全等三角形综合(二)
专题02 全等三角形(专题详解)(解析版)

专题02 全等三角形专题详解专题02 全等三角形专题详解 (1)12.1 全等三角形 (2)知识框架 (2)一、基础知识点 (2)知识点1 全等形的概念及性质 (2)知识点2 全等形的定义和表示方法 (2)知识点3 全等三角形的性质与拓展 (2)知识点4 全等变换的保形性 (2)12.2三角形全等的判定 (3)知识框架 (3)一、基础知识点 (3)知识点1 全等三角形判定条件 (3)二、典型题型 (4)题型1 全等三角形的判定 (4)三、添加辅助线方法 (5)方法1 关于中点的辅助线 (5)方法2 作垂线构造全等求点的坐标 (12)方法3 截长补短法(往往需证2次全等) (14)12.3角平分线的性质 (17)知识框架 (17)一、基础知识点 (17)知识点1 角平分线的性质 (17)知识点2 角平分线的判定 (17)知识点3 三角形的内心和旁心 (17)二、典型题型 (17)题型1 角平分线的性质和定义的应用 (17)题型2 三角形内心的应用 (18)三、添加辅助线方法 (20)方法1 角平分线上的点向两边作垂线 (20)方法2 过边上的点向两边作垂线 (22)方法3 过平分线上的点作一条边平行线构造等腰三角形 (24)方法4 利用角平分线的性质,在角两边截长补短 (25)12.1 全等三角形知识框架一、基础知识点知识点1 全等形的概念及性质1)全等形:能够完全重合的两个图形2)全等形的性质:①形状相同;②大小相同注:①全等图形与其所在的位置无关(只要通过平移、旋转、翻折后能够使两个图形完成重合即可)。
对称图形要求更苛刻些。
②因两图形完全相等,故图形所有对应条件都相同(例:周长、面积、对应角角度等皆相等)知识点2 全等形的定义和表示方法1)全等三角形:能够完全重合的三角形(长得完全一样的三角形)2)表示方法:①△ABC≌△DEF(读作:三角形ABC全等于三角形DEF)②顶点需要一一对应(即长得一样的在描述中至于同等地位)③从书写中,我们根据一一对应的关系,可得:a.点A与点D为对应顶点,点B与点E为对应顶点,点C与点F为对应顶点;b.∠A与∠D为对应角,∠B与∠E为对应角,∠C与∠F为对应角;c.AB与DE为对应边,AC与DF为对应边,BC与EF为对应边。
人教版初二上数学全等三角形专题练习二(含解析)

全等三角形1.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A、6B、4C、23D、52.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.55.如图,已知在△ABC中,CD是AB边上的高线, BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =3,BD=5,则四边形ABCD的面积为_______.7.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED 的面积是.8.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是.9.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.10.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.11.如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为.12.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD 交AB于点E.若AE=3,则OD的长为.13.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.15.(1)如图1,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE = AD;(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,连接AD,BE和CF交于点P,下列结论正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.16.已知:如图,E、F是□ABCD的对角线AC上的两点,AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.17.如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.(1)试说明:AE=CD;(2)若AC=10cm,求线段BD的长.18.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.19.如图,阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.20.如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE 与DF在数量上有何关系?并给出证明.21.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF ≌△CEB ;(2)AF=2CD .23.在△ABC 中, ∠C=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点(不 与A,D,C 三点重合),过P 作PQ ⊥AB,垂足为Q,交直线BD 于E.(1)如图①,当点P 在线段AC 上时,说明∠PDE=∠PED.(2)如图②,作∠CPQ 的角平分线交直线AB 于点F,则PF 与BD 有怎样的位置关系?24.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD 。
全等三角形二次全等训练习题

二次全等过程训练(一)1.已知:如图,∠A=∠D=90°,AE=DE.求证:△ABC≌△DCB.2.已知:如图,AD=BC,AC=BD.求证:△AOD≌△BOC.3. 3.已知:如图,AB=EF,BC=FG,AC=EG,D为BC中点,H为FG中点.求证:AD=EH.4.已知:如图,四边形ABCD的对角线AC,BD相交于点O,∠1=∠2,∠3=∠4.求证:△ABO≌△ADO.5.已知:如图,AB=AC,DB=DC,F是AD延长线上的一点.求证:△ABF≌△ACF.6.已知:如图,∠E=∠D,AM=CN,ME=ND.求证:△ABE≌△CBD.二次全等过程训练(二)一、单选题1.已知:如图,AD∥BC,AB,CD相交于点O,AO=BO,过点O作EF交AD于点E,交CB 于点F.求证:△EOD≌△FOC.2.已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:Rt△DEB≌Rt△DFC.3.已知:如图,在四边形ABCD中,AB=CD,AB∥CD,E,F分别是DA,BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:△EOD≌△FOB.4.已知:如图,点C,D在线段BE上,且BD=EC,CA⊥AB于A,DF⊥EF于F,且AB=EF.求证:△ABD≌△FEC.5.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,AB=AC.BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠FAB.求证:△EAM≌△FAN.二次全等过程训练(三)1.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DF⊥AB于F,DE⊥AC于E.求证:△BDF≌△CDE.2.已知:如图,点A,E,F,C在同一直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,AB=CD.求证:△DEG≌△BFG.3.已知:如图,在Rt△ACD中,∠ADC=90°,BE⊥AC于E,交CD于点F,AE=AD.求证:△CEF≌△BDF.4.已知:如图,在四边形ABCD中,AB=BC=CD=AD,BD平分∠ABC,E为BD上任意一点,连接AE,CE.求证:△ADE≌△CDE.55..已知:如图,在△ABC中,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°,∠BDC=120°,延长AC到点G,使CG=BE.求证:△EFD≌△GFD.二次全等过程训练(四)1.已知:如图,点A,C在直线EF上,BC=AD,AB=CD,AE=CF.求证:∠E=∠F.2.已知,如图,AE=BF,AD=BC,CE=DF.求证:AO=BO.已知:如图,∠D=∠E,AM=ME=CN=DN.试猜想AB和BC的数量关系,并证明你的猜想.4.已知:如图,在△ABC中,点D是BC的中点,DF⊥AB于F,DE⊥AC于E,DF=DE.求证:AB=AC.5.如图,在正方形ABCD中,∠ABC=∠BCD=90°,AB=BC=CD=AD.E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF交DE于点G.求证:DE⊥CF.。
章节复习(二)全等三角形

