Chaotic quantization and the mass spectrum of fermions
量化史学 计量史学

量化史学计量史学
量化史学,又称计量史学,是运用数量化方法、统计学和计算机技术来研究历史问题的学科。
它的出现源于20世纪50年代的美国,随着计算机技术和数据采集技术的发展,越来越多的历史学家开始运用量化方法探究历史问题。
量化史学的主要特点是强调数据的使用和分析,试图通过客观的数据来验证历史研究的假设和观点。
它可以运用各种统计方法和模型来分析历史事件、人物、社会结构等方面的变化和趋势,以及探究历史事件之间的关联性和影响力。
量化史学的应用领域非常广泛,包括经济史、政治史、文化史、社会史等多个方面。
例如,经济史研究可以通过计算GDP、收入分配、失业率等指标来分析经济的发展趋势;政治史研究可以通过选举数据、政策制定等方面的数据来研究政治体制和政策变化;文化史研究可以通过分析艺术品销售、文化活动参与等数据来探究文化的传播和影响力等。
然而,量化史学也面临着一些挑战和争议。
一方面,历史数据的收集和整理需要大量的时间和精力,有时甚至无法获取到完整和准确的数据;另一方面,量化方法往往忽略了历史事件中的复杂性和多样性,可能会掩盖历史事件的真实含义和复杂性。
因此,历史学家需要在使用量化方法时谨慎处理数据,同时结合定性方法进行综合分析,才能得到更加准确和全面的历史研究结果。
- 1 -。
献给历史学家的量化方法

献给历史学家的量化方法历史学是一门研究人类社会过去事件的学科,其主要任务是通过考察古代文献、实物和考古遗址等材料,重建历史事件的发生过程和社会背景。
然而,传统的历史研究方法主要依靠历史学家的主观判断和解释能力,存在着很大的主观性和误差。
随着计算机科学和数据分析的发展,量化方法被引入历史研究领域,为历史学家提供了一种新的研究工具。
本文将探讨量化方法在历史研究中的应用,并讨论其优点和限制。
量化方法在历史研究中的应用可以追溯到20世纪初。
1960年代以来,经济学家和社会科学家开始对历史事件进行数字化,以便进行更精确的分析。
在历史学家的引领下,量化方法也逐渐应用于历史研究中。
这种方法主要依靠统计学和计算机科学的技术,将历史事件转化为数值数据,然后通过分析和建模来揭示历史事件之间的模式和规律。
另一种量化方法的应用是模型构建。
通过数学和统计模型,历史学家可以对历史事件进行预测和解释。
例如,通过构建一个经济模型,可以模拟一些历史时期的经济活动,并预测该时期的经济增长率。
模型的结果可以与实际数据进行比较,从而验证模型的有效性。
此外,量化方法还可以用于人物和群体的分析。
通过分析一些重要历史人物的言行和行动,可以揭示他们的性格特点和行为模式。
通过对历史事件中的人群行为的量化分析,可以揭示社会群体的行为模式和规律。
例如,研究大规模集会的出现频率和规模,可以帮助历史学家了解社会运动的起伏和变化。
尽管量化方法在历史研究中有许多潜力,但也存在一些限制和争议。
首先,历史事件的数量和质量有限。
尤其是对于较为古老的历史事件,相关的文献和实物可能已经损毁或丢失,导致数据不完整或不准确。
其次,量化方法可能会忽略历史事件的复杂性和多样性。
历史事件往往涉及多个因素和层面,单一的数值数据很难全面地反映这种复杂性。
此外,量化方法可能会忽略历史事件的文化和社会背景。
历史事件常常受到特定文化和社会环境的影响,单纯的数字分析可能无法完全理解事件的本质。
物理专业 词汇C

capture reaction 俘获反应
carat 克拉
carbon 碳
carbon cycle 碳循环
carbon dioxide laser 二氧化碳激光器
carbon filament lamp 炭丝灯
carbon film resistor 碳薄膜电阻器
cat's eye diaphragm 猫眼光阑
cataclysmic variable 激变变星
catadioptric system 折反射光系统
catalog of celestial bodies 天体表
catalysis 催化
catalyst 催化剂
catalyzer 催化剂
centre of buyconcy 浮心
centre of fluorescence 茧光中心
centrifugal 离心的
centrifugal acceleration 离心加速度
centrifugal effect 离心效应
centrifugal field 离心力场
center of mass effect 质心效应
center of mass motion 质心运动
center of mass system 质心系
center of percussion 撞恍心
center of pressure 压力中心
center of rotation 转动中心
capillary viscosimeter 毛细管粘度计
capillary wave 表面张力波
capricornus 摩羯座
qed费曼规则-概述说明以及解释

qed费曼规则-概述说明以及解释1.引言1.1 概述:量子电动力学(Quantum Electrodynamics,简称QED)是一种描述电磁相互作用的量子场论,被认为是理论物理中最成功的理论之一。
QED由理查德·费曼、朱利安·施温格和汉斯·贝特创立,它成功地将经典电磁理论与量子力学相结合,提供了对电子、光子等基本粒子相互作用的极其准确的描述。
费曼规则(Feynman Rules)是QED中的一组重要工具,它是通过费曼图(Feynman diagrams)来描述基本粒子相互作用的规则。
费曼规则为我们提供了一种直观的方式来理解和计算基本粒子之间的相互作用过程,从而帮助我们更深入地理解自然界的奥秘。
在QED中,费曼规则的运用为我们提供了解决复杂的量子电动力学问题的有效途径。
本文将介绍QED的基本概念和费曼规则的重要性,探讨费曼规则在物理学研究中的应用,以及展望费曼规则在未来的发展方向。
通过本文的阐述,读者将能够更好地了解QED费曼规则在理论物理领域中的重要作用和意义。
1.2 文章结构文章结构部分介绍了本文的框架和组织方式。
本文共分为引言、正文和结论三个部分。
在引言部分,我们将会对QED费曼规则进行概述,并介绍文章结构和目的。
在正文部分,我们将详细介绍QED的简介,费曼规则的概述以及费曼规则的应用。
最后,在结论部分,我们将对整篇文章进行总结,强调费曼规则的重要性,并展望未来可能的研究方向。
通过以上结构的设计,读者可以清晰地了解本文的内容安排,从而更好地理解QED费曼规则及其应用。
1.3 目的:本文的目的是介绍和探讨量子电动力学(QED)中的费曼规则。
通过对费曼规则的概述和应用进行深入剖析,旨在帮助读者更好地理解和运用这一重要的理论工具。
费曼规则在量子场论中扮演着至关重要的角色,通过学习和应用费曼规则,我们可以更深入地理解粒子之间的相互作用和物理过程,为解决物理学中的一系列难题提供了有力的工具和方法。
密度泛函理论DFT和从头算、第一性原理的关系

密度泛函理论和从头算、第一性原理的关系密度泛函理论(DFT)和从头算(ab initio)是固体物理学和材料科学领域中重要的理论和计算方法,它们之间有着密切的关系。
从头算是一种计算材料物性的方法,其基本思想是使用量子力学基本原理计算材料中每个原子的电子结构和物理性质,然后通过这些微观信息推导出材料的宏观性质。
从头算所使用的基本理论包括量子力学、波函数理论和密度泛函理论等。
从头算的优点是可以在不依赖任何经验参数的情况下计算出材料的各种物理性质,具有高度的预测性和可靠性,尤其适用于那些难以通过实验方法研究的材料。
密度泛函理论是一种从头算方法,其核心思想是通过电子密度函数的概念描述多体量子体系中的基态能量和物理性质。
在DFT中,系统的全部信息都可以用电子密度函数表示,因此可以大大简化问题的处理。
DFT的发展历程可以追溯到1960年代,当时Hohenberg和Kohn 提出了两个基本定理,即:对于给定系统的电子密度函数,其基态能量是唯一确定的;对于任何给定的外势能,系统的基态电子密度函数是唯一确定的。
这两个定理奠定了DFT的基础,使得DFT成为研究多体量子体系的一种强有力的工具。
从头算和DFT的关系在于,从头算是DFT的一种具体实现方式。
DFT的核心是电子密度函数,而从头算可以通过计算每个原子的电子结构来得到整个系统的电子密度函数。
从头算通常会采用Kohn-Sham方程(Kohn-Sham equation)来描述体系的电子结构,该方程由Kohn 和Sham在1965年提出,是DFT中的一种实现方法。
Kohn-Sham方程将多体问题转化为一系列单电子问题,通过求解这些单电子问题来得到整个体系的电子密度函数。
虽然从头算和DFT都是计算材料性质的方法,但它们的计算量和精度存在一定的差异。
从头算的精度往往比DFT更高,但也需要更多的计算资源。
在实际应用中,人们通常会根据问题的具体情况选择合适的方法,比如对于那些化学反应、表面吸附等需要。
莱维飞行、混沌映射和自适应t分布 蜣螂算法

莱维飞行、混沌映射和自适应t分布是蜣螂算法中的三个重要概念。
莱维飞行是一种随机过程,描述了在随机游走过程中,每一步的长度和方向都遵循某种概率分布。
在蜣螂算法中,莱维飞行用于模拟蜣螂在搜寻食物时所走的路径,通过不断随机游走,可以寻找更好的食物来源。
混沌映射是一种非线性动力学系统中的映射关系,具有对初值敏感的特点。
在蜣螂算法中,混沌映射用于模拟蜣螂在移动过程中的行为,使得蜣螂能够根据当前环境进行灵活的移动和决策。
自适应t分布是一种概率分布函数,用于描述在复杂系统中数据的分布情况。
在蜣螂算法中,自适应t分布用于描述蜣螂在不同环境下的行为特征,帮助蜣螂更好地适应环境变化。
蜣螂算法是一种模拟自然界中蜣螂行为的优化算法,通过模拟蜣螂的移动、搜寻和合作等行为,可以解决许多优化问题。
莱维飞行、混沌映射和自适应t分布是蜣螂算法中的三个关键技术,它们共同作用,使得蜣螂算法具有很好的全局优化能力。
美国科学家开发出钙钛矿能测量尺度

美国科学家开发出钙钛矿能测量尺度
莱斯大学(RiceUniversity)和洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的一个联合研究小组已经能够在量子尺度上观察钙钛矿的电子性质,并获得了一些可能影响钙钛矿太阳能电池发展的发现。
发表在《自然通信》杂志上的一篇题为《2D钙钛矿量子阱中激子的标度律》(“Scaling law for excitons in 2D perovskite quantum wells“)的论文显示,这一研发小组开发出一种尺度来确定激子的结合能,从而确定了钙钛矿阱中的带隙结构。
