局部放电波形分析及图谱识别
局部放电波形分析及图谱识别

精心整理局部放电波形分析及图谱识别一、局部放电的波形分析检测阻抗Zm上的电压(即检测信号)是相当小的,必须经过放大才能使仪器上有明显的指示。
经放大器放大后的脉冲信号的峰值可由示波器测量,除此之外,示波器上还可以看出放电发生在工频的什么相位,测定脉冲波形和放电次数,观察整个局部放电的特征。
以确定放电的大致部位和性质。
示波器可用水平扫描和椭圆扫描。
水平扫描时全屏偏转相当于一个周期,并与试验电压同步,以确定脉冲的相位。
椭圆扫描也是每扫一周相当于试验电压一个周期。
图3-11为两种扫描时屏上波形的示意图。
图3-11示波器上的显示在局部放电试验时,除绝缘内部可能产生局部放电外,引线的联接,电接触以及日光灯,高压电极的电晕等,也可能会影响局部放电的波形。
为此,要区别绝缘内部的局部放电与其他干扰的波形,图3-12就是几种典型的波形。
(a)高压极产生的电晕(b)介质中的空穴放电(c)靠近高压电极的空穴放电(d)电接触噪音图3-12典型放电的示波图二、局部放电的图谱识别图3-13为不同类型的局部放电示波图,示波图是在接近起始电压时得到的。
其中图(a)、(b)、(c)、(d)为局部放电的基本图谱,(e)、(f)、(g)为干扰波的基本图谱。
图3-13接近起始电压时,不同类型局部放电的示波图(a)中,绝缘结构中仅有一个与电场方向垂直的气隙,放电脉冲叠加于正与负峰之间的位置,对称的两边脉冲幅值及频率基本相等。
但有时上下幅值的不对称度3:1仍属正常。
放电量与试验电压的关系是起始放电后,放电量增至某一水平时,随试验电压上升放电量保持不变。
熄灭电压基本相等或略低于起始电压。
(b)中,绝缘结构内含有各种不同尺寸的气隙,多属浇注绝缘结构。
放电脉冲叠加于正及负峰之前的位置,对称的两边脉冲幅值及频率基本相等,但有时上下幅值的不对称度3:1仍属正常。
放电刚开始时,放电脉冲尚能分辨,随后电压上升,某些放电脉冲向试验电压的零位方向移动,同时会出现幅值较大的脉冲,脉冲分辨率逐渐下降,直至不能分辨。
局部放电标准图谱

局部放电标准图谱附录一高频局部放电检测标准高频局部放电测试结果图谱特征放电幅值说明缺陷具有典型局部放电的检测图谱且放电幅值较大放电相位图谱具有明显180度特征,且幅值正负分明大于500mV,并参考放电频率。
缺陷应密切监视,观察其发展情况,必要时停电检修。
通常频率越低,缺陷越严重。
异常具有局部放电特征且放电幅值较小放电相位图谱180度分布特征不明显,幅值正负模糊小于500mV大于100mV,并参考放电频率。
异常情况缩短检测周期。
正常无典型放电图谱没有放电特征没有放电波形按正常周期进行附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形沿面放电相位图谱分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
局部放电实用标准规定图谱

附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC1)曾经发生事故的电缆线路应密切关注,并适当缩短监测周期。
2)与标准图谱(附录B 高频局部放电检测典型图谱)比较,确定局部放电及类型。
3)异常及缺陷应根据处理标准进行处理。
电力电缆局部放电–图谱的识别

电缆头在安装定位时,常常有安全间距的问题出现,电缆头 施工说明书上通常会说明电缆头的相间及对地的最小安全间 距,但在施工上常常因安全间距不足而发生短路事故。通常 同相间的电缆头更容易被忽略,在普遍的认知下,同相位的 电位应该相等,不可能会有电位差,但是因电缆头一端是高 压导体,另ㄧ端是接地端,所以因外部阻抗分布不均匀,电 缆跟电缆之间就会有电位差出现,当此电位差大于空气的崩 溃电压时,空气会被解离而开始放电