期末章节复习(二)全等三角形考点1全等三角形的性质1.如图,△ABC≌△EBD,AB=4 cm,BD=7 cm,则CE的长度为()A.4 cm B.3 cm C.2 cm D.3.5 cm第1题图第2题图2.如图,△ABC≌△ADE,∠B=20°,∠C=110°,则∠EAD的度数为()A.50°B.20°C.110°D.70°3.如图,已知△ABC≌△DEF,BG,EH分别是△ABC和△DEF的中线.求证:BG=EH.考点2全等三角形的判定4.如图,已知点A,D,C,F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,则判定△ABC≌△DEF的依据是()A.SAS B.ASA C.AAS D.HL第4题图第5题图第6题图第7题图5.如图,点C是AB的中点,AD=BE,CD=CE,则图中全等三角形共有()A.2对B.3对C.4对D.5对6.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,______________.7.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC,求证:△ABD≌△EDC.考点3全等三角形的性质与判定8.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE9.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.10.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.考点4全等三角形的应用11.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,那么判定△AOB≌△A′OB′的理由是_________.第11题图第12题图12.数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.如图,工人师傅要在墙壁的O处用钻打孔且使孔口从墙壁对面的B点处打开,墙壁厚OA是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO 的方向打孔,结果钻头正好从B点处打出.这是什么道理呢?请你说出理由.考点5角平分线的性质与判定13.如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是()A.线段CD的中点B.CD与过点O作CD的垂线的交点C.CD与∠AOB的平分线的交点D.以上均不对第13题图第14题图第15题图14.如图,△ABC的三边AB,AC,BC的长分别为4,6,8,其三条角平分线将△ABC分成三个三角形,则S△OAB∶S△OAC∶S△OBC=_________.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为E.(2)在(1)作出的图形中,求DE的长.一、选择题(每小题3分,共30分)1.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状、大小均相同C.大小相同,但形状不同D.形状、大小均不相同2.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA第2题图第3题图第5题图第6题图第7题图3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.根据下列已知条件,能唯一画出△ABC的是()A.AB=5,BC=3,AC=8 B.AB=4,BC=3,∠A=30°C.∠C=90°,AB=6 D.∠A=60°,∠B=45°,AB=45.如图,从下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的命题的个数是()A.1 B.2 C.3 D.46.如图所示,∠ABC=∠ACB,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD7.如图,等腰直角三角形ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于点E,交BA的延长线于点F.若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.508.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()A.两条边长分别为4,5,它们的夹角为β B.两个角是β,它们的夹边为4C.三条边长分别是4,5,5 D.两条边长是5,一个角是β9.如图所示,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有两个D.点O是CD的中点第9题图第10题图第11题图第12题图10.如图,BD平分∠ABC,CD平分∠ACE.若∠BDC=35°,则∠DAC的度数为()A.35°B.70°C.55°D.60°二、填空题(每小题4分,共24分)11.如图,AC,BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是_______. 12.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则点D到AB边的距离是________. 13.如图,在等边△ABC中,D,E分别是边AB,AC上的点,且AD=CE,则∠ADC+∠BEA=__________.第13题图第14题图第15题图第16题图14.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,AB=5 cm,O是∠CAB与∠CBA平分线的交点,则O点到AB的距离为________.15.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是_________16.如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,下列:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,正确的是________(填序号).三、解答题(共46分)17.(10分)如图,E是BC上一点,AB=EC,AB∥CD,∠A=∠CED.求证:AC=ED.18.(10分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM.求证:∠B=∠ANM.19.(12分)在△ABC中,D为AB上一点,E为AC的中点,连接DE并延长至点F,使得EF=ED,连接CF.(1)求证:CF∥AB;(2)若∠ABC=50°,CA平分∠BCF,求∠A的度数.20.(14分)(2019·广州花都区期末)如图1,在Rt△ABC中,∠C=90°,BC=9 cm,AC=12 cm,AB=15 cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3 cm/s,设运动时间为t s.(1)如图1,当t=_________时,△APC的面积等于△ABC面积的一半;(2)如图2,在△DEF中,∠E=90°,DE=4 cm,DF=5 cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.。
全等三角形基本模型综合训练(二)(解析版)(北师大版)

全等三角形基本模型综合训练(二)1.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若△CDO +△CFO =98︒,则△C 的度数为( )A .40°B .41°C .42°D .43°【答案】B 【详解】解:如图,连接AO 、BO .由折叠的性质可得EA =EB =EO ,△△AOB =90°,△OAB +△OBA =90°,△DO =DA ,FO =FB ,△△DAO =△DOA ,△FOB =△FBO ,△△CDO =2△DAO ,△CFO =2△FBO ,又△△CDO +△CFO =98°,△2△DAO +2△FBO =98°,△△DAO +△FBO =49°,△△CAB +△CBA =△DAO +△OAB +△OBA +△FBO =139°,△△C =180°﹣(△CAB +△CBA )=180°﹣139°=41°,故选B .2.如图,已知正方形ABCD 的边长为3,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接,DF CF ,则当DF CF +之和取最小值时,DCF 的周长为( )A.353B.433C.523D.133【答案】A【详解】解:连接BF,过点F作FG△AB交AB延长线于点G,△将ED绕点E顺时针旋转90°到EF,△EF△DE,且EF=DE,△△AED△△GFE(AAS),△FG=AE,△F点在BF的射线上运动,作点C关于BF的对称点C',△EG=DA,FG=AE,△AE=BG,△BG=FG,△△FBG=45°,△△CBF=45°,△BF是△CBC′的角平分线,即F点在△CBC′的角平分线上运动,△C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,△DC5△DF+CF的最小值为5△此时DCF的周长为353.故选:A.3.如图,△ABC 中,△A =30°,BC =3,△ABC 的面积9,点D 、E 、F 分别是三边AB 、BC 、CA 上的动点,则△DEF周长的最小值为( )A .5B .6C .8D .10【答案】B 【详解】解:作E 点关于AB 的对称点G ,作E 点关于AC 的对称点H ,连接GH ,交AB 于D 点,交AC 于F 点,连接AG ,AH ,AE ,如图所示:∴由对称性可知GD DE =,EF FH =,AG AE AH ==,DEF ∴∆的周长DE DF EF GD DF FH GH =++=++=,GAD DAE ∠=∠,EAC HAC ∠=∠,2GAH BAC ∴∠=∠,30BAC ∠=︒,60GAH ∴∠=︒,GH AE ∴=,∴当AE BC ⊥时,GH 最短,此时DEF ∆的周长最小,3BC =,ABC ∆的面积9,6AE ∴=,DEF ∴∆的周长最小值为6,故选:B .4.