m,即AG﹣=24m,∴AG=12m,∴AB=12+1.6≈22.4m.20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.【考点】反比例函数综合题.【分析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P点坐标.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.【考点】切线的性质.【分析】(1)连接OC,由CD是⊙O切线,得到OC⊥CD,根据平行线的性质得到∠EAC=∠ACO,有等腰三角形的性质得到∠CAO=∠ACO,于是得到结论;(2)连接BC,由三角函数的定义得到sin∠CAE==,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB是⊙O的直径,得到∠ACB=90°,解直角三角形即可得到结论;(3)根据余角的性质得到∠DCB=∠ACO根据相似三角形的性质得到结论.【解答】(1)证明:连接OC,∵CD是⊙O切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠A=CAO,即AC平分∠BAE;(2)解:连接BC,∵AE⊥CE,AC=2CE=6,∴sin∠CAE==,∴∠CAE=30°,∴∠CAB=∠CAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠CAB==,∴AB=4,∴⊙O的半径是2;(3)CD2=BD•AD,证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,∴∠DCB=∠ACO,∴∠DCB=∠ACO=∠CAD,∵∠D=∠D,∴△BCD∽△CAD,∴,即CD2=BD•AD.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE 为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.【考点】二次函数的应用.【分析】(1)利用抛物线的顶点F的坐标为(6,2.8),将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.8=2.6,当y=0时,﹣(x﹣6)2+2.8=﹣0.4,分别得出即可;(3)设抛物线解析式为y=a(x﹣6)2+h,由点C(0,2)得解析式为y=(x﹣6)2+h,再依据x=18时y≤0即可得h的范围.【解答】解:(1)由题意可得抛物线的顶点F的坐标为(6,2.8),设抛物线的解析式为y=a(x﹣6)2+2.8,将点C(0,2)代入,得:36a+2.8=2,解得:a=﹣,∴y=﹣(x﹣6)2+2.8;(2)当x=9时,y=﹣(9﹣6)2+2.8=2.6>2.24,当x=18时,y=﹣(18﹣6)2+2.8=﹣0.4<0,∴这次发球可以过网且不出边界;(3)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,2)代入,得:36a+h=2,即a=,∴此时抛物线解析式为y=(x﹣6)2+h,根据题意,得: +h≤0,解得:h≥,又∵h>2.32,∴h≥答:球既能过网又不会出界的h的取值范围是h≥. 。
2018年安徽省六安市中考数学模拟试卷(3月份)

2018年安徽省六安市中考数学模拟试卷(3月份)一、选择题(每小题4分,共40分)1.(4分)下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形2.(4分)抛物线y=﹣(2x﹣2)2+3的对称轴是()A.直线x=﹣2B.直线x=2C.直线x=1D.直线x=﹣1 3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)如图,P A切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π5.(4分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.6.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO7.(4分)下列成语所描述的是必然事件的是()A.拔苗助长B.瓮中捉鳖C.水中捞月D.大海捞针8.(4分)因为(x﹣1)2≥0,所以x2﹣2x+1≥0,即x2+1≥2x,由此可得出结论:若x为实数,则x2+1≥2x,运用这个结论求代数式的最大值为()A.0B.C.1D.9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.(4分)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2二、填空题(每小题5分,共20分)11.(5分)4与9的比例中项是.12.(5分)以半径为4的圆的内接正三角形,内接正方形,内接正六边形的边心距为三边作三角形,则该三角形的面积是.13.(5分)若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.14.(5分)如图,点P是矩形ABCD内一点,连接P A、PB、PC、PD,已知AB=3,BC =4,设△P AB、△PBC、△PCD、△PDA的面积分别为S1,S2,S3,S4,以下判断:①P A+PB+PC+PD的最小值为10;②若△P AB≌△PCD,则△P AD≌△PBC;③若S1=S2,则S3=S4,④若△P AB∽△PDA,则P A=2其中正确的是(把所有正确的结论的序号都填在横线上)三、(本大题共两小题,每小题8分,共16分)15.(8分)计算:|﹣1|﹣()﹣1﹣3tan30°+16.