电力电缆局部放电 –图谱的识别
如下是几个于现场活线局部放电测量到的放电图谱,其放电特征 类似外部放电,放电角度主要分布在0º~90º 及180º~270º 之间, 而且负半周放电比正半周放电还明显,放电量都在数百pC 之间, 当时只知道电缆头有明显的放电讯号,但实际上不清楚电缆头内 部的放电位置及放电形态。
电力电缆局部放电 –图谱的识别
如果是沿着导体到接地间的外部放电时,那就有可能出现如图般的 沿面闪络放电。电缆头的外部放电量会随着环境的改变而改变,当 湿气相当大时可能放电量也大,同时有可能听到放电的声音及所表 面产生闪络的紫外光,但如果外在环境改变时,其放电现象有可能 也会随着消失。
电力电缆局部放电 –图谱的识别
抗故障,故障电流较小,而且XLPE 绝缘层完整如初,从中心导体到绝缘 层找不到任何放电痕迹,但从事故点到接地端会有明显的闪络痕迹,这 是电缆头内部空气放电造成事故的特性,有时此类型的事故因故障电流 较小,所以保护电驿可能不会动作,但电场仍会集中在ቤተ መጻሕፍቲ ባይዱ事故点,最后 仍会发生从中心导体到外半导或接地遮蔽层的短路事故,事后可以检视 出中心导体的闪络痕迹。
电力电缆局部放电 –图谱的识别
因安全间距不足造成的事故
电力电缆局部放电 –图谱的识别
局放波形图普识别

绝缘结构中仅含有一 个气隙,位于电极的表面 与介质内部气隙的放电 响应不同
(1)一簇不同尺寸的气 隙,位于电极的表面,但 属封闭型
(2)电极与绝缘介质的 表面放电,气隙不是封闭 的
表 A2 局部放电的基本图谱说明
失电压下再次出现放电
(3)随电压上升,放电量逐渐减小,放电脉
冲随之增加
较低电压下产生电晕放电,放电脉 起始放电后电压上升,放电量保持不变,
冲总叠加于电压的峰值位置。如位于 惟脉冲密度向两边扩散、放电频率增加,但
负峰值处,放电源处于高电位;如位 尚能分辨;电压再升高,放电脉冲频率增至
于正峰处,放电源处于低电位。这可 逐渐不可分辨
放电量与试验电压的关系
波形有现两种情况:
起始放电后有 3 种类型:
(1)正负两边脉冲等幅、等间隔及频
(1)放电量保持不变,与电压有关,熄灭
率相同
电压与起始电压完全相等
(2)两边脉冲成对出现,对与对间隔 (2)电压继续上升,在某一电压下放电突然
相同,有进会在基线往复移动
消失;电压继续上升后再下降,会在前一消
也能抑制辐射干扰。 d. 悬浮电位放电干扰。邻近试验回路的不接地金属物产生的感应悬浮电位放电,也是常见的一种干扰。
其特点是随试验电压升高而增大,但其波形一般较易识别。消除的对策一是搬离,二是接地。 e. 电晕放电和各连接处接触放电的干扰。电晕放电产生于试验回路处于高电位的导电部分,例如试品
的法兰、金属盖帽、试验变压器、耦合电容器端部及高压引线等尖端部分。试验回路中由于各连接 处接触不良也会产生接触放电干扰。这两种干扰的特性是随试验电压的升高而增大。消除这种干扰 是在高压端部采用防晕措施(如防晕环等),高压引线采用无晕的导电圆管,以及保证各连接部位的良 好接触等。 f. 试验变压器和耦合电容器内部放电干扰。这种放电容易和试品内部放电相混淆。因此,使用的试验 变压器和耦合电容器的局部放电水平应控制在一定的允许量以下。 A2.2. 识别干扰的基本依据局部放电试验的干扰是随机而杂乱无章的,因此难以建立全面的识别方法,但
第三章 局部放电试验

第三章局部放电试验随着电力系统电压的不断提高,电气设备在工作电压下的局部放电是使绝缘老化并发展到击穿的重要原因。
局部放电试验是检测绝缘内部局部放电的极好的方法。
因此,局部放电试验已被定为高压设备绝缘试验的重要项目之一。