这一尺度可以帮助科学家们开发出新型半导体材料。
莱斯大学化学与生物分子工程副教授Aditya Mohite表示,理解激子的性质并产生激子结合能的总体标度律,是设计太阳能电池、激光器或探测器等任何光电器件所需的第一个基本步骤。
这项研究的材料在西北大学的实验室中合成,并被送到莱斯大学的实验室,被置于超低温、高磁场和偏振光的环境中。
研究人员结合计算机模型,在二维或三维钙钛矿中形成了任意厚度的激子结合能。
不同科技学科单词

colon n.冒号dash n.连接号comma n.逗号underscore n.下划线discipline n.学科fundamental s n.基本原理corollary n.推论assume v.假设assessment n.评估assignment n.任务access n.通道入口v.接近accurate adj.准确的精确的analysis n.分析elementary adj.基础的algebra n.代数calculus n.微积分probability n.概率论prescribe v.规定指示开药方protocol n. (数据传输)协议laboratory n. 实验课conduct v.组织实施指挥enforce v.实施强迫fundamental adj.基本的comprehensive adj.综合的comprehension n.理解力complement n.补充second half 下半场revise v.复习修正reinforce v.增强review v.复习notify v.通知公告notification n. 通知subsequent adj.随后的curriculum n.课程circuit n.电路v. 环行router n.路由器server n.服务器projector n.投影仪analogous adj.类似的analogue adj.模拟的n.类似物analogy n.类比propagate v.传播普及繁衍accelerate v.加速framework n.结构框架dispensable adj.非必需的indispensable adj.必不可少的terminology n.术语deploy v.部署有效利用module n.单元模块modulate v.调制调节modulation n.调制model n/v. 模型做模型建模modem 等于modulator-demodulator n.调制解调器cellular adj.蜂窝的细胞的interference n.干涉干扰slide n.幻灯片v.滑动降低slice v./n.薄片切precise adj.精确的heterogeneous adj.多种多样由不同组成的homogeneous adj.同类的由相同组成的(uniform)无线通信:spectrum n.谱频谱声谱spectral adj.domain n.范围领域定义域域time domain时域frequency domain频域transmit v.传输传播发射transmitter n.发射机receiver n.接收机binary adj.二进制的bipolar adj.两极的双极性的repeater n.中继器转发器electromagnetic noise电磁干扰electromagnetic wave 电磁波interfere v.干扰阻碍interference n.interval n.间隔conjugate adj.共轭的distort v.扭曲失真distortion n.失真variance n.方差变化不一致variation n.变化mean n.平均值standard deviation 标准差covariance n.协方差integration n.积分integrate v.使结合一体化求积分derivation n.导数derivate v.派生衍生求导derive v.导出源于获得corrupted adj.损坏的腐败的modulation n.调制demodulation n.解调amplitude n.振幅广阔丰富detection n.检测检波imaginary part 虚部real part 实部imaginary adj.虚构的想象的虚部的proximity n.接近临近proximate adj.近似的最接近的obstruct v.阻塞阻碍obstructed adj. unobstructed adj.decay v.腐朽衰败衰落attenuation n.衰减attenuate v.antenna gain 天线增益unitless 无单位的partition n./v.分裂隔板隔开random variable 随机变量conductor n.导体指挥检票员fluctuate v.波动carrier n.载波inter-symbol interference 符号间干扰ISIreplica n.复制副本overlap n./v.重叠convolution n.卷积convolute v.回旋卷绕discrete system 离散系统decompose v.分解腐烂sequence n.序列impulse n.脉冲一般指冲激信号velocity n.速率threshold n.阈值临界值coherent adj.相干的连贯的synchronize v.同步同时发生synchronization n.phase n.相位phasor n.矢量相量(包括幅度和角度)amplify v.放大增强dashed line虚线millisecond n.毫秒hexagon n.六角形prone adj.有...的倾向的易于...的deteriorate v.恶化退化sectorial adj.扇形的sectorization n.分段化扇形化sector n.扇形align v.校准对其一致alignment n.电信网络:topology n.拓扑学memory n.内存buffer n./v.缓存缓冲allocate v.分配指定拨出slot n./v.空挡位置idle adj./v.空闲的闲置的懒惰的congestion n.拥挤充血占线音congest v. busy tone 忙音processor n.处理器nodal adj.节点的encapsulation n.封装encapsulate v.压缩封入内部decapsulate v.解封装intermittent adj.间歇性的retrieve v.检索,恢复,取回identifer n.标识符proprietary adj.专有的专利的specification n.说明规范cleartext password 明文密码encrypt v.加密encryption n.intact adj.完好无损的integrate v.整合adj.完全的hierarchical adj.分层次的分等级的iterate v.迭代iteration n.recursive adj.递归的congest v.充血拥塞congestion n.idle adj./v.空闲的懒惰的encapsulate v.封装constrain v.约束constraint n.约束条件consent n./v.同意准许collision n.冲突collide v.reassemble v.重新装配fragment v./n.碎片片段payload n.有效负荷净负荷enumerate v.枚举列举数学相关:diagram n.图表v.用图表法histogram n.直方图柱状图exponential adj.指数的exponent n.指数orthogonal adj.正交的proportional adj.成比例的statistical adj.统计的integer n.整数constant n.常数variable n.变量symmetrical adj.对称的biased adj.偏的有偏见的bias n.偏见偏差arithmetic n./adj.算数算数的computation n.计算formula n.公式megabyte n.1MB mega百万10^6multi前缀多…multiple adj.多重的复杂的n.倍数multiply v.乘繁殖domain定义域range 值域slope n.斜率parameter n.参数加and/plus/added to 减minus/taken from/subtracted from subtraction减法4 plus 6 equals to 10. 8 minus 3 is 5.4 added to 6 is 10. 3 taken(subtracted) from 8 leaves 5.乘time/multiplied by 除divided to/into3 times 5 is 15. 8 into 24 equals 3.3 multiplies by 5 is 15. 24 divided by 8 is 3.3/4 three fourth s24/25 twenty-four twenty-fifth s10^7 the 7th power of 10 10 to the 7th powerx分之y y over xtranspose v.移项变换顺序转置multiplication n.相乘power n.幂4 to the power of 3. 4的3次方exponential adj./n.指数的logarithm n.对数logarithmic adj.initialization n.初始化probability n.概率proportional adj.成比例的linear adj.线性的nolinear adj.非线性的equation n.方程式fraction n.分数比例率coefficient n.系数denote v.表示指代(记为)threshold n.临界值阈值门槛converge v.趋于收敛于diameter n.直径weighted adj.加权的directed adj.有向的time-varying adj.时变的bifurcate v./adj. 分叉分支chaotic adj.无序的混沌的mutual adj.相互的共有的internal adj.内部的国内的external adj.外部的国外的fractal n.不规则形分形adjacent adj.相邻的shift v.移动替换transition n.转变过渡discrete adj.