如图,等边三角形ABC的边长为4,点D是AB边的中点,点E是BC边上的一个动点,以DE为边作等边三角形DEF,连接AF,则AF的最小值为()A.2B3C.2D.3【答案】B【详解】解:当AF△AB时,AF的值最小,过D作DG△BC,△DG△BC,AF△AB△△DGB=△DGE=△DAF=90°△△B+△BDG=90°,△GDE+△DEG=90°△△ABC和△DEF都是等边三角形△DF=EF,△B=△FDE=60°,△BDG=30°△△ADF+△GDE=180°-△BDG-△FDE=180°-60°-30°=90°△△ADF=△DEG又△△DGE=△DAF=90°,DE=DF△△DEG△△FDA(AAS)△AF=DG331BD43 222故选:B.5.如图,P为等边△ABC内一点,△APC=150°,且△APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【详解】将△CP A绕点C逆时针旋转60°得到△CEB,连接EP,△CE=CP,△ECB=△PCA,△CEB=△CP A=150°,BE=AP=6,△等边△ABC,△△ACP+△PCB=60°,△△ECB+△PCB=60°,即△ECP=60°,△△ECP为等边三角形,△△CPE=△CEP=60°,PE=6,△△DEB=90°,△△APC=150°,△APD=30°,△△DPC=120°,△△DPE=180°,即D、P、E三点共线,△ED=3+7=10,△BD22DE BE34故答案为346.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=3CB的长为________.【答案】26【详解】如图,在BC上截取BD=AC=2,连接OD,△四边形AFEB 是正方形,△AO =BO ,△AOB =△ACB =90°,△△CAO =90°-△ACH ,△DBO =90°-△BHO ,△△ACH =△BHO ,△△CAO =△DBO ,△△ACO △△BDO ,△DO =CO =23△AOC =△BOD ,△△BOD +△AOD =90°,△△AOD +△AOC =90°,即△COD =90°,△CD 22(23)(23)26+△BC =BD +CD =26+故答案为:26+7.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF△AB ,F 为垂足,下列结论:①△ABD△△EBC ;②△BCE+△BCD=180°;③AD=EF=EC ;④BA+BC=2BF ,其中正确的结论有________(填序号).【答案】①②④【详解】解:①△BD 为△ABC 的角平分线,△△ABD=△CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,△△ABD△△EBC (SAS ), △①正确;②△BD 为△ABC的角平分线,BD=BC ,BE=BA ,△△BCD=△BDC=△BAE=△BEA ,△△ABD△△EBC,△△BCE=△BDA,△△BCE+△BCD=△BDA+△BDC=180°,△②正确;③△△BCE=△BDA,△BCE=△BCD+△DCE,△BDA=△DAE+△BEA,△BCD=△BEA,△△DCE=△DAE,△△ACE为等腰三角形,△AE=EC,△△ABD△△EBC,△AD=EC,△AD=AE=EC,△BD为△ABC的角平分线,EF△AB,而EC不垂直与BC,△EF≠EC,△③错误;④过E作EG△BC于G点,△E是BD上的点,△EF=EG,在Rt△BEG和Rt△BEF中,BE BEBE EG=⎧⎨=⎩,△Rt△BEG△Rt△BEF(HL),△BG=BF,在Rt△CEG和Rt△AFE中,EF FG AE CE=⎧⎨=⎩,△Rt△CEG△Rt△AFE(HL),△AF=CG,△BA+BC=BF+FA+BG-CG=BF+BG=2BF,△④正确.故答案为①②④.8.如图,已知四边形ABCD中,AC平分△BAD,CE△AB于点E,且AE=12(AB+AD),若△D=115°,则△B=________.【答案】65°【详解】试题分析:如图,在AB上截取AF=AD,连接CF,△AC平分△BAD,AC为公共边,△△AFC△△ADC,△△ADC=△AFC,△AE=12(AB+AD),AF=AD,△AF+EF=12(AF+BF+AF),△EF=12BF,△EF=BE,△CE△AB,△△ABC=△BFC,△△ADC+△ABC=180°,△△D=115°,△△B=65°.9.已知在Rt ABC 中,90C ∠=︒,75ABC ∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是__________.【答案】52【详解】解:如图作F 点关于AC 的对称点F ',连接A F '并延长交BC 延长线于点B ′,作BD △AB ′于点D ,由对称性可得EF =E F ',由垂线段的性质可得B 到AB ′的最短距离为BD ,△EF +EB =E F '+EB =B F '≥BD ,Rt △ABC 中,△BAC =90°-△ABC =15°,△△BAD =2△BAC =30°,Rt △ABD 中,AB =5,△BDA =90°,△BAD =30°,△BD =52,△线段FE EB +的最小值是52, 故答案为:52; 10.在矩形ABCD 中,AD ,CD 边的中点分别为E ,F ,连接BF ,CE 交于点G ,若2AB =,CG CF =,则BG 的长为______.410 【详解】解:如图,延长AD 交BF 的延长线于M .△AD ,CD 边的中点分别为E ,F ,2AB =,△11122CF DF AB CD ====,AE DE =. △CG CF =,△1CG =.△四边形ABCD 是矩形,△BC AM ∥,BC AD =,△CBF DMF ∠=∠,90BCF MDF ∠=∠=︒. 在BCF △与MDF △中90CBF DMF BCF MDF CF DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,△()BCF MDF AAS ≌,△=BC DM AD =. 设AE DE x ==,则2AD DM BC x ===.△BC EM ,△CBG M ∠=∠,BCG GEM ∠=, △BCG MEG ∽,△CG BC BG EG EM GM==. △1CG =,AE DE x ==,2AD DM BC x ===,△122x EG x x =+,△32EG =, △35122CE EG CG =+=+=,△222253222ED CE CD ⎛⎫=--= ⎪⎝⎭, △23AD BC DM ===,39322EM =+=,△3462AM AE DE DM =++=⨯=, △222226210BM AB AM++△210GM BM BG BG =-=.△BC BG EM GM =,△392102BG -,△410BG = 410 11.如图,已知△AED =△ACB =90°,AC =BC =3,AE =DE =1,点D 在AB 上,连接CE ,点M ,点N 分别为BD ,CE 的中点,则MN 的长为_____.10【详解】解:连接DN 并延长DN 交AC 于F ,连接BF ,如图,△△AED =△ACB =90°,AC =BC =3,AE =DE =1,45EAD EDA BAC ∴∠=∠=∠=︒,DE AC ∴∥,DEN FCN ∴∠=∠,△点N 为CE 的中点,EN NC ∴=,在DEN 和FCN △中,DNE FNC EN NCDEN FCN ∠=∠⎧⎪=⎨⎪∠=∠⎩()DEN FCN ASA ∴△≌△,DE FC DN NF ∴==,,AE FC ∴=,△点M 为BD 的中点,MN ∴是BDF 的中位线,12MN BF ∴=, 45EAD BAC ∠=∠=︒,90EACFCB ∴∠=∠=︒,在CAE 和BCF △中,EAC FCB AE FC ⎪∠=∠⎨⎪=⎩()CAE BCF SAS ∴△≌△,BF CE ∴=,22221111013222MN CE AE AC ∴==++=. 12.如图,已知△ABC 中,AB=AC ,△BAC=90°,分别过B ,C 向经过点A 的直线EF 作垂线,垂足为E ,F .(1)如图1,当EF 与斜边BC 不相交时,请证明EF=BE+CF ;(2)如图2,当EF 与斜边BC 相交时,其他条件不变,写出EF 、BE 、CF 之间的数量关系,并说明理由; (3)如图3,猜想EF 、BE 、CF 之间又存在怎样的数量关系,写出猜想,不必说明理由.【答案】(1)证明见解析;(2) EF= BE -CF ,理由见解析;(3)EF=CF -BE ,理由见解析.【详解】(1)证明:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFE=90°,△△EAB+△CAF=90°,△EBA+△EAB=90°,△△CAF=△EBA ,在△ABE 和△CAF 中,BEA AFC EBA FAC AB AC ===∠∠⎧⎪∠∠⎨⎪⎩△△BEA△△AFC (AAS ), △EA=FC ,BE=AF ,△EF=EA+AF=BE+CF .(2)证明:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFE=90°,△△EAB+△CAF=90°,△ABE+△EAB=90°,△△CAF=△ABE ,在△ABE 和△ACF 中,EBA FAC BEA CFA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,△△BEA△△AFC (AAS ),△EA=FC ,BE=AF ,△EF=AF -AE ,△EF=BE -CF .(3)EF=CF -BE ,理由是:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFA=90°,△△EAB+△CAF=90°,△ABE+△EAB=90°,△△CAF=△ABE ,在△ABE 和△ACF 中,BEA CFA AB AC ⎪∠∠⎨⎪⎩==,△△BEA△△AFC (AAS ),△EA=FC ,BE=CF ,△EF=EA -AF ,△EF=CF -BE .13.如图①,在四边形ABCD 中,5AB AD ==,53BC CD ==,90B ∠=︒.点M 在边AD 上,2AM =,点N 是边BC 上一动点.以MN 为斜边作Rt MNP △,若点P 在四边形ABCD 的边上,则称点P 是线段MN 的“勾股点”.