第一节局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。
它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。
这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。
但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。
局部放电是一种复杂的物理过程,除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。
从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。
最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。
当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降△U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。
所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。
其中电荷q称为视在放电量。
二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用三电容模型来描述图3-1 电极组合的电气等值回路描述局部放电几个主要参量。
(1)视在放电电荷q。
它是指将该电荷瞬时注入试品两端时,引起试品两端电压的瞬时变化量与局部放电本身所引起的电压瞬时变化量相等的电荷量,视在电荷一般用pC(皮库)来表示。
(2)局部放电的试验电压。
它是指在规定的试验程序中施加的规定电压,在此电压下,试品不呈现超过规定量值的局部放电。
(3)局部放电能量w。
局部放电波形分析及图谱识别

局部放电波形分析及图谱识别文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)局部放电波形分析及图谱识别一、的波形分析检测阻抗Zm上的电压(即检测信号)是相当小的,必须经过放大才能使仪器上有明显的指示。
经放大器放大后的脉冲信号的峰值可由示波器测量,除此之外,示波器上还可以看出放电发生在工频的什么相位,测定脉冲波形和放电次数,观察整个局部放电的特征。
以确定放电的大致部位和性质。
示波器可用水平扫描和椭圆扫描。
水平扫描时全屏偏转相当于一个周期,并与试验电压同步,以确定脉冲的相位。
椭圆扫描也是每扫一周相当于试验电压一个周期。
图3-11为两种扫描时屏上波形的示意图。
图3-11示波器上的显示在局部放电试验时,除绝缘内部可能产生局部放电外,引线的联接,电接触以及日光灯,高压电极的电晕等,也可能会影响局部放电的波形。
为此,要区别绝缘内部的局部放电与其他干扰的波形,图3-12就是几种典型的波形。
(a)高压极产生的电晕(b)介质中的空穴放电(c)靠近高压电极的空穴放电(d)电接触噪音图3-12典型放电的示波图二、局部放电的图谱识别图3-13为不同类型的局部放电示波图,示波图是在接近起始电压时得到的。
其中图(a)、(b)、(c)、(d)为局部放电的基本图谱,(e)、(f)、(g)为干扰波的基本图谱。
图3-13接近起始电压时,不同类型局部放电的示波图(a)中,绝缘结构中仅有一个与电场方向垂直的气隙,放电脉冲叠加于正与负峰之间的位置,对称的两边脉冲幅值及频率基本相等。
但有时上下幅值的不对称度3:1仍属正常。
放电量与试验电压的关系是起始放电后,放电量增至某一水平时,随试验电压上升放电量保持不变。