离散的分离的column n.列圆柱row n.行cylinder n.圆柱体identical adj.同一的identity n.同一性身份identify v.识别等同于geometric n.几何的denominator n.分母numerator n.分子2D continuous function 二维连续函数origin n.原点开端起源coordinate system 坐标系diagonal n./adj.对角线斜线density n.密度dense adj.稠密的密度大的normalized adj.标准化归一化dimensionless n.无穷小量dimension n.方面维3Dinverse adj./n.相反的倒转的倒数reciprocal n./adj.倒数的相互的交互的product n.乘积normal distribution 正态分布square n./adj.平方正方形monotonic adj.单调的argument n.自变量binomial n./adj. 二项式binomial distribution 二项分布inequality n.不等式不平等intersection n.交集交叉点intersect v.相交交叉横穿union n.并集编程相关:syntax n.语法句法tuple n. 数组set n.集合array n.数组package n.软件包extract n./v.提取摘录matrix n.矩阵loop n.循环iterate v.迭代execute v.执行function n.函数parameter n.参数segment n.段部分v.分割划分algorithm n.算法conjecture n.猜想theory n.理论theorem n.定理colon n.冒号interface n.界面v.连接交流图像处理:format n.格式v.格式化formation n.形成组成extract v.提取convert v.转变转换merge v.合并split v.分离划分slice v.切割RGB和BGR蓝绿红ROI: region of interestpixel n.像素photosite n.像素attribute n.属性variable n.变量element n.元素要素degrade v.退化降低degradation n.compress v.压缩compression n.压缩deburr v.清理毛刺blur n./v.模糊motion n./v.运动移动Spatial quantization 空间的量化intensity n.强度intense adj.强烈的紧张的激烈的inpainting n.图像修复texture n.质地实质纹理segment v.分割划分segmentation n.分割partition v.分割partitioning n.extract v.提取storage n.储存transmit v.传输发送transfer v.转移translate v.翻译shift v.转移换convert v.转变换算transition n.过渡转变transit v.运送经过lossy adj.有损耗的lossy compression 有损压缩acquire v.获得acquisition n.获得采集capture v.采集捕捉引起sensor n.传感器individual n.个人adj.单独的charge v./n.收费充电电荷accumulate v.累积horizontal adj./n.水平的水平面horizon n.地平线vertical adj./n.垂直的垂直线vertex n.顶点voltage n.电压volume n.体积amplify v.放大增强register v./n.注册登记显示shift register n.移位寄存器interpolate v.篡改插入mosaic n./v.马赛克demosaic v.去马赛克illuminate v.照亮阐明illumination n.光源灯饰启示illustrate v.举例说明digital adj.数字的digitize v.数字化analog n./adj.模拟analog image 模拟图像index n.索引(复数indexes/indices)denote v. 表示指示标志imply v.表示暗示donate v.捐赠sample n./v. 采样取样quantization n.量化quantize v.scan v./n.扫描discrete adj.分离的离散的continuous adj.连续的coordinate v.协作搭配n.坐标coordinate system 坐标系resolution n.解决决心分辨率interpolation n.插入插值填写interpolate v.resize v.调整大小real-time 实时的ultrasound n.超声波capacitor n.电容器circuit n.电路回路环线circuitry n.电路电路图prism n.棱镜棱柱contour n./v.轮廓边界线abrupt adj.突然的不连贯的tuple n.元组hue n.色调saturation n.饱和度offset n.偏移量gain n.增益clip v.剪掉裁剪template n.样板模板intermediate adj./n.中间的中间事物intermediate image 中间过渡图像eliminate v.消除淘汰flip v.反转打开overlap v.重叠superimpose v.叠加magnitude n.大小数值periodic adj.周期的series n.级数系列mitigate v.减轻缓和ramp n.斜坡坡道渐变notate v.以符号标记notation n.记法符号conjugate v./adj./n.共轭complex conjugate 复共轭harmonics n.谐波impulse train冲击序列translation v.平移翻译replica n.复制副本dilated adj.扩大膨胀dilate v. dilation n.sinusoid 正弦曲线aliasing n.混叠wrap v./n.包裹环绕围巾卷饼wraparound error 环绕错误suppress v.抑制阻止mitigate v.使减轻使缓和transition n.过渡转变transit v.运输经过agenda n.议程表待议日程arithmetic n.算数运算arithmetical adj. algorithm n.算法geometry n.几何geometric adj. medium adj.中间的五分熟的平均的median adj./n.中间值中位数prior adj.先前的正式的prior probability先验概率matrix n.矩阵metric n.度量标准adj.十进制的trim v.修剪调整emit v.发出发射beam n.光线波束project v.投射预测projection n.投影diffuse v./adj.扩散弥漫漫反射传播synchronous adj.同步的synchrony n.intercept n./v.截距拦截截断slope n./v.斜率倾斜斜坡vector n.矢量向量unit vector单位向量prime n.上标撇slash n.斜杠arbitrary adj.任意的recap n.扼要重述preliminary adj./n.初步的预赛transpose n./v.转置调换erode v.腐蚀削弱erosion n.腐蚀dilate v.膨胀扩大dilation n.膨胀shrink v.缩水缩小减少fracture v.断裂破碎duality n.二元性对偶性optimize v.优化optimal adj.最佳的合适的speckled adj.有斑点的speckle n./v.斑点色斑做标记多维数据:regress v./n..倒退回归regression n.回归set v.放n.集合anomaly n.异常asymmetric adj.不对称的sparse adj.稀疏的sparsity n.稀疏性symmetry n.对称相似induce v.引起诱使inductive adj.归纳的诱导的induction n.归纳感应deduct v.演绎扣除deduction n.推论split v./n.分割划分sort v./n.分类排序permute v.改变顺序permutation n.categorize v.分类category n. categorical adj.分类的绝对的numeric adj.数值的quantitative adj.定量的数量的qualitative adj.定性的质量的autocorrelation 自相关temporal autocorrelation 时间自相关temporal adj.时间的暂时的redundant adj.多余的冗余converge v.收敛聚集convergence n.复杂网络:homogeneous adj.单一的均匀的同质的isomorphic adj.同构的同形的isomorphism n.bipartite adj.双向的二分的invertible adj.可逆的traverse v.穿过横越yield v./n.产生出产产量skeleton n.骨骼框架梗概backbone n.脊柱骨干initial adj.最初的首字母outlier n.离群值异常值局外人consensus n.共识一致看法counterclockwise 逆时针clockwise顺时针equilibrate v.使平衡equilibrium n.均衡平衡rational adj.理智的hierarchies n.层级分层分类sparse adj.稀疏的稀少的benchmark n.比较基准synchrony n.同步synchronization n.同时性同步性consensus n.共识检测估计:hypothesis n.假设猜想scenario n.场景terminology n.术语interpolate v.插入篡改defect n.缺点v.背叛crude adj.粗略的粗糙的abrupt adj.突然的陡峭的唐突的asymptotic adj.渐进的渐近线的marginal adj.