随机信号处理考试6

合集下载

随机信号分析与处理习题解答罗鹏飞.pdf

随机信号分析与处理习题解答罗鹏飞.pdf
故有
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12

P{ X i
= 1}+
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n , 0 < p < 1
求 X 的均值和方差。 解法一:直接按照定义计算
n
n
∑ ∑ E( X ) = mP{X = m} = mCnm pm (1− p)n−m
m=0
m=0
∑n
=m
n!
pm (1− p)n−m
第 1 章 随机变量基础
1.1 设有两个随机变量 X 和 Y,证明
fY|X ( y | x) =
f (x, y) f X (x)

f X |Y
(x
|
y)
=
f (x, y) fY (y)
y x+Δx
∫ ∫ f (x, y)dxdy
提示:首先证明 F ( y | x < X ≤ x + Δx) = −∞ x
02

P{ X i
=
0}
=
p

D(Xi )
=
E
(
X
2 i
)

E2(Xi)
=
p

p2
=
p(1 −
p)
n

随机信号处理-题目整理

随机信号处理-题目整理

第一章1、某离散时间因果LTI 系统,当输入)1()31(41)()31(x(n)1n -+=-n n n εε时,输出)()21()(y n n n ε= (1)确定系统的函数H(Z) (3分) (2)求系统单位序列相应h (n )(3分) (3)计算系统的频率特性H (e j θ)(3分)(4)写出系统的差分方程(3分)解:(1))41)(21()31(31413121)()()(1+--=-+--==-Z Z Z Z Z Z Z Z Z Z ZZ X Z Y Z H |Z|>21(2)497292)4)(2(31)(++-=+--=Z Z Z Z Z Z Z H |Z| >21)()41(97)()21(92)(h n n n n n εε-+=(3)因为H (z )收敛域为 |Z| >21,包含单位圆所以H (e j θ)存在41972192|)()(++-===θθθθθθj j j j e Z j e ee e Z H e H j(4)21121281-41131-181-4131)()()(-----=--==Z Z Z Z Z Z Z Z X Z Y Z H==>121)(31)()(81)(41)(----=--Z Z X Z X z z Y z z Y z Y )1(31)()2(81)1(41)(--=----n x n x n y n y n y2、x(n)的z 变换为X(z)=1(1-z -1)(1-2z -1) , ROC :1<│z │<2 ,z 的变换。

(12分) 设X(z)=A 1-z -1 +B1-2z -1 =X 1(z)+X 2(z) %写出此形式2分 则由部分分式分解法,可得A=(1-z -1)X(z)│z=1=-1, B=(1-2z -1)│z=2=2 %求出此结果6分 由ROC 的形式,可以判定x(n)是一个右边序列和一个左边序列之和。

《随机信号处理》重点题目、题型及相关知识点简介-推荐下载

《随机信号处理》重点题目、题型及相关知识点简介-推荐下载

其中
, ,

因此 与之对应的最小相位系统为: (公式:2.5.7)
系统的传递函数为:
差分方程为: (公式:2.5.9) 备注:参考 P41 页例 2.5.1。题目会有改动,谱分解+一个系统 2 h(n) x(n) h1(n) y(n) 再对输出求功率谱, h(n) :P39 页,新息 滤波器去噪。 h1(n) :最优线性滤波器或最小二乘滤波等。 再根据 P38 页 2.4.22 式对输出求功率谱。

4
1
4

(1)n 3
Z(Z 1)
(Z 1)(Z 1)
1- 1 Z 1 3
3
3

24
(n)
3
|Z| > 1 2

1 4
( 1 ) n 1 3
(n
|Z|> 1 2
1)
时,输出
2. 一个方差为 1 的白噪声激励一个线性系统产生一个随机信号,该随机信号的功 率谱为:
,求该系统的传递函数,差分方程。 解:由给定信号的功率谱,得
24
h(n) 2 (1)n (n) 7 ( 1)n (n)
92
LTI
Z
系统,当输入
Z
Z1 2
1 Z 1 Z
Z1 4 Z1
3
94

2 9
Z1
2
7 9
Z1
(3) 因为 H(z)收敛域为 |Z| > 1 ,包含单位圆,所以 H(ejθ)存在: 2
(4)
H (e j
)

H(Z) Y(Z)