(1)如图①,线段MN 的中点O 到BC 的距离是______.A 3B .52C .3D .23(2)如图②,当2AP =时,求BN 的长度.(3)是否存在点N ,使线段MN 恰好有两个“勾股点”?若存在,请直接写出BN 的长度或取值范围;若不存在,请说明理由.【答案】(1)C ;(2)33(3)33318【解析】(1)如图1,过点M 作 MQ △AB 交BA 的延长线于点Q ,过点O 作 OE △BC ,垂足为E ,过点M 作MF △BC ,垂足为F ,连接AC ,△AB =AD ,CB =CD ,AC =AC ,5AB AD ==,53BC CD ==90B ∠=︒,AM =2,△△ABC △△ADC ,△△D =△B =90°,AC 225(53)10+=,△△DAC =△BAC =△QAM =60°,△DCA =BCA =△QMA =30°,△△DAC =△BAC =60°,△DCA =BCA =30°,△QA =1,QM 3△MQ △AB ,OE △BC ,90B ∠=︒,△四边形MQBF 是矩形,△MF =QB =AB +QA =5+1=6,,△MF △CB ,OE △BC ,△OE ∥MF ,△NO NE OM EF =, △OM =ON ,△NE =EF ,△OE =12MF =3,故选C .(2)过点M 作MQ △AB 交BA 的延长线于点Q ,△点P 是线段MN 的“勾股点”.△△MPN =90°,△△QPM =△BNP ,△△QPM △△BNP ,△QP QM BN BP =, △33BN =△BN =33 (3)根据(2)得,BN =33P 是线段MN 的“勾股点”.过点N 作NG △DC ,垂足为G ,当DM =DP =3时, 点P 是线段MN 的“勾股点”.△点P 是线段MN 的“勾股点”.△△MPN =90°,△PG =GN ,设BN =x ,则NC =(53x ),根据(2),得△NCG =60°,△PG =GN 3(53)x ,GC =1(53)2x ,3(53)x +1(53)2x =(533),解得x =318, 故当BN =318或33MN 恰好有两个“勾股点”.14.已知ABC ,90,6cm ACB AC BC ∠==︒=,点P 从点A 出发,沿AB 2cm 的速度向终点B 运动,同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,设运动的时间为t 秒.(1)如上左图,若PQ BC ⊥,求t 的值;(2)如上中图,若PQ PC =,求t 的值;(3)如上右图,将PQC △沿BC 翻折至P QC '处,当t 为何值时,四边形QPCP '为菱形?【答案】(1)3t =;(2)2t =;(3)2t = 【解析】(1)解:由题意可得:2AP t =,226662AB +cm BQ t =, 则(622)cm BP AB AP t =-=,△90,ACB PQ BC ︒∠=⊥,△PQ AC ∥, △PQB ACB ∽,△BP BQ BA BC=, 622662t t -=, △3t =.(2)过点P 作PE BC ⊥交BC 于E 点,如图,BQ t =,6CQ t =-, △PQ PC =,△622CQ t QE EC -===, △PE AC ∥,△PEB ACB ∽,△BP BE AB BC=, 66222662t t t -+-=,解得:2t =.(3)如图,连接PP '交CQ 于D ,△四边形QPCP '为菱形,△PP CQ '⊥,CD DQ =,△点Q 的速度是每秒1cm ,△11(8)cm 22CD CQ t ==-, 过点P 作PO AC ⊥于O ,则四边形CDPO 是矩形,△CD OP =,△90,C AC BC ∠=︒=,△ABC 是等腰直角三角形,△45A ∠=︒,△点P 2cm , △22cm PO t t ==, △1(6)2t t -=,解得:2t =.15.图1是边长分别为a 和()b a b >的两个等边三角形纸片ABC 和CDE △叠放在一起(C 与C '重合)的图形.(1)操作:固定ABC ,将CDE △绕点C 按顺时针方向旋转20°,连结AD ,BE ,如图2,则ECA ∠=______度,并直接写出线段BE 与AD 的数量关系____.(2)操作:若将图1中的CDE △,绕点C 按顺时针方向旋转120°,使点B 、C 、D 在同一条直线上,连结AD 、BE ,如图3.①线段BE 与AD 之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE 与AD 之间的数量关系;②求APB ∠的度数.(3)若将图1中的CDE △,绕点C 按逆时针方向旋转一个角()0360αα<<︒,当α等于多少度时,BCD △的面积最大?请直接写出答案.【答案】(1)40,BE =AD ;(2)①存在,理由见详解;②60°(3)当α=150°或330°时,BCD △的面积最大【解析】(1)△△ABC 和△CDE 是等边三角形,△BC =AC ,CE =CD ,△BCA =60°,△旋转20°△△BCE =△ACD =20°,△△CBE △△CAD (SAS ),△BE =AD (全等三角形的对应边相等),△ECA ∠=△BCA -△BCE△ECA ∠=60°-20°=40°故答案为:40,BE =AD(2)如图1,①(1)中结论仍然成立,理由如下:△△ABC和△CDE是等边三角形,BC=AC,CE=CD,△△BCE=△ACD=120°,△△CBE△△CAD(SAS),△BE=AD;②△△CBE△△CAD,△△CBE=△CAD,又△AOP=△BOC,△△APB=△ACB=60°;(3)如图2,当D运动到D1或D2,即BC△D1D2S△BCD最大12BC CD=⋅12=ab,此时旋转角是60°+90°=150°,或360°﹣30°=330°,△当α=150°或330°.16.知识再现:已知,如图1,四边形ABCD 是正方形,点M 、N 分别在边BC 、CD 上,连接AM 、AN 、MN ,且45MAN ∠=︒,延长CB 至G 使BG DN =,连接AG ,根据三角形全等的知识,我们可以证明MN BM DN =+.(1)知识探究:如图1中,作AH MN ⊥,垂足为点H ,猜想AH 与AB 有什么数量关系?并进行证明.(2)知识运用:如图2,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,2FEC BAE ∠=∠,24AB =,求DF 的长.(3)知识拓展:已知45BAC ∠=︒,AD BC ⊥于点D ,且2BD =,6AD =,求CD 的长.【答案】(1)=AH AB ,证明见解析;(2)8;(3)3CD =【解析】(1)解:=AH AB ,理由如下:△四边形ABCD 是正方形,△AD AB =,=90ABG ADN ∠∠=︒,在ADN △和ABG 中,AD AB ADN ABG DN BG =⎧⎪∠=∠⎨⎪=⎩△()ADN ABG SAS ≌△△,△AG AN =,GAB NAD ∠=∠,△45MAN ∠=︒,90DAB ∠=︒,△45BAM NAD ∠+∠=︒,△45BAM GAB ∠+∠=︒,即45GAM MAN ∠=∠=︒,在GAM △和NAM △中,AG NG GAM MAN AM AM =⎧⎪∠=∠⎨⎪=⎩△()GAM NAM SAS ≌△△,△MN GM =,△GAM NAM =S △△S ,即1122AB GM AH MN =, △=AH AB ,(2)解:作AM EF ⊥交EF 与点M ,连接EF ,如图,设=BAE α∠,则2FEC α∠=,△=90B ∠︒,△=90BEA α∠︒-,△2FEC α∠=,△=90AEM α∠︒-,在ABE △和AME △中,ABE AME AEB AEM AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩△()ABE AME AAS ≌△△,△=BE ME ,=A AB M ,△24AB =,ABCD 为正方形,E 为BC 中点, △==12BE M E ,在Rt AMF △和Rt ADF 中,AD AM AF AF =⎧⎨=⎩△()AMF ADF HL ≌△△,△DF MF =,设DF x =,则24CF x =-,12EF x =+,△222EF CF EC =+,即()()222122412x x +=-+,解之得:8x =, △8DF =,(3)方法1、解:由题意可知:22210AB AD BD =+=作CE AB ⊥交AB 于点E ,如图,设CD a =,则236AC a =+△45BAC ∠=︒,236AC a =+△2362a AE EC += △()2113662=210222a a +⨯⨯+=12a -(舍去),=3a ,△3CD = 方法2、解:对比图1和图3可以发现当6AH AD ==,2BD MH ==,45BAC MAN ∠=∠=︒,CD NH =, 由(1)可知:AH AB =, 在Rt ABM 和Rt AHM 中,AM AM AB AH =⎧⎨=⎩△()ABM AHM HL △≌△, △2BM MH ==,△624MC =-=,同理可得:()AHN ADN HL △≌△, △DN HN =,设=DN HN x =,则6NC x =-,2MN x =+,△222NC MC MN +=,即()()222642x x -+=+,解之得3x =△=3CD NH。
全等三角形(二)

练4-1.如图,在△ABC中,AC = BC,AD = CE,BE⊥CE于点E,AD⊥CE于点D.求证:∠ACB = 90 .
练4-2.已知:如图,BE⊥CD,BE = DE,BC = DA.求证:(1)△BEC≌△DEA; (2)DF⊥BC.
拓展题:
1.如图,点A在DE上,点F在AB上,且AC = CE,AB = 3,∠DAF =∠ACE =∠DCB.求DE的长.
练3-1.如图,AE⊥EC于E,AF⊥FB于F,小明想要利用HL判定△ AEC≌△ AFB,那么他需要添加的条件可以是____________.
练3-2.如图,AD⊥BC,AC = AB.若BD =13,那么BC = __________.