边缘的微不足道的marginal probability边缘概率prior probability先验概率conditional probability条件概率posterior probability后验概率hypothesis testing假设检验ground truth真实值decision region决策域disjoint adj.不相交的overlap adj.重叠的curvature n.弧线曲率concave adj.凹的power spectral density能量谱密度inner product 内积点积norm 模transpose v.调换n.转置矩阵determinant n./adj.决定因素行列式subscript n./adj.下标注脚Wide Sense Stationary 广义平稳time invariant时不变discretize v.离散discrete adj.离散的distort v.失真扭曲superimpose v.叠加compose v.组成构成移动APP:tablet n.药片平板电脑agenda n.待议事项议事日程kernel n.核内核compiler n.编译器compile v.汇编编译搜集manifest adj./n.表明显示清单configurate v.配置使形成obfuscate v.使模糊混淆refine v.改进精炼virtual adj.虚拟的实际上的device driver 设备驱动程序accelerate v.加速促进template n.模板样板compact adj./n.紧凑的简洁的deploy v.部署调动配置refactor v./n.重构configure v.配置config=configuration n.配置install v.安装icon n.图标palette n.调色板选项板compatible adj.兼容的可共处的execute v.执行实施prototype v./n.原型雏形widget n.小工具窗口小部件toggle n./v.切换转换(键)embed v.嵌入内置portrait adj.纵向的n.肖像描绘纵向打印格式vertical adj.垂直的纵向的landscape adj.横向打印格式n.风景横向打印格式v.景观美化horizontal adj.水平的chaos n.混乱无序状态chaotic adj.混乱的enclose v.封装围住封上nest v./n.鸟巢嵌套一套物件align v.对齐使一致margin v./n.边缘利润余地custom n.顾客惯例adj.定做的自定义的current adj.当前的流行的n.水流concurrency n.并发性并行性thread n.线程v.穿起来asynchronous adj.异步的instantiate v.举例说明invoke v.调用提及引起sequential adj.按顺序的相继发生的dispatch n./v.派遣发送迅速处理parse v.分析解析immutable adj.不可改变的mutable adj.可变的易变的explicit adj.明确的详述的implicit adj.含蓄的facilitate v.促进使便利synchronize v.同步grant v./n.承认给予授予engage v.从事雇佣pane n.玻璃窗格repository n.数据库储藏室资源库retrieve n.找回检索refactor v./n.重构resume v.恢复重新开始customize v.定制排队论:stochastic adj.随机的stochastic process 随机过程swap v.交换替换constraint n.约束条件constrain v.约束限制强迫moderate adj.适中的温和的中等的regime n.制度状态机制ethical adj.道德的plagiarize v.抄袭剽窃plagiarism n.mutually exclusive events 互斥事件mutual adj.相互的exclusive adj.昂贵的独有的排斥的rigorous adj.严格的严密的novel n.小说novelty adj./n.新颖的新奇的事物intersection n.交集相交交点在B的条件下A的概率the probability of A given Bposterior probability后验概率posterior adj.其次的较后的prior probability先验概率prior adj.先前的优先的axiom n.公理定理binomial n./adj.二项分布geometric n./adj.几何分布uniform distribution均匀分布recursion n.递归循环recur v.再发生反复出现arbitrary adj.任意的estimator n.估计量估计函数revise v./n.修正复习denominator n.分母numerator n.分子numerous adj.许多的fraction n.分数decimal n.小数integer n.整数expected value 期望standard deviation 标准差covariance n.协方差preliminary n./adj.初步的预备的准备工作identity n.身份特征同一性identical adj.同一的完全相同的stationary adj.不动的平稳的strictly stationary严格平稳ergodicity n. 遍历性各态历经性ergodic adj.multivariate adj.多元的多变量的superpose v.叠加叠放superposition n.叠加lag v./n.掉队延迟滞后consecutive adj.连续的derive v.起源于获得导出derivation n.求导导数validate v.正式确认生效物联网:mindset n.思维模式trend n.趋势风尚curriculum n.课程combat v.战斗争论block diagram 狂徒converge v.集中汇集convergence n.汇集融合immersive adj.沉浸式immerse v.沉浸于浸没resistor n.电阻resistance n.电阻(值)accelerate v.加速促进acceleration n.加速度accelerometer n.加速度计acoustic adj./n.声音的声学appliance n.家用电器actuator n.执行器驱动器actuate v.驱动促使velocity n.速度displacement n.位移gravity n.重力coordinate v./n.协调坐标magnetometer n.磁力计magnetic adj.磁性的axis n.轴对称轴calibrate v.校准calibration n.校准刻度vibrate v.震动vibration n.震动oscillate v.振荡oscillation n.振荡gearbox n.变速箱utilize v.利用使用日常:obsess v.痴迷blackout v.断电propagate v.传播繁殖grid n.格子lattice n.格子pervade v.遍及弥漫prominent adj.突出的杰出的tremendous adj.极大的极棒的intrinsic adj.内在的disordered adj.杂乱的错乱的convention n.约定协定condense v.压缩浓缩eliminate v.消除淘汰consensus n.一致同意initial adj.最初的字首的initialization n.初始化interrelated adj.相互关联的interpersonal adj.人与人之间的split v.分离skip v.跳过conform v.遵守符合顺应cluster n.群formation n.形成formative adj.形成的有重大影响的format v.格式化n.格式subtle adj.细微的敏感的verify v.核实查证vary v.变化variation n.变化variant adj.变化的vertical adj.垂直的duplicate n./v./adj.完全一样的复制implement v.实施penalty n.惩罚penalize v.惩罚capital n./adj.大写lowercase n./adj.小写specify v.具体指出specific adj.明确的特定的respective adj.各自的分别的estimate v.估计assign v.赋值分配assignment n.任务作业execute v.执行valid adj.有效的合法的vivid adj.生动的鲜艳的dynamic adj.动态的有活力的compose v. 组成撰写排版decompose v.分解腐烂spectrum n.范围频谱光谱perceptual adj.感知的有知觉的perception n.认知知觉洞察力absorb v.吸收掌握scope n.范围视野dissipate v.驱散挥霍mandatory adj.强制的tedious adj.单调乏味的allude v.略微提到暗指discern v辨别了解recognize v.识别承认decompose v.分解腐烂衰变deficient adj. deficiency n.不足缺陷interval n.间隔desirable adj.令人满意的满足需要的complement n./v.补充pros and cons(拉丁语) 优缺点nuts and bolts(螺母和螺栓) 基本组成部分aka (also known as)又叫做ultimate adj.最终的最重要的configuration n.布局配置configure v.安装形成hybrid n./adj.混合杂种immune adj.免疫的不受影响的layman n.外行门外汉exceed v.超越超过incoming adj.进来的进入的income n.收入alter v.改变修改alternate v./adj.交替轮流alternative adj./n.可选择的二选一alternatively adv.要不二择一on-demand adj.按需的emphasize v.强调negligible adj.可以忽略的precede v. 在之前的领先experiment v./n.实验尝试arbitrary adj.任意的suffice v.足够有能力sufficient adj.elastic adj.