2
e j0

E[Z (t )Z (t)] e j[[0 (2t )2]

随机信号处理考试试题

随机信号处理考试试题

(2)、如果不用匹配滤波器,而用滤波器为 信噪比为多少,你认为 的最佳值应该是多少? 解: (1)根据匹配滤波原理,输出的最大信噪比为:
,则输出最大
(4 分) (2)该系统为线性系统,满足线性可加性,输出包含两部分,一部分是 信号通过系统后的输出信号,另外一部分是白噪声通过系统后的输出噪 声,两部分没有差拍项,假设输出的信号为: ,噪声为: ,不难
的自相关函数可表示为
(4 分) , 如右图所示,
所以 2)按噪声等效通能带定义
(5 分)
, (可根据傅立业反变换在 点的取值)
七、计算题(共 1 小题,每小题 10 分,共 10) (5)
设线性滤波器输入为
,其中 的功率谱密度为
的白噪声, 为与 统计独立的矩形脉冲
求:(1)、利用匹配滤波器时,输出端的最大信噪比为多少?
得出,输出信号的最大值在 t=T 时刻,此时
使得信噪比最大的 值应该满足:
这时
,正是匹配滤波器的情况。
九、计算题(共 1 小题,每小题 10 分,共 10 分)
设有如下两种假设,观测次数为 N 次,
(6 分)
其中 服从均值为 0 方差为 的正态分布,假设 求
=0.5,
(1)、最小错误概率准则下的判决表达式;
3、设平稳随机序列 通过一个冲击响应为 表示,那么,下列正确的有:( a、d )
的线性系统,其输出用
(A)
(B)
(C)
(D)
4、 为 的希尔伯特变换,下列表达正确的有:(a、c、d )
(A) 与 的功率谱相等 (B)
(C)
(D) 与 在同一时刻相互正交
5、对于一个二元假设检验问题,判决表达式为:如果 T(z)>g,则判 成

随机信号处理教程第6章随机信号通过非线性系统

随机信号处理教程第6章随机信号通过非线性系统

信号的调制和解调
01
02
03
调制过程
在非线性系统中,输入信 号会受到调制,使得信号 的参数发生变化,如幅度、 频率或相位等。
解调过程
对调制后的信号进行解调, 恢复出原始的信号参数, 以便进一步处理或使用。
调频与调相
在非线性系统中,调制和 解调的方式可以是调频或 调相,具体取决于系统的 特性和应用需求。
音频处理中的非线性系统
音频压缩
音频压缩技术利用非线性系统来减小音频文件的大小,同时保持音频质量。压 缩算法通过非线性变换和量化过程来去除音频信号中的冗余信息。
音频特效
音频处理软件中的非线性系统用于创建各种音效和特效,如失真、混响、均衡 器和自动增益控制等。这些效果通过将音频信号通过非线性函数来实现。
应用实例
给出了随机信号通过非线性系统的应用实 例,如通信系统中的非线性失真、音频处 理中的压缩效应等。
非线性系统的发展趋势和未来展望
新技术与新方法
随着科学技术的不断发展,新的非线性系 统建模方法和分析技术将不断涌现,如深
度学习在非线性系统建模中的应用等。
跨学科融合
非线性系统理论与其他领域的交叉融合将 进一步加深,如与控制理论、人工智能等 领域的结合。
升级系统的硬件设备,提升性能表现。
系统集成优化
优化系统内部各模块之间的集成方式, 提高整体性能。
05
实际应用案例
通信系统中的非线性系统
数字信号处理
在通信系统中,数字信号经过非线性系统可能导致信号失真 ,如振幅压缩和频率偏移。这种失真可以通过数字信号处理 技术进行补偿和校正。
调制解调
在无线通信中,调制解调过程可能涉及非线性系统。例如,在 QAM(Quadrature Amplitude Modulation)调制中,信号 通过非线性调制器进行调制,然后通过非线性解调器进行解调。

随机信号处理基础试卷样题

随机信号处理基础试卷样题

南京理工大学课程考试试卷(学生考试用)课程名称: 随机信号处理基础 学分: 2 教学大纲编号: 04036001-0试卷编号: A 考试方式: 闭卷 满分分值: 100 考试时间: 120分钟 组卷日期: 组卷老师(签字): 审定人(签字): 学生班级: 学生学号: 学生姓名: 一、填充题 (30分,做在试卷上!)1.给出随机变量X和Y相关系数的表达式 ,随机变量X和Y正交条件为 ;线性无关(不相关)的条件为 。