例4.如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF = AC,FD = CD.求证:BE⊥AC.
全等三角形(二)
【知识点一】全等三角形的判定(二)
思考:小明不小心打碎一块三角形模具,他应该带哪块去商店配一个与原来一样的?
全等三角形判定3:
两角和它们的夹边分別相等的两个三角形全等.简写成“角边角”或“ASA” .
例. 中, B= E, C= F,BC=EF,求证: .
三角形全等的书写方法:五行法
思考:判定两个直角三角形全等的方法有哪些呢?
练习:判断下列直角三角形的全等判定方法是否正确,正确请写出原因。
(1)两条直角边对应相等. ( )
(2)斜边和一锐角对应相等. ( )
(3)斜边和一直角边对应相等. ( )
(4)两锐角相等. ( )
例3.如图,AC⊥BC,BD⊥AD,AC=BD.求证:△ABC≌△BAD.
第4讲.全等三角形的经典模型(二).培优

等等…腰漫画释义满分晋级阶梯4全等三角形的 经典模型(二)三角形11级特殊三角形之直角三角形 三角形10级 勾股定理与逆定理 三角形9级全等三角形的经典模型(二)OFEC BA A F COBEDHABCDO EO GFE CB A“手拉手”数学模型:⑴ ⑵ ⑶【引例】 如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,求证:BF =CE 并求出∠EOB 的度数.【解析】 ∵△ABE 、△AFC 是等边三角形∴AE =AB ,AC =AF ,60∠=∠=︒EAB FAC知识互联网思路导航例题精讲题型一:“手拉手”模型NM C B A B N CN∴∠+∠=∠+∠EAB BAC FAC BAC 即∠=∠EAC BAF ∴AEC ABF △≌△ ∴BF =EC ∠=∠AEC ABF又∵AGE BGO ∠=∠ ∴60∠=∠=︒BOE EAB ∴60∠=︒EOB【例1】 如图,正方形BAFE 与正方形ACGD 共点于A ,连接BD 、CF ,求证:BD =CF 并求出∠DOH 的度数.【解析】 同引例,先证明ABD AFC △≌△∴BD =FC ,∠=∠BDA FCA ∵∠=∠DHO CHA ∴90∠=∠=︒DOH CAD【例2】 如图,已知点C 为线段AB 上一点,ACM △、BCN △是等边三角形.⑴ 求证:AN BM =.⑵ 将ACM △绕点C 按逆时针方向旋转180°,使点A 落在CB 上,请你对照原题图在图中画出符合要求的图形;⑶ 在⑵得到的图形中,结论“AN BM =”是否还成立,若成立,请证明;若不成立,请说明理由;⑷ 在⑵所得的图形中,设MA 的延长线交BN 于D ,试判断ABD △的形状,并证明你的结论.【分析】 这是一个固定后运动变化的探索题,且在一定的条件下,探究原结论的存在性(不变性); 需要画图分析、判断、猜想、推理论证.【解析】 ⑴ ∵ACM △、BCN △是等边三角形∴AC CM =,BC CN = 60ACM BCN ∠=∠=° ∴∠=∠ACN MCB在ACN △和MCB △中典题精练OHG DFE CB ADNMCBA=⎧⎪∠=∠⎨⎪=⎩AC MC ACN MCB CN CB ∴ACN MCB △≌△(SAS ) ∴AN BM =⑵ 将ACM △绕点C 旋转如图:⑶ 在⑵的情况,结论AN BM =仍然成立.证明:∵60BCM NCA ∠=∠=°,CA CM =,CN CB =. ∴CAN CMB △≌△(SAS ),∴AN MB =.⑷ 如图,延长MA 交BN 于D ,则ABD △为等边三角形. 证明:∵60CAM BAD ABD ∠=∠=∠=°. ∴ABD △是等边三角形.【例3】 在ABC △中,90∠=BAC °,⊥AD BC 于D ,BF 平分∠ABC 交AD 于E ,交AC 于F .求证:AE=AF .54321A BCDE F【解析】 90∠=BAC °,390∴∠+∠=DAC °90⊥∴∠=︒AD BC ADC 90∴∠+∠=︒C DAC 3∴∠=∠C43152∠=∠+∠∠=∠+∠C ,BF 是ABC ∠的角平分线 12∴∠=∠ 45∴∠=∠∴=AE AF【例4】 如图,已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,ABC ∠的角平分线BE 交CD 于G ,交AC 于E ,GF AB ∥交AC 于F .典题精练题型二:双垂+角平分线模型ENMD CBA NMD CBA 求证:AF CG =.【分析】 要证AF CG =,一般想到证明这两条线段所在的三角形全等,由图形可知,不存在直接全等三角形,因此要想到添加辅助线构造全等三角形.【解析】 作EH AB ⊥于H∵12∠=∠,90ACB ∠=°∴EC EH =(角平分线定理) 又∵CD AB ⊥ ∴3A ∠=∠∵431∠=∠+∠,52A ∠=∠+∠ ∴45∠=∠ ∴CE CG = ∴CG EH =又∵GF AB ∥,90∠=∠=AHE FGC ° ∴A CFG ∠=∠∴CFG EAH △≌△(AAS ) ∴=CF EA ,∴-=-CF EF EA EF , ∴CE AF = ∴AF CG =【例5】 已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.【解析】 延长ND 到E 使DE BM =∵四边形ABCD 是正方形 ∴AD =AB在ADE △和ABM △ =⎧⎪∠=∠⎨⎪=⎩AD AB ADE B DE BM ∴ADE ABM △≌△∴AM =AE ∠=∠BAM DAE典题精练题型三:半角模型54321HG FE DCBA54321G FE DCBADHFECBA∵45MAN ∠=︒ ∴45∠+∠=︒BAM NAD ∴45∠=∠=︒MAN EAN在AMN △和AEN △中 =⎧⎪∠=∠⎨⎪=⎩MA EA MAN EAN AN AN ∴AMN AEN △≌△ ∴MN =EN∴DE +DN =BM +DN=MN【例6】 如图,在四边形ABCD 中,180∠+∠=︒=B D AB AD ,,E 、F 分别是线段BC 、CD 上的点,且BE +FD =EF . 求证:12∠=∠EAF BAD .ABCDEF【解析】 延长FD 到H ,使DH =BE ,易证ABE ADH △≌△, 再证AEF AHF △≌△1122∴∠=∠=∠=∠EAF FAH EAH BAD【例7】 在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为三角形ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系.AM N BCDCBN M A图1 图2⑴如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; ⑵如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想⑴问的结论还成立吗?写出你的猜想并加以证明.【解析】 ⑴如图1, BM 、NC 、MN 之间的数量关系BM +NC=MN .⑵猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE . BD=CD 且120BDC ∠=.∴ 30=∠=∠DCB DBC . 又△ABC 是等边三角形,∴90MBD NCD ECD ∠=∠=∠=. 