(8分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图,在直角坐标系中△ABC的A.B.C三点坐标为A(7,1)、B(8,2)、C (9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),再画出△A′B′C′关于y轴对称的△A″B″C″;(2)写出A′的坐标.18.(8分)在函数y=(x>0)的图象上有点P1,P2,P3,…p n,P n+1,过点P1,P2,P3,…p n,P n+1,分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3…,S n(1)若P1,P2,P3的横坐标依次为1,2,3,则S1=;S2=;S3=.(2)若P1,P2,P3,…p n,P n+1的横坐标依次为2,4,6,…,则S9=.若P1,P2,P3,…p n,P n+1的横坐标依次为a1,a2,a3,…a n,a n+1则S n=.五、(本大题共2小题,每小题10分,共20分)19.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD =∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.六、(本大题共3小题,每小题12分,共24分)21.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC 的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.2018年安徽省六安市中考数学模拟试卷(3月份)参考答案一、选择题(每小题4分,共40分)1.D;2.C;3.C;4.C;5.D;6.C;7.B;8.B;9.D;10.C;二、填空题(每小题5分,共20分)11.±6;12.2;13.﹣2;14.①②③;三、(本大题共两小题,每小题8分,共16分)15.;16.;四、(本大题共2小题,每小题8分,共16分)17.(﹣3,3);18.3;;;;(a n﹣a n﹣1)(﹣);五、(本大题共2小题,每小题10分,共20分)19.;20.;六、(本大题共3小题,每小题12分,共24分)21.;22.;23.;。
精品解析:2018届安徽省中考数学模拟试卷一(原卷版)

2018届安徽省中考数学模拟试卷一一、选择题(本大题共10小题,每小题4分,满分40分)1. ﹣2017的倒数是()A. B. ﹣ C. 2017 D. ﹣20172. 地球的表面积约为510000000km2,将510000000用科学记数法表示为()A. 0.51×109B. 5.1×108C. 5.1×109D. 51×1073. 下列运算正确的是()A. x+y=xyB. 2x2﹣x2=1C. 2x•3x=6xD. x2÷x=x4. 九年级(1)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16这组数据的中位数、众数分别为()A. 8,16B. 16,16C. 8,8D. 10,165. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.6. 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035B. x(x﹣1)=1035×2C. x(x﹣1)=1035D. 2x(x+1)=10357. 方程组的解x,y满足x>y,则m的取值范围是()A. m>B. m>C. m>D. m>8. 如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()学&科&网...学&科&网...A. 2cmB. 4cmC. cmD. cm9. 如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A. 47°B. 46°C. 11.5°D. 23°10. 如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm ,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 分解因式:ba2+b+2ab=_____.12. 如图,一个圆作滚动运动,它从A位置开始,滚过与它相同的其他六个圆的上部,到达B位置.则该圆共滚过_____圈.13. 数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为_____个单位长度.14. 如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是_____.三、(本大题共2小题,每小题8分,满分16分)15. 计算:(tan60°)﹣1×﹣|﹣|+23×0.125.16. 已知x2+x﹣6=0,求的值.四、解答题(本大题共2小题,每小题8分,满分16分)17. 两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.18. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.五、解答题(本大题共2小题,每小题10分,满分20分)19. 如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.20. (10分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B 作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.六、解答题(本大题满分12分)21. 某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.七、解答题(本大题满分12分)22. 如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.八、(本大题满分14分)23. 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.。