弹性的灵活的essentially adv.本质上实质上essential adj.必须的基本的excess adj./n.超额的过多的violate v.违反侵犯compose v.撰写组成排版compromise n./v.折中妥协intuitive adj.直觉的intuition n.直觉lengthy adj.冗长的过于详尽的grasp v./n.握紧领会characterize v.描述刻画convention n.习俗公约conventional adj.依照惯例的criterion n.标准规范criteria 复数interpret v.解释口译interpretation n.解释notation n.符号标记法mutual adj.相互的sketch v./n.绘制草图outage n.断电中断in all walks of life 在各行各业frontier n./adj.边境前沿embark v.开始着手上船possess v.具备拥有insight n.了解洞察力encounter v.遭遇碰到inherent adj.固有的内在的与生俱来的inherently adv. commonality n.共性sophisticated adj.复杂精妙的水平高的stepping stone 跳板垫脚石bracket n.括号圆括号square bracket 方括号superscript n.上角标hypothesis n.猜想假设submarine v./n./adj.海底的潜水艇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chaotic Quantization and the Mass Spectrum of FermionsMuhammad Maher* and Christian Beck♣School of Mathematical SciencesQueen Mary, University of LondonMile End Road, London E1 4NS, UKAbstractIn order to understand the parameters of the standard model of electroweak and strong interactions, one needs to embed the standard model into some larger theory that accounts for the observed values. This means some additional sector is needed that fixes and stabilizes the values of the fundamental constants of nature. We describe how such a sector can be constructed using the so-called chaotic quantization method applied to a system of coupled map lattices. We restrict ourselves in this short note on verifying how our model correctly yields the numerical values of Yukawa and gravitational coupling constants of a collection of heavy and light fermions using a simple principle, the local minimization of vacuum energy.IntroductionString and M-theory predict an enormous amount of possible vacua after compactification. In each of these vacua the cosmological constant as well as the fundamental constants of nature have different values. This is the so-called ‘landscape’ picture. To select the right vacuum, one always can implement the anthropic point of view. But is an anthropic argument really the only solution?A natural idea to help out of this dilemma would be that their should be some general principle provided by some form of an additional sector as yet not included in neither the ordinary standard model, nor in ordinary string theories. This general principle should select, fix and stabilize the standard model parameters in the way we do observe them. Such a principle may be based on chaotic dynamics.The important role of chaos and fractals in quantum field theories and string theories has been emphasized in various recent papers and books, see for example [1-15]. Many approaches have been suggested, most notably the works of M. S. El Naschie using the so-called E-∞ theory of fractal space-time [12]. Our approach here is based on coupled map lattices [21] simulating vacuum fluctuations, which seem to give us a hint at how this additional sector could look like [8, 9]. In practice standard model parameters can be thought of as being fixed by so-called moduli fields [16]. If one knows the correct moduli potentials describing the world around us, then one knows the correct standard model parameters. So what could be a theory to construct these moduli * Electronic address: m.maher@♣ Electronic address: c.beck@potentials? In principle the potentials should follow from the embedding theory but little is known in practice due to the enormous complexity inherent in the current mainstream theories. But as with any unknown theory one can be guided by first trying to find an empirical model that does the correct thing, i.e. reproduces the observed value of the fine structure constant and other fundamental constants, and then later try to embed it into a larger context. The interesting thing is that such an empirical model is possible [8, 9, 17]. There is a class of highly nonlinear chaotic dynamical systems that seem to reproduce the ‘correct’ standard model parameters by a simple selection mechanism — the minimization of vacuum energy.Physically, the above-mentioned coupled chaotic dynamics can be regarded as describing rapidly fluctuating scalar fields associated with vacuum fluctuations. These are vacuum fluctuations different from those of QED or QCD. The most natural embedding is to associate the above chaotic vacuum fluctuations with the currently observed dark energy in the universe [17]. The chaotic fields, living in the dark energy sector, generate effective potentials for moduli fields — just the same moduli fields that are responsible for the fundamental