在MBD △与ECD △中:BM CE MBD ECD BD CD =⎧⎪∠=∠⎨⎪=⎩∴MBD △≌ECD △(SAS ) . ∴DM=DE , BDM CDE ∠=∠ ∴60EDN BDC MDN ∠=∠-∠=在△MDN 与△EDN 中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ∴MDN EDN △≌△(SAS) ∴MN NE NC BM ==+第04讲精讲:典型的旋转全等构图:“手拉手”全等模型探究; 【探究一】“手拉手”模型基本构图;如图1,若ABC ∆与ADE ∆旋转全等,则必有ABD ∆与ACE ∆为两个顶角相等的等腰三角形(即相似的等腰三角形);反之,如图2,若有两个顶角相等的等腰三角形ABD ∆与ACE ∆共顶角顶点,则必有ABC ∆与ADE ∆旋转全等;而图2正是“手拉手”模型的基本构图;图1EDC BA图2EDC BA【探究二】将探究一中的普通等腰三角形换成特殊的图形,例如等边三角形、等腰直角三角形、正方形,然后再探究结论如何变化;ENM DC BA图3EDCBA 图4E D CB A FG 图5ED CB A如图3、图4、图5,当两个等边三角形、等腰直角三角形、正方形共顶点时,ABC ∆与ADE ∆仍然旋转全等,并且有两个共同的结论; 结论1:ABC ∆≌ADE ∆;DE BC =;结论2:BC 与DE 所夹锐角等于两个等腰三角形的顶角;(倒角方法如下图6、图7、图8的八字模型)图6图7图8【探究三】将探究二中的特殊图形旋转后结论是否仍然成立; 如下图9、图10、图11易得探究二中的两个结论仍然成立;图9E图10图11【探究四】深化探究二中图3的结论; 如图12,可得结论1:ABC ∆≌ADE ∆;DE BC =;结论2:︒=∠=∠=∠=∠60CAE BAD COE BOD ; 结论3:如图12、图13、图14,可得三对三角形全等(ABC ∆≌ADE ∆;AHD ∆≌AGB ∆;AGC ∆≌AHE ∆)图12图13图14结论4:如图15,连接GH ,可得AGH ∆为等边三角形;(由结论3可得AH AG =)图15NM O 图16EDC BA 结论5:BE GH ∥;(由结论4可得︒=∠=∠60BAD AGH ) 结论6:连接AO ,可得AO 平分BOE ∠;(如图16,分别作BC AM ⊥、DE AN ⊥,AM 与AN 分别是全等三角形ABC ∆与ADE ∆对应边BC 和DE 上的高,故相等)SFEDCBA MP N MH GFE DCBA N M DCBA题型一 手拉手模型 巩固练习【练习1】 如图,DA ⊥AB ,EA ⊥AC ,AD=AB ,AE=AC ,则下列正确的是( )A. ABD ACE △≌△B. ADF AES △≌△C. BMF CMS △≌△D. ADC ABE △≌△【解析】 D【练习2】 如图,正五边形ABDEF 与正五边形ACMHG 共点于A ,连接BG 、CF ,则线段BG 、CF 具有什么样的数量关系并求出∠GNC 的度数. 【解析】 先证ABG AFC △≌△ 可得BG =CF ,∠=∠ACF AGB∵∠=∠NPG APC∴108∠=∠=︒GNC GAC题型二 双垂+角平分线模型 巩固练习【练习3】 已知AD 平分∠BAC ,⊥DE AB ,垂足为E ,⊥DF AC ,垂足为F ,且DB =DC ,则EB 与FC 的关系( )A. 相等B. EB <FCC. EB >FCD.以上都不对 【解析】 A题型三 半角模型 巩固练习【练习4】 如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 . 【解析】 6【练习5】 如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且复习巩固F E DCBAFD BAE H GD CBA FDEGCB A12EAF BAD =∠∠,求证:EF BE FD =-【解析】 证明:在BE 上截取BG ,使BG DF =,连接AG .∵180B ADC +=︒∠∠,180ADF ADC +=︒∠∠, ∴B ADF =∠∠. ∵AB AD =,∴ABG ADF △≌△.∴BAG DAF =∠∠,AG AF =.∴12BAG EAD DAF EAD EAF BAD +=+==∠∠∠∠∠∠.∴GAE EAF =∠∠. ∵AE AE =,∴AEG AEF △≌△. ∴EG EF =∵EG BE BG =-,∴EF BE FD =-.训练1. 如图,C 为线段AB 上一点,分别以AC 、CB 为边在AB 同侧作等边ACD △和等边BCE △,AE 交DC 于G 点,DB 交CE 于H 点,求证:GH AB ∥.【分析】 本题中,ACD △与BCE △是等边三角形,因此AC CD =,BC CE =,60ACD ECB ∠=∠=°,因为A 、C 、B 在同一条直线上,故60DCE ∠=°.这样可以得到ACE DCB △≌△,AEC DBC ∠=∠,故可以得到CEG CBH △≌△,则GC HC =,60CGH CHG ∠=∠=°,所以60ACG CGH ∠=∠=°,故GH AB ∥.【解析】 ∵ACD △和BCE △是等边三角形(已知)∴AC CD =,BC CE =(等边三角形的各边都相等)思维拓展训练(选讲)A B C DH QNM60ACD BCE ∠=∠=°(等边三角形的每个角都等于60°) ∵180ACD DCE BCE ∠+∠+∠=°∴60DCE ∠=°,120ACE DCB ∠=∠=°.在ACE △和DCB △中,=⎧⎪∠=∠⎨⎪=⎩AC DC ACE DCB CE CB∴ACE DCB △≌△(SAS )∴AEC DBC ∠=∠(全等三角形的对应角相等)在BCH △和ECG △中,60∠=∠=⎧⎪=⎨⎪∠=∠⎩BCH ECG BC CE CBH CEG °∴BCH ECG △≌△(ASA )∴CH CG =(全等三角形的对应边相等) ∴CGH CHG ∠=∠(等边对等角)∵180GCH GHC CGH ∠+∠+∠=°(三角形内角和定理) ∴60GHC CGH ∠=∠=°.∴60ACG CGH ∠=∠=°(等量代换) ∴GH AB ∥(内错角相等,两直线平行)训练2. 条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.结论:⑴ MN DN BM =-;⑵ AH AB =.【解析】 ⑴在CD 上取一点Q ,使DQ =BM先证AMB AQD △≌△可得AM =AQ再证AMN AQN △≌△∴MN =NQ∴DN DQ DN BM NQ MN -=-==⑵可证△ANH ≌△AND ,∴AH=AD=AB训练3. 如图,在Rt ABC △中,锐角ACB ∠的平分线交对边于E ,又交斜边的高AD 于O ,过O引OF BC ∥,交AB 于F ,请问AE 与BF 相等吗?理由是什么?A B M C H N DDOEOO 12ABCD E F FEDCBA21543G O54321G FE DC BA【解析】 相等.理由如下:如图,过E 作EG BC ⊥于G ∵EC 平分ACB ∠,∴12∠=∠ ∵90EAC ∠=°,AD BC ⊥∴1490∠+∠=°,2390∠+∠=° ∴34∠=∠ ∵35∠=∠, ∴45∠=∠ ∴AE AO =∵EC 平分ACB ∠,EA AC ⊥,EG BC ⊥ ∴EA EG =,∴AO EG =,∵FO BC ∥∴AFO B ∠=∠,90BDA FOA ∠=∠=° ∴BEG FAO ∠=∠∴AFO EBG △≌△(AAS ) ∴AF BE =∴AF EF BE EF -=- ∴AE BF =.训练4. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.测试1. 如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连接BE 、CD ,则线段BE 、CD具有什么样的数量关系和位置关系【解析】 先证明ABE ADC △≌△∴BE =CD ,再类似例1倒角即可得到BE ⊥CD课后测N M DBA测试2. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.N M DA第十五种品格:创新学会变通,变则通一天早上,一位贫困的牧师,为了转移哭闹不止的儿子的注意力,将一幅色彩缤纷的世界地图,撕成许多细小的碎片,丢在地上,许诺说:“小约翰,你如果能拼起这些碎片,我就给你二角五分钱。
八年级上册数学三角形全等证明之二次全等(含答案)