2018安徽中考数学模拟试卷

2018安徽中考数学模拟试卷22017-2018学年第二学期九年级中考模拟考试 数学试卷 2018年5月考生注意:本卷共八大题,23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.在0,,3,1π--四个数中,绝对值最大的数是( ).A .0B .π-C .3D .-12.下列计算结果等于5a 的是( ).A .32a a + B .32a a C .32()a D .102a a ÷3.经济学家马光远在2017新消费论坛上表示,因为新技术引发新产生、新业态、新模式,新兴消费增长速度超过40%,将会影响到5亿人左右.受此影响,到2020年,中国个人消费总规模有望达到5.6万亿美元.其中5.6万亿用科学记数法表示为( ).A .95.610⨯ B .105610⨯ C .125.610⨯ D .135.610⨯4.如图所示的几何体中,其俯视图是( ).5.把多项式228xy x -因式分解,结果正确的是( ).A.2x y-2(4) B.(2)(24)y xy x+-C.(22)(2)+-xy x y D.2(2)(2)+-x y y6.如图,AB∥CD,AC⊥BE于点C,若∠1=140°,则∠2等于().A.40°B.50°C.60°D.70°7 若关于x的一元二次方程2440-+=有两个相等的x x c实数根,则c的值为().A.1 B.-1 C.4 D.-48.合肥市主城区2017年8月10至8月19日连续10天的最高气温统计如下表:最高气38 39 40 41温(°C)天数 1 3 4 2则这组数据的中位数和平均数分别为().A.40,39.5 B.39,39.5 C.40,39.7 D.39,39.7345为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,直线与AC 交于点N ,使点N 落在直线BC 的点D 处,且BD :DC =1:4,设折痕为MN ,则CN 的值为 .三、(本大题共2小题,每小题8分,满分16分) 15.计算:21o 131()sin 60122--+---.16.高迪同学在一本数学课外读物中看到这样一则信息:1925年,数学家莫伦发现了如图(1)所示的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.高迪同学仔细研究了此图后,设计出了一个如图(2)所示的“准完美长方形”,其中标号“3与4”的正方形完全相同,若中间标号为“1”的正方形的边长为1cm ,求这个“准完美长方形”DCA BMN第14第136的面积.四、(本大题共2小题,每小题8分,满分16分) 17.(1)计算(直接填写结果)2222121⨯=++ ;33333312321⨯++++= .(2)先猜想结果,再计算验证:444444441234321⨯++++++= ;5555555555123454321⨯++++++++= .(3)归纳:设N 是各位数字都是n 的n 位数(n 是小于10的正整数),那么123(1)21N Nn n ⨯+++++-+++是 位数,其正中的一个数字是 .654321((718.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =∠CDE =30°,DE =80cm ,AC =165cm . (1)求支架CD 的长;(2)求真空热水管AB 的长.(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.在边长为1个单位长度的小正方形网格中,给出了格点△ABC (顶点为网格线的交点),以及过格点的的直线l .(1)将△ABC 向左平移3个单位长度,再向下平移两个单位长度,画出平移后的△DEF (点A 与点D ,点B 与点E ,点C 与点F 为对应点);(2)画出△ABC 关于直线l 对称的△GMN (点A 与点G ,点B 与点M ,点C 与点N 为对应点;(3)若DF 与MG 相交于点P ,则tan ∠MPF = .CODAB20.如图,四边形ABCD是⊙O的内接四边形, ,AC为直径,DE⊥BC,垂足为E.AD BD(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.六、(本题满分12分)21.小明、小强和小亮三个小朋友在一起玩“手心,手背”游戏,游戏时,每人每次同时随机伸出一只手,手心向上简称“手心”,手背向上简称“手背”(1)请你列出三人玩“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,用B表示手背)(2)求他们同时随机出手,都是“手心”的概率;(3)若小明出手为“手心”,则三人中只有一人出手为“手背”的概率为七、(本题满分12分)22.某工艺厂生产一种装饰品,每件的生产成本为20元,销售8价格在30元/件至80元/件之间(含30元/件和80元/件),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万件)与销售价格x(元/件)之间的函数关系如图所示.(1)当30≤x≤60时,求y与x之间的函数关系式.(2)求出该厂生产销售这种产品获得的利润w(万元)与销售价格x(元/件)之间的函数关系式.(3)当销售价格定为多少元/件时,获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们知道:三角形三条角平分线的交点叫做三角形的内心,已知点I为△ABC的内心(1)如图1,连接AI并延长交BC于点D,9若AB=AC=3,BC=2,求ID的长(2)过点I作直线交AB于点M,交AC于点N.①如图2,若MN⊥AI,求证:2MI BM CN=②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求11AM AN+的值.2017-2018学年第二学期九年级第一次月考数学答案 2018年4月一、选择题题号1 2 3 4 5 6 7 8 9 1010答案B B C BDB AC C B二、填空题11.3x<12.13 13.23π14.92三、15.