2.随机变量特征函数和其概率密度的关系为:。

3.随机过程和随机变量的关系描述为:。

4.在下图中标出哪个时自相关函数,哪个是自协方差函数?并在下图自相关函数图中标出与均值、方差和均方值有关的统计量?给出自相关函数和自协方差函数关系式,均值、方差和均方值的关系式说明均方值的物理含义 。

5.非因果维纳滤波器的传递函数为 ;因果维纳滤波器.给出经典检测中贝叶斯准则的判决规则 ,在何条件下等价于七、()()()t n t s t x +=,()()t n t s ,是互相正交的随机过程。

采用线性最小均方误差准则由()t x 估计()s t τ+。

(4) 八、讨论高斯白噪声中未知频率、未知幅度和未知到达时间的正弦信号检测和估计(注:本题方法不唯一,只要求给出方法思路)(6)五、设输入信号为一个视频编码的脉冲信号,脉冲内编码信号为5个码元[ 1 1 1 -1 1]−−,求该信号的匹配滤波器冲激响应?画出该匹配滤波器输出波形? (6)六、对参数θ进行N 次测量, 2i i x n θ=+,N i L 2,1=,i n 服从()2,0σN ,证明θ的最小二乘估计和最大似然估计等价。

(8)七、()()()t n t s t x +=,()()t n t s ,是互相正交的随机过程。

采用线性最小均方误差准则由()t x 估计()s t τ−。

(6)考察平稳随机过程()X t 和()Y t ,如果它们彼此统计独立,则两个随机过程相乘后所得随机过程是否是平稳的,为什么?。

随机信号分析与处理答案(罗鹏飞,张文明编著)

随机信号分析与处理答案(罗鹏飞,张文明编著)

②,
随机过程 X (t ) 的二维联合正态概率密度函数为 f X ( X) 可表示为
f X ( X) 1 2 K
1/2
1 exp[ (x m)T K 1 (x m)] 2
其中 x [ x1 x2 ]T , m 的表达式见①式, K 的表达式见②式。 6. P85:2.7 证明: 由许瓦兹不等式,得到
Cov( X1 , X 4 ) Cov( X 4 , X1 ) 0 。
1 2 0 所以 (1) 均值矩阵 m ' ,协方差矩阵 K ' 0 2 1
Y 的分布为 Y ( X1 , X 4 )T
N (m' , K ' )
(2)
E (2 X1 ) 2 , E ( X 2 X 3 ) 1 , E ( X 3 X 4 ) 1
2(ax by ) / (a b) 2(ax by ) (a 2by) / (a b) (a 2by)
y 1/4
f X /Y ( x / y 1/ 4) f X /Y ( x / y ) 1 2(ax b) 4 4ax b 1 2a b a 2b 4
E ( X / Y 1/ 4) x
0 1


xf X Y ( x / y 1/ 4)dx
4ax b 8a 3b dx 2a b 6(2a b)
x 0.5
(2) 同理利用
fY / X ( y / x )

f XY ( x, y ) f X ( x)
x 0.5
量,即 是以等概 1/2,取值为 0 或 / 2 的随机变量。 (1) 当 t 1 时,求 X (t ) 的均值 E{ X (1)}; (2) 求当 t 0 及 t 1 时的自相关,即 E{X (0) X (1)} R(0,1) 是多少? 解: (1)

随机信号处理习题答案

随机信号处理习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V ,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++= 2b st +=2.4 设有随机过程)sin()cos()(t B t A t X ωω+=,其中ω为常数,B A ,是相互独立且服从正态分布),0(2σN 的随机变量,求随机过程的均值和相关函数。