constants of the standard model of electroweak and strong interactions. The moduli fields then move to the minima of the potentials generated by the chaotic fields, and fix the fundamental constants of nature [16]. This is why we are interested in local minima of the vacuum energy in this paper. The chaotic sector appears to provide a possible answer to the question why we do observe certain numerical values of standard model parameters in nature. It can be used to avoid anthropic considerations for fundamental constants. Moreover, it generates a small cosmological constant in a rather natural way [17].Chaotic QuantizationIn the chaotic quantization approach one replaces the Gaussian white noise of the Parisi-Wu approach of stochastic quantization [18] by a deterministic chaotic process on a very small scale. A simple model is to generate the noise by Tchebyscheff maps . In nonlinear dynamics, are standard examples ofchaotic maps, just as the harmonic oscillator is a standard example in linear dynamics. One has for the lowest order N=2. Most important for our purposes is the property that the have least higher-order correlationsamong all smooth systems conjugated to a Bernoulli shift, and are in that sense closest to Gaussian white noise, as close as possible for a smooth deterministic system [19, 20]. Any other map has more higher-order correlations . What does this mean for chaotic quantization? Actually the are automatically selected asmost ideal candidates if we argue that Gaussian white noise is chosen to be generated in nature by something deterministic chaotic on the smallest quantization scales, which aims at making the small-scale deviations from ordinary quantum mechanics as small as possible.N T N T 1222−=ϕϕ)(T N T N TCoupled Chaotic Map LatticesNow that we assumed that the noise fields used for quantization are dynamical in origin, it’d be plausible to allow for some coupling between neighboured noise fields. Physically it is most reasonable that the coupling has a Laplacian form, since this is the most relevant coupling form in quantum field and string theories. This leads to coupled map lattices of the nearest-neighbour coupling form. We end up in the 1-dimensional case with coupled Tchebyscheff maps of order N of the formi n 1+ϕ= (1-a) +s )(T i n N ϕ)),(T )(T (a i n b N i n b N 112−++ϕϕ (1) where i is a 1-dimensional lattice coordinate, a ∈ [0, 1] is a coupling constant, s = 1, and b takes on values 0 or 1 (). Our choices throughout all the calculations leading to the presented results below were s=1 (diffusive coupling) and b=0 (backward coupling). The above chaotic dynamics is deterministic chaotic spatially extended, and strongly nonlinear. The fieldvariable is physically interpreted in terms of rapidly fluctuating virtualmomenta in units of some arbitrary maximum momentum scale [9].±)(T )(T ,)(T ϕϕϕϕ==10i n ϕSome Numerical Calculations1-Dimensional CaseWe used equation (1) to calculate the self-energy V ≡a )(V ϕ of the aboveintroduced spatially extended chaotic coupled map lattice in one space-time dimension. We implemented random initial conditions andalso periodic boundary conditions that can be expressed as where I labelsthe last site on the linear lattice. In the N=2 case, ],[u ,u cos i100∈=πϕI n n ϕϕ=1)(V ϕ can be written as 322ϕϕϕ−=)(V , where we imposed that ∫=±ϕϕϕd )(T )(V N m , which is an essential choice to facilitate the calculation of self-energy [8, 9]. Assuming ergodicity, expectations a )(V ϕ for a given coupling parameter (a) are numerically calculableas time averages ∑∑==→∞→∞=M n I i i n I ,M a )(V I M )(V lim 111ϕϕ. (2) For a → 0 one numerically observes the scaling behaviour ))a (log(F a )(V )(V )N (a =−0ϕϕ where )N (F is a periodic function ofwith period and )a log(2N log 00=)(V ϕ for N=2 [9]. Such a log periodicscaling is manifested in our results shown in Fig (1) below and was analytically proved in [25]. From the periodicity it follows that if there is some local minimum of the potential at then there is also a minimum at , where L is an integer. In other words, minima are only determined modulo 4 for N=2. In one period shown in fig (2), and if we magnify enough (calculate for sufficiently dense values of the coupling a) and use sufficiently high values of i b L i N /b 2the number of lattice sites and the number of iterations, one remarkably observes 9 different minima that coincide with Yukawa and gravitational couplings of 9 standard model fermions modulo 4. One observes that the minima with i = 2, 6, 10 turn