原式=016.设标号为“3”的正方形边长为x cm,由题意,得2531x x+=+,解得4x=,所以(25)(23)1311143x x++=⨯=2cm答:这个“准完美长方形”的面积为143cm2.四、17.(1)121 12321 (2)1234321123454321(3)21n-n18.(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=o3=⨯=(cm)80cos3080403(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC o3tan30165553=⨯=(cm)∴OD=OC-CD=553403153-=(cm).∴AB=AO-OB=AO-OD=5532153953⨯-=(cm).五、19.(1)(2)如图所示(3)220.(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠DCE=∠BAD.∵AD BD=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,即CD平分∠ACE.(2)∵AC为直径,∠ADC=90°.∵DE ⊥BC ,∴∠DEC =90°,∠DEC =∠ADC ∵∠DCE=∠ACD ,∴△DCE ∽△ACD∴CE CD CD CA =,即39CD CD =∴CD =33 六、21.(1)画树状图,得∴共有8种等可能的结果:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB(2)∵他们同时随机出手,都是“手心”的只有1种情况,∴他们同时随机出手,都是“手心”的概率是18(3)12七、22.(1)当60x =时,120260y == ∴当30≤x ≤60时,图象过(60,2)和(30,5)设y kx b =+,则305602k b k b +=⎧⎨+=⎩,解得0.18k b =-⎧⎨=⎩, ∴0.18(3060)y x x =-+≤≤ (2)当30≤x ≤60时2(20)50(20)(0.18)500.110210w x y x x x x =--=--+-=-+-当60<x≤80时1202400(20)50(20)5070w x y x x x=--=-⨯-=-+综述:20.110210(3060)240070(6080) x x x w x x ⎧-+-≤≤⎪=⎨-+<≤⎪⎩(3)当30≤x ≤60时,220.1102100.1(50)40w x x x =-+-=--+当50x =时,w 最大=40(万元)当60<x≤80时,w 随x 的增大而增大,∴当80x =时,w 最大=2400704080-+=(万元) 所以当销售价格定为50元/件或80元/件时,获得的利润最大,最大利润是40万元. 八、23.(1)作IE ⊥AB 于E .设ID =x ,∵AB =AC =3,I 点为△ABC 的内心,∴AD ⊥BC ,BD =CD =1.在Rt △ABD 中,由勾股定理,得AD =22 ∵∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2 在Rt △AEI 中,222AEEI AI +=,即2222(22)x x +=-,∴22x =.(2)如图,连接BI ,CI∵I 是△ABC 的内心,∴∠MAI =∠NAI .∵AI ⊥MN ,∴AM =AN∴∠AMN =∠ANM ,∠BMI =∠CNI∵∠NIC =180°-∠IAC -∠ACI -∠AIM =90°-∠IAC -∠ACI∠ABC =180°-∠BAC -∠ACB =180°-2∠IAC -2∠ACI∴∠ABI =90°-∠IAC -∠ACI ,即∠NIC =∠ABI∴△BMI ∽△INC ,BM MI IN NC=又MI =NI ,∴2MIBM CN=.(3)过点N 作NG ∥AD 交MA 的延长线于点G , ∵∠BAD =∠CAD ,∠BAC =60°,∴AN =AG ,∠ANG =∠AGN =30°,NG 3由AI ∥NG ,得AM AIMG NG =,3AM AM AN AN=+∴113AMAN+=。
2018年安徽省六安市中考数学模拟试卷

2018年安徽省六安市中考数学模拟试卷一、选择题(每小题4分,共40分)1. 下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A. 正三角形B. 正方形C. 正五边形D. 正六边形2.抛物线y=﹣(2x﹣2)2+3的对称轴是()A. 直线x=﹣2B. 直线x=2C. 直线x=1D. 直线x=﹣13. 下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.4.如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A. B. π C. 2π D. 4π5.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.6.如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC交于点E,下列结论中不一定成立的是()A. AD=DCB. ∠ACB=90°C. △AOD是等边三角形D. BC=2EO7.下列成语所描述的是必然事件的是()8.正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =35,且∠ECF =45°,则CF 的长为( )A .210B .3 5 C.5310 D.103 59.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数12,y y x x=-=、的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A. 逐渐变小B. 逐渐变大C. 时大时小D. 保持不变10.如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( ) A. 6 B. 3 C. 2.5 D. 2 二、填空题(每小题5分,共20分) 11. 4与9的比例中项是__ ___.12. 以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是__ __。