熄灭电压基本相等或略低于起始电压。
(b)中,绝缘结构内含有各种不同尺寸的气隙,多属浇注绝缘结构。
放电脉冲叠加于正及负峰之前的位置,对称的两边脉冲幅值及频率基本相等,但有时上下幅值的不对称度3:1仍属正常。
放电刚开始时,放电脉冲尚能分辨,随后电压上升,某些放电脉冲向试验电压的零位方向移动,同时会出现幅值较大的脉冲,脉冲分辨率逐渐下降,直至不能分辨。
局部放电信号波形及频谱特性_图文(精)

环氧浇铸固体电容试验用环氧浇铸固体电容作为试品 , 电压加到工作电压的一半即有放电产生 , 放电脉冲个数 , 多 , 两极对称 , 且随着电压的变化能明显地看出放电脉冲个数及放电量的变化。
测量的波形。
及频谱分析见图 n 所示 o o E 其波形和特征与上述的气泡放电和场强集中放电相似一 0 3 3 卜、 . 90 63E 时间1 普 ooE s 3 E + o 一 4( 振幅谱 4 , 2 6 E 一0 1 一 . 3 13 一0 2 葫混E 一“ 佑 (b 环氧电容 1. 25 M Hz a 环氧固体电容 ( 图1 电容放电 ( 2 变压器局部放电测量在一台 2 20kV 时的放电量较小 , 、 2 6 万k V A 的变压器上测量了局部放电 , , 施加激发电压后 , 则出现有大幅值放电 , , 该变压器在额定测量电压以下有时几秒或数 1。
秒不出现放电 , 脉冲每周期只有一次随着加压时间增长慢慢趋于稳定。
分别将几秒放电波形记录并作分 , 析 , 发现较小的放电 ( 属于允许放电范围内的波形与场强集中及杂质放电的模拟试验结果。
相似而当大幅值放电出现时波形与悬浮金属放电模拟相同 , 并且将在变压器不同点测得的 , . 1 放电脉冲波形作频谱分析其频谱特性是一样的山此判断该放电是由一个故障点引起属于悬浮尖端放电 ; 放电点距各测点主要是以电容分布也即各测点距放电点的电户‘ 即离相 ._ 近后经介体证实分析是合理的放电是由于一细铜丝附着在低压绕绍 L 端玻璃丝邺带 , 。
, 。
上 , 离高派首端较近将围屏烧坏 . 5 。
1 1 亥变优器是高低结构 , 细铜丝另。
·端靠近围屏 , 产生对围屏的尖端放电 , , 并形成树枝放电向围屏纵向四面发展 , 分析讨论 ( ! 从经试验的儿种频潜图形比较来看谱图相似的有: 电晕放电( 见图 12 ; 受潮绝缘 _ 纸板放电 ( 见图 1 3 ; 纸板介质中金属放电〔见图 7 (a }; 环氧电容器内部认包放电这些放电产 , 增化的幅值都较小模拟试验时电晕放电幅值在起始后基本不随电压变化 ( 仅是放电脉冲个数多 ;另外三种放电都是放电个数和幅值都随电压升高而增多放电量在2 0 一 lo 0 P C 之间变 , , , , pC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
局部放电波形分析及图谱
识别
This model paper was revised by the Standardization Office on December 10, 2020
局部放电波形分析及图谱识别
一、的波形分析
检测阻抗Zm上的电压(即检测信号)是相当小的,必须经过放大才能使仪器上有明显的指示。
经放大器放大后的脉冲信号的峰值可由示波器测量,除此之外,示波器上还可以看出放电发生在工频的什么相位,测定脉冲波形和放电次数,观察整个局部放电的特征。
以确定放电的大致部位和性质。
示波器可用水平扫描和椭圆扫描。
水平扫描时全屏偏转相当于一个周期,并与试验电压同步,以确定脉冲的相位。
椭圆扫描也是每扫一周相当于试验电压一个周期。
图3-11为两种扫描时屏上波形的示意图。
图3-11 示波器上的显示
在局部放电试验时,除绝缘内部可能产生局部放电外,引线的联接,电接触以及日光灯,高压电极的电晕等,也可能会影响局部放电的波形。