第2节 三角形全等证明之二次全等在证明线段相等或者角相等时,常见的方法是通过证明线段或角所在的三角形全等来证明线段或者角相等.但有的时候,根据题目条件无法简单地通过一次全等证明来得到最终的结论,这时就需要证明两次三角形全等,即证明图中的两对三角形全等.这种方法较多见于对称型全等和旋转型全等的题目中.一、典型例题[例]图2-1是某产品商标的示意图,已知AB =CD,∠A =∠D,有人认为△ABC ≌△DCB,他的思考过程是:∵AB =CD,∠A =∠D,BC =CB,∴△ABC ≌△DCB.你认为这个思考过程对吗?如果正确,请指出他用的是判定三角形全等的哪个定理?如果不正确,请写出你的思考过程.解:他的思考过程不正确.在△ABE 和△DCE 中,∵{∠AEB =∠DEC∠A =∠D AB =DC∴△ABE ≌△DCE (AAS ).∴AE =DE,BE =CE.∴AE+EC =DE+EB,即AC =BD.在△ABC 和△DCB 中,∴{AC =BDAB =DC BC =CB∴△ABC ≌△DCB (SSS ).二、培优巩固练习篇1.如图2-2所示,点A,E,C 在一条直线上,∠1=∠2,∠3=∠4.求证:△ABE ≌△ADE.图2-2图2-12.如图2-3所示,点A,E,F,C 在一条直线上,AE =CF,分别过点E,F 作DE ⊥ AC,BF ⊥AC,连接AB,CD,且AB ∥CD,连接BD 交AC 于点C.求证:△DEG ≌△BFG.3.如图2-4所示,AB =AC,DB =DC,F 是AD 延长线上的一点.求证:BF =CF.4.如图2-5所示,AE 是∠BAC 的角平分线,EB ⊥AB 于点B,EC ⊥AC 于点C,点D 是AE 上一点.求证:BD =CD.5.如图2-6所示,DE ⊥AC,BF ⊥AC,AD =BC,DE =BF.求证:AB ∥DC.图2-3C图2-4图2-5图2-66.如图2-7所示,点E,F 在BD 上,且AB =CD,BF =DE,AE =CF.求证:AO =CO.7.如图2-8所示,AB 之间有一条河.想要测量AB 的长,但无法过河接近点A,于是在AB 外任取一点D,在AB 的延长线上任取一点E,连接ED 和BD,并延长BD 到点G,使DG =DB,延长ED 到点F,使DF =DE,连接FG,并延长FG 到点H,使点H,D,A 在一条直线上,则HG =AB.试说明这种测量方法的原理.8.如图2-9所示,在Rt △ABC 和Rt △ADE 中,∠ABC =∠ADE =90°,BC 与DE 相交于点F,且AB =AD,AC =AE,连接CD,EB.求证:(1)∠CAD =∠EAB;(2)CF =EFDH图2-8图2-99.如图2-10所示,在等边△ABC 内取一点D,使DA =DB,在△ABC 外取一点E,使∠DBE =∠DBC,且BE =BA,则∠BED =_______°.10.如图2-11所示,∠BAC 是钝角,AB =AC,点D,E 分别在AB,AC 上,且CD =BE.试说明:∠ADC =∠AEB.一个同学的解法是这样的: 在△ACD 和△ABE 中, ∵{AB =AC BE =CD ∠BAE =∠CAD ∴△ABE ≌△ACD.∴∠ADC =∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA ”判定三角形全等.请你给出正确的解法.图2-10CB AC B答案解析1.证明:在△DEC和△BEC中,{∠1=∠2 EC=EC ∠3=∠4∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.在△ABE和△ADE中,{AE=AE∠AEB=∠AEDBE=DE∴△ABE≌△ADE(SAS).2.证明:∵DE⊥AC,BF⊥AC, ∴∠AFB=90°=∠CED. ∵AE=CF,∴AE+EF=CF+FE,即AF=CE.∵AB∥CD,∴∠A=∠C.在△ABF和△CDE中,{∠A=∠C AF=CE∠AFB=∠CED ∴△ABF≌△CDE(ASA).∴DE=BF.在△BFG和△DEG中,{∠BFG=∠DEG ∠BGF=∠DGE BF=DE∴△BFG≌△DEG(AAS).3.证明:在△ABD和△ACD中,{AB=AC BD=CD AD=AD∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD.在△BAF和△CAF中,{AB=AC∠BAF=∠CAF AF=AF∴△BAF≌△CAF(SAS).∴BF=CF.4.证明:∵AE是∠BAC的角平分线, ∴∠CAE=∠BAE. ∵EB⊥AB,EC⊥AC, ∴∠ECA=∠EBA=90°.在△CAE和△BAE中,{∠CAE=∠BAE ∠ECA=∠EBA AE=AE∴△CAE≌△BAE(AAS).∴AC=AB.在△CAD和△BAD中,{AC=AB ∠CAD=∠BAD AD=AD∴△CAD≌△BAD(SAS).∴BD=CD.5.证明:∵DE ⊥AC,BF ⊥AC, ∴∠AED =∠CFB =90°, ∠AFB =∠CED =90°, 在Rt △ADE 和Rt △CBF 中,∵{AD =CB DE =BF ∴Rt △ADE ≌Rt △CBF (HL ).∴AE =CF.∴AE+EF =CF+FE,即AF =CE.在△AFB 和△CED 中,∵{AF =CE∠AFB =∠CED DE =BF∴△AFB ≌△CED (SAS ). ∴∠BAF =∠DCE.∴AB ∥DC.∴AO =CO.6.证明:∵BF =DE, ∴BF-EF =DE-FE,即BE =DF. 在△ABE 和△CDF 中, {AB =CDAE =CF BE =DF∴△ABE ≌△CDF (SSS ).∴∠B =∠D.在△AOB 和△COD 中,{∠AOB =∠COD∠B =∠D AB =CD∴△AOB ≌△COD (AAS )7.解:在△BED 和△GFD 中,{DB =DG∠BDE =∠GDF DE =DF∴△BED ≌△GFD (SAS ).∴∠EBD =∠FGD.∴∠ABD =∠HGD.在△ABD 和△HGD 中,{∠ABD =∠HGDBD =GD∠BDA =∠GDH∴△ABD ≌△HGD (ASA ).∴HG =AB.8.证明:(1)在Rt △ABC 和Rt △ADE 中,{AC =AE AB =AD ∴Rt △ABC ≌Rt △ADE (HL ).∴∠BAC =∠DAE.∴∠BAC-∠DAB =∠DAE-∠DAB,即∠CAD =∠EAB.(2)在△ACD 与△AEB 中, {AC =AE∠CAD =∠EAB AD =AB∴△ACD ≌△AEB (SAS ).∴CD =BE,∠ACD =∠AEB.∵Rt △ABC ≌Rt △ADE (HL ), ∴∠ACB =∠AED.∴∠ACB-∠ACD =∠AED-∠AEB,即∠DCF =∠BEF.又∵∠DFC =∠BFE, ∴△DFC ≌△BFE (AAS ).∴CF =EF.9.解:如图2所示,连接CD.∵△ABC是等边三角形, ∴AB=BC=CA.∵BE=BA,BA=BC, ∴BE=BC.在△BDC和△BDE中,{BD=BD∠DBE=∠DBC BE=BC∴△BDC≌△BDE(SAS). ∴∠BED=∠BCD.在△BCD和△ACD中,{BC=AC BD=AD CD=CD∴△BCD≌△ACD(SSS).∴∠BCD=∠ACD=30°.∴∠BED=30°.10.证明:因为∠BAC是钝角,故过点B,C分别作CA,BA的垂线,垂足分别为点F, G,如图3所示.在△ABF和△ACG中,{∠F=∠G=90°∠FAB=∠GACAC=AB∴△ABF≌△ACG(AAS).∴BF=CG.在Rt△BEF和Rt△CDG中,{BF=CGBE=CD∴Rt△BEF≌Rt△CDG(HL).∴∠ADC=∠AEBEDC BA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第10讲 全等三角形综合(二)小测试 总分10分 得分___________如图,点F 、G 分别在△ADE 的AD 、DE 边上,C 、B 依次为GF 延长线上两点,AB =AD ,∠BAF =∠CAE ,∠B =∠D .(1)求证:BC =DE ;(2)若∠B =35°,∠AFB =78°,直接写出∠DGB 的度数.【教学目标】1.能熟练利用全等三角形的判定及性质判断两个三角形全等; 2.能够熟练利用全等三角形证明两个角或线段相等;3.能够结合题目特点适当的添加辅助线,证明两个三角形全等或两个角相等或线段相等.【教学重难点】重点:中考题中利用全等三角形的判定及性质的有关问题; 难点:体会作辅助线的一般规律.【例1】在四边形ABCD 中,AC 平分∠BAD ,过点C 作CE ⊥AB 于E ,且AE =12(AB +AD),则∠ABC与∠ADC 间有何关系?为什么?【变式】如图,AE 是△ABC 中∠BAC 的外角平分线,D 是AE 上一点.求证:BD +DC >AB +AC .【例2】已知△ABC 中,AM 是BC 边上的中线,求证AM <12(ABEA B2+AC).