2018年安徽省六安市中考数学模拟试卷(3月份)(解析版)

2018年安徽省六安市中考数学模拟试卷(3月份)一、选择题(每小题4分,共40分)1.(4分)下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形2.(4分)抛物线y=﹣(2x﹣2)2+3的对称轴是()A.直线x=﹣2B.直线x=2C.直线x=1D.直线x=﹣1 3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)如图,P A切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π5.(4分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.6.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO7.(4分)下列成语所描述的是必然事件的是()A.拔苗助长B.瓮中捉鳖C.水中捞月D.大海捞针8.(4分)因为(x﹣1)2≥0,所以x2﹣2x+1≥0,即x2+1≥2x,由此可得出结论:若x为实数,则x2+1≥2x,运用这个结论求代数式的最大值为()A.0B.C.1D.9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.(4分)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2二、填空题(每小题5分,共20分)11.(5分)4与9的比例中项是.12.(5分)以半径为4的圆的内接正三角形,内接正方形,内接正六边形的边心距为三边作三角形,则该三角形的面积是.13.(5分)若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.14.(5分)如图,点P是矩形ABCD内一点,连接P A、PB、PC、PD,已知AB=3,BC =4,设△P AB、△PBC、△PCD、△PDA的面积分别为S1,S2,S3,S4,以下判断:①P A+PB+PC+PD的最小值为10;②若△P AB≌△PCD,则△P AD≌△PBC;③若S1=S2,则S3=S4,④若△P AB∽△PDA,则P A=2其中正确的是(把所有正确的结论的序号都填在横线上)三、(本大题共两小题,每小题8分,共16分)15.(8分)计算:|﹣1|﹣()﹣1﹣3tan30°+16.(8分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图,在直角坐标系中△ABC的A.B.C三点坐标为A(7,1)、B(8,2)、C (9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),再画出△A′B′C′关于y轴对称的△A″B″C″;(2)写出A′的坐标.18.(8分)在函数y=(x>0)的图象上有点P1,P2,P3,…p n,P n+1,过点P1,P2,P3,…p n,P n+1,分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3…,S n(1)若P1,P2,P3的横坐标依次为1,2,3,则S1=;S2=;S3=.(2)若P1,P2,P3,…p n,P n+1的横坐标依次为2,4,6,…,则S9=.若P1,P2,P3,…p n,P n+1的横坐标依次为a1,a2,a3,…a n,a n+1则S n=.五、(本大题共2小题,每小题10分,共20分)19.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD =∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.六、(本大题共3小题,每小题12分,共24分)21.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC 的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.2018年安徽省六安市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:选项中的几个图形都是旋转对称图形,A、正三角形的旋转最小角是=120°,故此选项错误;B、正方形的旋转最小角是=90°,故此选项错误;C、正五边形的旋转最小角是=72°,故此选项错误;D、正六边形旋转的最小角度是=60°,故此选项正确;故选:D.2.(4分)抛物线y=﹣(2x﹣2)2+3的对称轴是()A.直线x=﹣2B.直线x=2C.直线x=1D.直线x=﹣1【解答】解:抛物线y=﹣(2x﹣2)2+3的对称轴是:直线x=1.故选:C.3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.【解答】解:A.圆柱的左视图是长方形,不合题意;B.长方体的左视图是长方形,不合题意;C.圆锥的左视图是三角形,符合题意;D.三棱柱的左视图是长方形,不合题意;故选:C.4.(4分)如图,P A切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π【解答】解:连接OA,OB.则OA⊥P A,OB⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB的长是:=2π.