为此,要区别绝缘内部的局部放电与其他干扰的波形,图3-12就是几种典型的波形。
(a)高压极产生的电晕(b)介质中的空穴放电
(c)靠近高压电极的空穴放电(d)电接触噪音
图3-12 典型放电的示波图
二、局部放电的图谱识别
图3-13为不同类型的局部放电示波图,示波图是在接近起始电压时得到的。
其中图(a)、(b)、(c)、(d)为局部放电的基本图谱,(e)、(f)、(g)为干扰波的基本图谱。
图3-13 接近起始电压时,不同类型局部放电的示波图
(a)中,绝缘结构中仅有一个与电场方向垂直的气隙,放电脉冲叠加于正与负峰之间的位置,对称的两边脉冲幅值及频率基本相等。
但有时上下幅值的不对称度3:1仍属正常。
放电量与试验电压的关系是起始放电后,放电量增至某一水平时,随试验电压上升放电量保持不变。
熄灭电压基本相等或略低于起始电压。
(b)中,绝缘结构内含有各种不同尺寸的气隙,多属浇注绝缘结构。
放电脉冲叠加于正及负峰之前的位置,对称的两边脉冲幅值及频率基本相等,但有时上下幅值的不对称度3:1仍属正常。
放电刚开始时,放电脉冲尚能分辨,随后电压上升,某些放电脉冲向试验电压的零位方向移动,同时会出现幅值较大的脉冲,脉冲分辨率逐渐下降,直至不能分辨。
起始放电后,放电量随电压上升而稳定增长,熄灭电压基本相等或低于起始电压。
(c)中,绝缘结构中仅含有一个气隙位于电极的表面与介质内部气隙的放电响应不同。
放电脉冲叠加于电压的正及负峰值之前,两边的幅值不尽对称,幅值大的频率低,幅值小
的频率高。
两幅值之比通常大于3:1,有时达10:1。
总的放电响应能分辨出。
放电一旦起始,放电量基本不变,与电压上升无关。
熄灭电压等于或略低于起始电压。
(d)中,(1 )一簇不同尺寸的气隙位于电极的表面,但属封闭型;(2 )电极与绝缘介质的表面放电气隙不是封闭的。
放电脉冲叠加于电压的止及负峰值之前两边幅值比通常为3:1,有时达10:1。
随电压上升,部份脉冲向零位方向移动.放电起始后,脉冲分辨率尚可;继续升压,分辨率下降直至不能分辨。
放电起始后放电皇随电压的上升逐渐增大,熄灭电压等于或略低于起始电压。
如电压持续时间在10 min以后,放电响应会有些变化。
(e)干扰源为针尖对平板或大地的液体介质。
较低电压下产生电晕放电,放电脉冲总叠加于电压的峰值位置。
如位于负峰值处.放电源处于高电位;如位于正峰处放电源处于低电位。
这可帮助判断电压的零位,一对脉冲对称的出现在电压正或负峰处、每一簇的放电脉冲时间间隔均各自相等。
但两簇的幅值及时间间隔不等,幅值较小的一簇幅值相等、较密。
一簇较大的脉冲起始电压较低,放电量随电压上升增加;一簇较小的脉冲起始电压较高,放电量与电压无关,保持不变;电压上升,脉冲频率密度增加,但尚能分辨;电压再升高,逐渐变得不可分辨。
(f)针尖对平板或大地的气体介质。
较低电压下产生电晕放电,放电脉冲总叠加于电压的峰值位置。
如位于负峰处,放电源处于高电位;如位于正峰处,放电源处于低电位。
这可帮助判断电压的零位。
起始放电后电压上升,放电量保持不变,惟脉冲密度向两边扩散、放电频率增加,但尚能分辨;电压再升高,放电脉冲频率增至逐渐不可分辨。
(g)悬浮电位放电。
在电场中两悬浮金属物体间,或金属物与大地间产生的放电。
波形有两种情况:1 正负两边脉冲等幅、等间隔及频率相同;2 两边脉冲成对出现,对与对间隔相同,有时会在基线往复移动。
起始放电后有3种类型:
(1)放电量保持不变,与电压无关,熄灭电压与起始电压完全相等。
(2)电压继续上升,在某一电压下,放电突然消失。
电压继续上升后再下降,会在前一消失电压下再次出现放电。
(3)随电压上升,放电量逐渐减小,放电脉冲随之增加。