out to coincide with Yukawa couplings modulo 4 of the heavy fermions τ, b, c according to the formula()f L w f f H i .m m .)m m (b 424122+=α where f = τ, b, c, respectively, is theHiggs mass taken to be 154 GeV [9], is the mass of the W-boson, is the running weak coupling constant [22], and is a suitable integer for a particular fermion f . The results are almost independent of the Higgs mass [9]. For the light fermions one observes that the self-energy has local minima for couplings that coincide with gravitational couplings modulo 4. We numerically observe for i = 4, 7, 8, 9 that H m w m )E (2αf L ()fL Pl f i .m b 4412=.2 where f = e, d, u, s, respectively. Here denotes the Planck mass. Solving for m Pl m f , one can thus get fermion mass predictions modulo 2. The relevant power of 2 (the value of in theabove equations of ) can then be obtained from other minima and additional symmetry considerations [9]. We also observe the minima with i = 3, 11 which may yield neutrino mass predictions. As for i = 5, it is assumed to account for Yukawa interaction of the top quark while i = 1 is expected to host a doublet to account for the heaviest neutrino and the muon [8, 9]. A list of the predicted fermion masses corresponding to the confirmed local minima can be found in sections 8.6 and 8.7 in [9] and the excellent agreement (3-4 digits) with the experimentally observed masses is remarkable.f L i b Actually it was argued in [8, 9] that there are 11 minima. We have now repeated these calculations with much higher computer power which allowed us to do highly precise calculations (see typical samples in figs 3, 4) around the values of the fermion couplings assumed in [8, 9]. Our calculations returned a firm confirmation of only 9 of them. Literally all the minima suggested in [8, 9] were confirmed except for b 1 and b 5. At b 1 and b 5 we got something more like an inflexion point (an unstable stationary point) rather than a typical stable minimum. Further calculations have been performed for different sets of initial-conditions as well as at minima valleys of lower couplings (lower ) in an attempt to eliminatethe ambiguities for light fermions. So far the existence of the minima b f L 1 and b 5 is unconfirmed. Finally we should say that the probability of such a very precise matching between our calculations and the experimental data for only two fermion masses (e.g. e and τ) to be a result of mere random coincidence is of the order of one in a million.D-Dimensional CaseThe coupled map lattices (CMLs) described in (1) can be studied on lattices of arbitrary dimension. We generalized the investigations and the numerical calculations of the 1-dimensional case to higher space-time dimensions (>1). If we take the D=4 case as an example, the CMLs can be written as: D ≥4)()(a )(T )a (k ,j ,i ,h nk ,j ,i ,h n k ,j ,i ,h n k ,j ,i ,h n k ,j ,i ,hn k ,j ,i ,h n k ,j ,i ,h n k ,j ,i ,h n k ,j ,i ,h n k ,j ,i ,h n 381111111111−++−+−−++++++++++−=ϕϕϕϕϕϕϕϕϕϕ Like in the D=1 case, we implemented periodic boundary conditions given by: where H, I, J and K are the last space-time sites along each relevant space-time direction on the cubic lattice. In this case, K ,j ,i ,h n,j ,i ,h n K ,J ,i ,h n k ,,i ,h n k ,j ,I ,h n ,k ,j ,,h n k ,j ,i ,H n k ,j ,i ,n and ,,ϕϕϕϕϕϕϕϕ====11110ϕϕϕ),(V ),(T N N have exactly the same form as in the 1D case and the self energy a )(V ϕ is given by∑∑∑∑∑=====∞→∞→∞→∞→∞→=M n J j K k I i I i k ,j ,i ,h n K ,J ,I ,H ,M a )()(V MHIJK )(V lim 1111141ϕϕWe observed a log-periodic behaviour similar to, however apparently smoother than, the D = 1 case. This is demonstrated in fig (5). We magnified one period of the log-periodic curve in the small coupling scaling region, which is identical to scaling region considered in the D=1 case. We adopted an optimal large-enough combination of the number of lattice sites and the number of iterations to ensure reasonable statistics. The gross calculations of all the (>1) three cases took about 8000 hours of parallel computing time on the e-science computing cluster at QMUL which is part of GridPP; the UK’s grid computing facility. To our surprise, rather than obtaining some structure, we got a single smooth structure-free broad minimum for all >1 cases, see fig(6) for the D = 4 case as an example. We couldn’t relate the corresponding coupling of about 0.000358(4) to any of the known particle masses using similar arguments to that used in the D = 1 case. For the time being, the only hypothesis we have for the observed