故选:C.5.(4分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选:D.6.(4分)如图,C、D是以AB为直径、O为圆心的半圆上的两点,OD∥BC,OD与AC 交于点E,下列结论中不一定成立的是()A.AD=DC B.∠ACB=90°C.△AOD是等边三角形D.BC=2EO【解答】解:连接CD,∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴DO⊥AC,∴AD=CD,故A、B正确;∵AO=DO,不一定等于AD,因此C错误;∵O为圆心,∴AO:AB=1:2,∵EO∥BC,∴△AEO∽△ACB,∴EO:AB=AO:BC=1:2,∴BC=2EO,故D正确;故选:C.7.(4分)下列成语所描述的是必然事件的是()A.拔苗助长B.瓮中捉鳖C.水中捞月D.大海捞针【解答】解:A、是不可能事件,故选项错误;B、是必然事件,选项正确;C、是不可能事件,故选项错误;D、是随机事件,故选项错误.故选:B.8.(4分)因为(x﹣1)2≥0,所以x2﹣2x+1≥0,即x2+1≥2x,由此可得出结论:若x为实数,则x2+1≥2x,运用这个结论求代数式的最大值为()A.0B.C.1D.【解答】解:∵x2+1≥2x,要求代数式的最大值,∴x必须大于0,∴≤,即≤,∴的最大值为,故选:B.9.(4分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.10.(4分)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选:C.二、填空题(每小题5分,共20分)11.(5分)4与9的比例中项是±6.【解答】解:设它们的比例中项是x,则x2=4×9,x=±6.故答案为±6.12.(5分)以半径为4的圆的内接正三角形,内接正方形,内接正六边形的边心距为三边作三角形,则该三角形的面积是2.【解答】解:∵半径为4的圆的内接正三角形,内接正方形,内接正六边形,∴圆内接正三角形的边心距为2,圆内接正四边形的边心距为2,圆内接正六边形的边心距为2,∴22+(2)2=(2)2,∴这个三角形为直角三角形,∴这个三角形的面积为×2×2=2.故答案为:2.13.(5分)若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为﹣2.【解答】解:∵函数y=与y=x﹣2图象的一个交点坐标(a,b),∴b=,b=a﹣2,∴ab=1,b﹣a=﹣2,∴﹣===﹣2故答案为﹣2.14.(5分)如图,点P是矩形ABCD内一点,连接P A、PB、PC、PD,已知AB=3,BC =4,设△P AB、△PBC、△PCD、△PDA的面积分别为S1,S2,S3,S4,以下判断:①P A+PB+PC+PD的最小值为10;②若△P AB≌△PCD,则△P AD≌△PBC;③若S1=S2,则S3=S4,④若△P AB∽△PDA,则P A=2其中正确的是①②③(把所有正确的结论的序号都填在横线上)【解答】解:①当点P是矩形ABCD两对角线的交点时,P A+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以P A+PB+PC+PD的最小值为10,故①正确;②若△P AB≌△PCD,则P A=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△P AD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△P AB~△PDA,则∠P AB=∠PDA,∠P AB+∠P AD=∠PDA+∠P AD=90°,∠APD=180°﹣(∠PDA+∠P AD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得P A=2.4,故④错误.故答案为①②③.三、(本大题共两小题,每小题8分,共16分)15.(8分)计算:|﹣1|﹣()﹣1﹣3tan30°+【解答】解:原式=﹣1﹣4﹣3×+2=﹣3.16.(8分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.【解答】解:(1)由三视图得几何体为圆锥,(2)圆锥的表面积=π•22+•2π•6•2=16π.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图,在直角坐标系中△ABC的A.B.C三点坐标为A(7,1)、B(8,2)、C (9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),再画出△A′B′C′关于y轴对称的△A″B″C″;(2)写出A′的坐标(﹣3,3).【解答】解:(1)如图所示:△A′B′C′,△A″B″C″即为所求;(2)A′的坐标为:(﹣3,3).故答案为:(﹣3,3).18.(8分)在函数y=(x>0)的图象上有点P1,P2,P3,…p n,P n+1,过点P1,P2,P3,…p n,P n+1,分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3…,S n(1)若P1,P2,P3的横坐标依次为1,2,3,则S1=3;S2=;S3=.(2)若P1,P2,P3,…p n,P n+1的横坐标依次为2,4,6,…,则S9=.若P1,P2,P3,…p n,P n+1的横坐标依次为a1,a2,a3,…a n,a n+1则S n=(a n﹣a n﹣1)(﹣).【解答】解:(1)∵P1的坐标为(1,6),P2的坐标为(2,3),P3的坐标为(4,),P4的坐标为(6,1),∴S1=1×(6﹣3)=3;S2=1×(3﹣)=;S3=1×(﹣1)=.