解 因B A ,独立,),0(~2σN A ,),0(~2σN B 所以,2][][,0][][σ====B D A D B E A E均值 )]sin()cos([)]([)(t B t A E t X E t m X ωω+==0][)sin(][)cos(=+=B E t A E t ωω 相关函数[]))sin()cos())(sin()cos(()]()([),(22112121t B t A t B t A E t X t X E t t R X ωωωω++==[]1221212212sin cos sin cos sin sin cos cos t t AB t t AB t t B t t A E ωωωωωωωω+++=][sin sin ][cos cos 221221B E t t A E t t ωωωω+=)sin sin cos (cos 21212t t t t ωωωωσ+=)(cos 212t t -=ωσ2.5 已知随机过程)(t X 的均值函数)(t m X 和协方差函数)(),,(21t t t B X ϕ为普通函数,令)()()(t t X t Y ϕ+=,求随机过程)(t Y 均值和协方差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析与处理》期中自我测评试题(一)
一、填空(20分)
1、按照时间和状态是连续还是离散,随机过程可以分成四类,这四类是
_______________________________________________________________。

2、如果随机过程_______________________________________________
____________________,则称X(t)为严格平稳随机过程。

3、如果平稳随机过程_____________________________________,则称该随机过程为各态历经过程。

4、如果均匀分布的白噪声通过线性系统,输出服从____________________________________分布。

5、正态随机过程的任意N维分布只有由________________________确定。

6、窄带正态随机过程的相位服从________________,幅度服从_______________。

7、如果一个随机过程未来的状态只与_____________,与_________________,则该过程称为马尔可夫过程。

8、解析信号的功率谱负频部分为零,正频部分是实信号的________。

9、随机过程的相关时间反映了随机过程变化的快慢程度,相关时间越长,过程的取值变化______,相关时间越短,过程的取值变化___________。

10、平稳随机信号通过线性系统分析,输入、输出过程的自相关函数的关系可表示为__________________________,输出与输入过程的功率谱之间的关系可表示为_____________________________。

二、(20分)判断题(判断下列说法是否准确,正确的打T,错误的打F)。

1、随机变量的均值反映了它的取值的统计平均值,它的方差反映了它的取值偏离均值的偏离程度。

()
2、如果一个平稳随机过程的时间平均值等于统计平均值,时间相关函数等于统计相关函数,那么它是各态历经过程。

()
3、对于均方连续的随机过程,它的每一个样本函数也都是连续的。

()
4、白噪声通过一个理想低通滤波器,它的输出过程仍然为白噪声,但分布变成了正态分布。

()
5、对于平稳正态随机过程的任意N维分布只由它的均值和自相关函数确定。

()
6、正态随机过程通过非线性系统,输出仍然为正态分布。

()
7、随机过程的严平稳是指它的任意维概率密度与时间无关。

()
8、偶函数的希尔伯特变换是偶函数,奇函数的希尔伯特变换是奇函数。

()
9、非线性系统普遍具有欺负小信号的特点。

()
10、对于零均值的正态随机过程,正交、不相关和独立三个概念是等价的。

()
三、计算题(每小题15分,共60分)
1、设X(n)=acos(w0n+j),其中a为常数,j为(0,2p)上均匀分布的随机变量,求X(t)的均值和自相关函数。

2、设平稳随机过程X(t)的自相关函数和和功率谱为,它们均是已知的,假定Y(t)=X(t)-X(t-T),其中T为常数,求Y(t)
的均值、自相关函数和功率谱。

3、假定功率谱为1的白噪声通过线性滤波器,滤波器的传递函数为
求输出的功率谱、自相关函数和一维概率密度。

(提示:)
4、设零均值正态过程的自相关函数为,求t1=0,t2=1/2时的二维正态概率密度(可以用矩阵形式表示)。

提示:N 维正态概率密度为
<查看解答>
一、填空(20分)
1、连续时间随机过程,离散型随机过程、随机序列、离散随机序列
2、任意维概率密度不随时间起点的变化而改变。

3、均值和相关函数具有遍历性。

4、正态分布
5、一、二阶矩
6、均匀分布、瑞利分布
7、现在,过去
8、4倍
9、越慢,越快
10、,
二、(20分)判断题(判断下列说法是否准确,正确的打T,错误的打F)。

1、T
2、T
3、F
4、F
5、T
6、F
7、F
8、F
9、T
10、T
三、计算题(每小题15分,共60分)
1、解答
2、解答:



所以
3、解答:
正态随机过程通过线性系统后输出仍然服从正态分布,所以我们只需要确定输出的均值和方差即可确定其概率密度函数。

又,
所以,且,,
所以输出的均值,方差。

故输出的概率密度函数为。

4、解答:


;。

相关文档
最新文档