smoothness in the D >1 cases as compared to the wriggling fractal shape in the D =1 case (fig (2)) is that this might be an effect of what we can call an extended version of Nash embedding [23, 24]. If correct, this is rather a topological-geometrical argument to be complemented in future with a concrete physical explanation.D ≥4D ≥4ConclusionWe have studied a chaotic scalar field that lives in one space-time dimension as a model of vacuum fluctuations. Expectations of the self energy can be used to generate potentials that can fix the fundamental constants of nature. The generalization of these fields to higher space-time dimensions didn’t yield any interesting structure in the shape of self energy. The nonlinear dynamics given by eq. (1) appears to distinguish certain numerical values of coupling constants that do coincide with known standard model coupling constants with very high precision [8, 9]. A random coincidence can really be excluded. In this way the chaotic fields can help to select the ‘correct’ vacuum out of an enormous number of possibilities to shape the world around us. Our numerics shows that anthropic arguments for standard model parameters are most likely to be wrong. This further emphasizes the physical importance of the chaoticquantization method and more importantly the deep significance of the underlying non-linear dynamics given by eq.(1).Figures:<V (φ)>a aFig (1) Fig (2)Fig (3) Fig (4)Fig (5) Fig (6) l l o g 4 l l <V 2(φ)>a l l log 4a <V (φ)>a a 0.00020.00030.00040.00050.0006-0.010-0.009-0.008-0.007-0.006-0.005-0.004-0.003 D = 4, N = 2 Δa = 10-6lattice size = 204, number of iterations = 1600000<V (φ)>a a C = 0.000358(4)<V >a 2.22.42.62.83.03.23.43.6l l o g 4 l l <V 2(φ)>a l l log 4aFigure CaptionsFig. 1 a )(V log ϕ24versus for the one-dimensional chaotic CML described by eq. (1) with the parameters N=2, s=1 and b=0 in the scaling region.a log 4Fig. 2 One period of the self energy given by eq. (2) of the one- dimensional chaotic CML described by eq. (1) in the scaling region.Fig. 3 Magnification of the local minimum labeled b 4 in Fig. 2.Fig. 4 Magnification of the local minimum labeled b 9 in Fig. 2. Fig. 5 a )(V log ϕ24versus for the four dimensional chaotic CML a log 4described by eq. (3) in the scaling region.Fig. 6 One period of the self energy given by eq. (4) for the four- dimensional chaotic CML described by eq. (3) in the scaling region.References[1] El Naschie MS, Rössler O, Prigogine I. Quantum mechanics, diffusion and chaotic fractals. Oxford: Pergamon–Elsevier; 1995.[2] Ord G, editor. Transfinite physics. Chaos, Solitons & Fractals 2005; 25(4).[3] Weibel P, Ord G, Rössler O, editors. Spacetime physics and fractality. Vienna, New York: Springer; 2005.[4] G.’t Hooft, Class. Quant. Grav. 16, 3283 (1999) (qr-qc/9903084)[5] T. Damour, M. Henneaux, B. Julia, H. Nicolai, Phys. Lett 509B, 323 (2001) (hep-th/0103094).[6] I. Kogan, D. Polyakov, Pisma Zh. Eksp. Teor. Fiz. 77, 309 (2002)(hep-th/0212137).[7] C. Beck, Nonlinearity 8, 423 (1995)11.[8] C. Beck, Physica 171D, 72 (2002) (hep-th/0105152).[9] C. Beck, Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields, World Scientific, Singapore (2002).[10] T.S. Bir´o, S.G. Matinyan, B. Müller, Chaos and Gauge Field Theory, World Scientific, Singapore (1994).[11] T.S. Bir´o, B. Müller, S.G. Matinyan, hep-th/0301131.[12] El Naschie MS. A review of E-infinity theory and the mass spectrum of high-energy particle physics. Chaos, Solitons & Fractals 2004;19:209–36. [13] Goldfain E. Complex dynamics and the high energy regime of quantum field theory. Int J Nonlinear Sci Numer Simul 2005;6(3):223–34.[14] El Naschie MS. The concepts of E-infinity. Chaos, Solitons & Fractals 2004;22:495–511.[15] El Naschie MS. On a class of general theories for high energy particle physics. Chaos, Solitons & Fractals 2002;14:649–68.[16] C. Beck, hep-th/0702082.[17] C. Beck, Phys. Rev. D 69, 123515 (2004). [astro-ph/0310479].[18] G. Parisi, Y. Wu, Sci Sin. 24, 483 (1981).[19] C. Beck, Nonlinearity 4, 1131 (1991).[20] A. Hilgers, C. Beck, Physica 156D, 1 (2001).[21] K. Kaneko (ed.), Theory and Applications of CoupledMap Lattices, John Wiley and Sons, New York (1993).[22] Kane G, Modern Elementary Particle Physics, Addison-Wesley (1987).[23] J. Nash, The Impeding Problem For Riemannian Manifolds, Annals Of Mathematics, Vol. 63, No. 1, January, 1956.[24] M.S. El Naschie, On John Nash’s crumpled surface. Chaos, Solitons and Fractals 18 (2003) 635–641.[25] S. Groote and C. Beck, Phys. Rev. E74, 046216 (2006).。