【变式】如图,AD 平分BAC ∠,DE CD =,EF ∥AB ,求证:AC EF =.【例3】以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt △ACE ,∠BAD =∠CAE =60°,︒=∠=∠90CAE BAD .M 是BC 的中点,连接AM 、DE .探究:AM 与DE 的位置关系及数量关系.(1)如图1,当BAC ∠为直角时,AM 与DE 的位置关系是______________;线段AM 与DE 的数量 (2)如图2,当BAC ∠不为直角时,(1)中的两个结论是否发生改变?请说明理由.【例4】(2016蒙城县模拟)已知,点P 是Rt △ABC 斜边AB 上一动点(不与A 、B 重合),分别过A 、B 向直线CP 作垂线,垂足分别为E 、F 、Q 为斜边AB 的中点.A B C E D F DD M B C A EM B C E A图2图13(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系是 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA (或AB )的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【例5】如图1,△ABC 的边BC 在直线l 上, AC ⊥BC ,且AC =BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP .(1)在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连结AP 、BQ .补全图形后,猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP 、BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【例6】已知:△ABC 的两条角平分线BD 、CE 相交于点O . (1)如图1,若∠BAC =60°,求证:OD =OE ; (2)如图2,若∠BAC =40°,∠ABC =60°,求证:AC +BE =2BC .A AEDOOEDPF E C B AllP F E QC BAPC (F )B A (E )l 图1图2图34(1)在BC 上截取BF =BE ,连接OF ∵∠BAC =60°,∴∠ABC +∠ACB =120° ∵BD 平分∠ABC ,CE 平分∠ACB ∴∠OBC +∠OCB =60° ∴∠BOC =120°,∠BOE =∠COD =60° ∵BF =BE ,∠OBF =∠OBE ,BO =BO ∴△BOF ≌△BOE∴OF =OE ,∠BOF =∠BOE =60° ∴∠COF =60°,∴∠COF =∠COD 又OC =OC ,∠OCF =∠OCD ∴△COF ≌△COD ,∴OF =OD ∴OD =OE(2)作EG ⊥AC 于G ,EH ⊥BC 于H∵CE 平分∠ACB ,∴EG =EH ∴△CEG ≌△CEH ,∴CG =CH∵∠BAC =40°,∠ABC =60°,∴∠ACB =80° ∴∠ACE =40°,∴∠BAC =∠ACE∴EA =EC ,∴AG =CG ∵∠ABC =60°,∴BE =2BH∴AC +BE =2CG +2BH =2CH +2BH =2BC【例7】已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边.于点P (点P 不与点B 、点C 重合),△BMN 的边MN 始终..在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时,①如图a ,当θ=45°时,∠ANC 的度数为_________; ②如图b ,当θ≠45°时,①中的结论是否发生变化?说明理由; (2)如图c ,当∠BAC =∠MBN ≠90°时,①求证:BM ∥CN ;②直接写出∠ANC 与∠BAC 之间的数量关系.(1)①45°②不变过B 、C 分别作BD ⊥AP 于D ,CE ⊥AP 于E ∵∠BAC =90°,∴∠BAD +∠EAC =90°∵BD ⊥AE ,∴∠ADB =90°A B C F E DOAO E DB CH GM B C PNA θθ A a a a A θMB CPNB C P N (M ) 图a 图b 图c M BCP A θ aDE5∴∠ABD +∠BAD =90° ∴∠ABD =∠EAC又∵AB =AC ,∠ADB =∠CEA =90° ∴△ABD ≌△CAE ∴AD =CE ,BD =AE∵BD 是等腰Rt △BMN 斜边上的高∴BD =DN ,∠BND =45°∴DN =AE ,∴DN -DE =AE -DE 即NE=AD =CE ∵∠CEN =90°,∴∠ANC =45°【例8】在△ABC 中,AB =AC ,∠BAC =60°,点E 为直线AC 上一点,D 为直线BC 上一点,且DA =DE . (1)当点D 在线段BC 上时,如图1,求证:BD +AB =AE ;(2)当点D 在线段CB 的延长线上时,如图2、图3,猜想线段BD 、AB 和AE 之间又有怎样的数量关系?写出你的猜想,并选择一种情况给予证明.【例9】已知等腰Rt △ABC 和等腰Rt △CEF 有公共顶点C ,∠ABC =∠CEF =90°,连接AF ,M 是AF 的中点,连接BM ,EM .(1)如图1,当CB 与CE 在同一直线上时,求证:BM ∥CF ; (2)将△CEF 绕点C 顺时针旋转45°(如图2),求证:BM =ME 且BM ⊥ME ; (3)将△CEF 绕点C 旋转任意角度(如图3),探究BM 与ME 的数量关系和位置关系,并加以证明.ABCE F MABMEFCA B CE FM图 2C图 3CB图 1E EFCF CB6(1)证明:延长AB 交CF 于D则△ABC 与△BCD 均为等腰直角三角形 ∴AB =BC =BD ,∴B 是AD 的中点又∵M 是AF 的中点,∴BM 是△ADF 的中位线 ∴BM ∥CF(2)证明:延长BM 交CF 于D ,连接BE 、DE 由题意,∠BCE =45°,∠ECF =45° ∴∠BCF =90°=∠ABC ,∴AB ∥CF ∴∠ABM =∠FDM ,∠BAM =∠DFM ∵M 是AF 的中点,∴AM =FM∴△ABM ≌△FDM ,∴AB =DF ,BM =DM ∵AB =BC ,∴BC =DF 又∵∠BCE =∠DFE =45°,CE =FE∴△BCE ≌△DFE ,∴BE =DE ,∠BEC =∠DEF∴∠BED =∠BEC +∠CED =∠DEF +∠CED =∠CEF =90° ∴△BDE 是等腰直角三角形 ∴BM =ME 且BM ⊥ME (3)BM =ME 且BM ⊥ME证明:过F 作FG ∥AB ,交BM 延长线于G ,连接BE 、EG 则∠ABM =∠FGM ,∠BAM =∠GFM 又∵AM =FM ,∴△ABM ≌△GFM ∴AB =FG ,BM =GM ∵AB =BC ,∴BC =FG 过C 作CH ⊥AF 于H则∠BCH =∠BAM =∠GFM ,∠ECH =∠EFM∵∠BCE =∠BCH +∠ECH ,∠GFE =∠GFM +∠EFM ∴∠BCE =∠GFE又∵CE =FE ,∴△BCE ≌△GFE ∴BE =GE ,∠BEC =∠GEF∴∠BEG =∠BEC +∠CEG =∠GEF +∠CEG =∠CEF =90° ∴△BEG 是等腰直角三角形,∴BM =ME 且BM ⊥ME【家庭作业】1.已知,如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC . (1)求证:AM 平分∠DAB ;(2)猜想AM 与DM 的位置关系如何?并证明你的结论.ABCE FM图1DA B CEFM图3GH ABM EFC图2D ABCDM72.正方形ABCD 中,M 是AB 上一点,E 是AB 延长线上一点,MN ⊥DM 且交∠CBE 的平分线于N . (1)试判断线段MD 与MN 的关系,并说明理由.(2)若点M 在AB 延长线上,其它条件不变,上述结论还成立吗?试说明理由.A B CD M ENA B CD M EN。