故答案为3,,;(2)∵P1的坐标为(2,3),P2的坐标为(4,),P3的坐标为(6,1),P4的坐标为(8,),P n的坐标为(2n,),P n+1的坐标为(2n+2,),∴S n=2(﹣)=,当n=9时,S9==;∵P1的坐标为(a1,),P2的坐标为(a2,),P3的坐标为(a3,),P n的坐标为(a n,),P n+1的坐标为(a n+1,),则每个阴影部∴S n=(a n﹣a n﹣1)(﹣).故答案为;(a n﹣a n﹣1)(﹣).五、(本大题共2小题,每小题10分,共20分)19.(10分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).【解答】解:过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=2m,∴C点到地面AD的距离为:(2+2)m.20.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD =∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)如图,∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.六、(本大题共3小题,每小题12分,共24分)21.(12分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.(12分)某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?【解答】解:(1)当x=60时,y==2,∴当30≤x≤60时,图象过(60,2)和(30,5),设y=kx+b,则,解得:,∴y=﹣0.1x+8(30≤x≤60);(2)根据题意,当30≤x≤60时,W=(x﹣20)y﹣50=(x﹣20)(﹣0.1x+8)﹣50=﹣0.1x2+10x ﹣210,当60<x≤80时,W=(x﹣20)y﹣50=(x﹣20)•﹣50=﹣+70,综上所述:W=;(3)当30≤x≤60时,W=﹣0.1x2+10x﹣210=﹣0.1(x﹣50)2+40,当x=50时,W最大=40(万元);当60<x≤80时,W=﹣+70,∵﹣2400<0,W随x的增大而增大,∴当x=80时,W最大=﹣+70=40(万元),答:当销售价格定为50元/件或80元/件,获得利润最大,最大利润是40万元.23.(14分)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC 的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求+的值.【解答】解:(1)如图1中,作IE⊥AB于E.设ID=x.∵AB=AC=3,AI平分∠BAC,∴AD⊥BC,BD=CD=1,在Rt△ABD中,AD===2,∵∠EBI=∠DBI,∠BEI=∠BDI=90°,BI=BI,∴△BEI≌△BDI,∴ID=IE=x,BD=BE=1,AE=2,在Rt△AEI中,∵AE2+EI2=AI2,∴22+x2=(2﹣x)2,∴x=,∴ID=.(2)如图2中,连接BI、CI.∵I是内心,∴∠MAI=∠NAI,∵AI⊥MN,∴∠AIM=∠AIN=90°,∵AI=AI,∴△AMI≌△ANI(ASA),∴∠AMN=∠ANM,∴∠BMI=∠CNI,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°﹣α﹣β,∵∠ABC=180°﹣2α﹣2β,∴∠MBI=90°﹣α﹣β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴=,∴NI2=BM•CN,∵NI=MI,∴MI2=BM•CN.(3)过点N作NG∥AD交MA的延长线于G.∴∠ANG=∠AGN=30°,∴AN=AG,NG=AN,∵AI∥NG,∴=,∴=,∴+=.。
安徽省霍邱县2018届九年级第一次模拟考试数学试卷(扫描版)

2017-2018学年度九年级第一次模拟考试数学学科参考答案三、解答题 15、(本小(本大题共9小题,共90分.)题满分8分)()121149-⎪⎭⎫ ⎝⎛--+-+解:原式 =3+4+1-2 ……………………………………………………………………4分=6 ………………………………………………………………………8分16、(1) 81 …………………………………………………2分 (2) (n-1)2+1 或n 2-2n+2 ………………………………4分 (2n-1 ) …………………………………6分 (n 2-n+1)(2n-1) ……………………………………8分17、解:(1)如图:点A 的对应点A 1的坐标为(4,﹣1); ……………………………4分 (2)如图:△A 2B 2C 2即是△A 1B 1C 1关于y 轴对称得到的; ………………………………6分 (3)如图:△A 3B 3C 即是将△ABC 绕点C 逆时针旋转90°得到的。
…………………8分18、解:过点C 作CD ⊥AB,交BA 的延长线于点D.则AD 即为潜艇C 的下潜深度.…………………………2分 根据题意得 ∠ACD=300,∠BCD=680 .设AD=x.则BD =BA 十AD=1000+x. …………………4分 在Rt △ACD 中,CD=3x在Rt △BCD 中,BD=CD ·tan680 …………………6分 ∴1000+x=3x ·tan680 将068tan ≈2.53≈1.7代入解得308≈x∴潜艇C 离开海平面的下潜深度约为308米。
……………………………8分(或:∴1000+x=3x ·tan680∴168tan 3)1368(tan 10001368tan 1000000-+=-=x ∴296≈x∴潜艇C 离开海平面的下潜深度约为308米。
) 19、解答: (1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC , 在△EOC 和△DOC 中 ∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°, 即OD ⊥DC ,∴CD 是⊙O 的切线; ……………………………5分 (2)解:由(1)知CD 是圆O 的切线, ∴为直角三角形CDO ∆,∵ODCD CDO S ⨯=∆21, 又OA=BC=OD=4, ∴124621=⨯⨯=∆CDO S ∴平行四边形OABC 的面积S=2=∆CDO S 24.……………………………10分20、解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元, 依题意得:2302327032=+=+y x y x ,解得:7030==y x ,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.…………………4分 (2) 设该商场购进甲种商品m 件,则购进乙种商品(100-m )件, 由已知得:m ≥4(100-m), 解得:m ≥80. ……………………………6分设卖完A 、B 两种商品商场的利润为w ,则w=(40﹣30)m+(90﹣70)=﹣10m+2000, 又-10<0∴当m=80时,w 取最大值,最大利润为1200元. ……………………………9分 故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年安徽省六安市霍邱县中考数学一模试卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. ﹣8的立方根是()
A. ﹣2
B. ±2
C. 2
D. ﹣
2. 某几何体的三视图如图,则该几何体是()
学%科%网...学%科%网...
A. 三棱柱
B. 长方体
C. 圆柱
D. 圆锥
3. 已知点A(﹣2,y1).B(﹣1,y2)在反比例函数y=﹣上,则y1与y2的大小关系是()
A. y1>y2
B. y1<y2
C. y1≥y2
D. 无法比较
4. 下列计算正确的是()
A. a+2a2=3a3
B. (a3)2=a5
C. a3•a2=a6
D. a6÷a2=a4
5. 小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()
A. 255分
B. 84分
C. 84.5分
D. 86分
6. 甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()
A. 甲、乙两人进行1000米赛跑
B. 甲先慢后快,乙先快后慢
C. 比赛到2分钟时,甲、乙两人跑过的路程相等
D. 甲先到达终点
7. 九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()
A. B. C. D.
8. 如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM 的平分线于点F,则线段DF的长为()
A. 7
B. 8
C. 9
D. 10
9. 如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()
A. B. C. D.
10. 如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()
A. B. C. 3 D. 2
二、填空题(本大题共4小题,每小题5分,共20分,请把答案填入题中的横线上)
11. 2017年末,全国农村贫困人口3046万人,比上年末减少1289万人,其中3046万人用科学记数法表示为_____人.
12. 因式分解:x﹣xy2=_____.
13. 某商厦10月份的营业额为50万元,第四季度的营业额为182万元,若设后两个月平均营业额的增长率为x,则由题意可得方程:_____.
14. 如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_____.
二、解答题(本大题共9小题,共90分.解答应写出必要的文字说明,证明过程或演算步骤)
15. 计算:+|﹣4|+(﹣1)0﹣()﹣1.
16. 如下数表是由1开始的连续自然数组成的,观察规律并完成各题的解答.
(1)表示第9行的最后一个数是.
(2)用含n的代数式表示:第n行的第一个数是,第n行共有个数;第n行各数之和
是.
17. 在正方形网格中建立如图所示的平面直角坐标系xoy.△ABC的三个顶点都在格点上,点A的坐标是(4,4 ),请解答下列问题:
(1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A的对应点A1的坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2;
(3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C.
18. 如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)
19. 如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:
(1)求证:CD是⊙O的切线;
(2)若BC=4,CD=6,求平行四边形OABC的面积.
20. 春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大
利润.
21. 今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)求全班学生人数和m的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
22. 如图所示,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
23. (1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD 的周长为;
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求∠EOF的度数;
③若,则的值为.。