初一数学(上册)《第四章 基本平面图形》单元测试题(十)

合集下载

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系中,矩形的顶点(1,0),(0,2),点在第一象限,∥轴,若函数=的图象经过矩形的对角线的交点,则的值为()A.4B.5C.8D.102、已知点A,B,C都是直线L上的点,且AB=5cm,BC=3cm,则点A与点C间的距离是()A.8cmB.2cm或4cmC.2cmD.2cm或8cm3、如图,∠AOC=∠BOD=90°,∠AOD=140°,则∠BOC的度数为()A.30°B.45°C.50°D.40°4、下列说法正确的个数是()①直径是圆中最长的弦;②弧是半圆;③过圆心的直线是直径;④半圆不是弧;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个5、将直尺和直角三角板按如图方式摆放,己知∠1=40°,则∠2的大小是()A.60°B.50°C.40°D.30°6、如图,轮船航行到B处观测小岛A的方向是北偏西32°,那么小岛A观测到轮船B的方向是( )A.南偏西32 °B.南偏东32°C.南偏西58°D.南偏东58°7、如图,已知菱形,,,E为中点,P为对角线上一点,则的最小值等于( )A. B. C. D.88、下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④9、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r10、将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于( )A.45°B.55°C.70°D.110°11、建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是()A.两点之间,线段最短B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线12、用六根火柴棒搭成4个正三角形(如图),现有一只虫子从点A出发爬行了5根不同的火柴棒后,到了C点,则不同的爬行路径共有()A.4条B.5条C.6条D.7条13、以下说法中,①在同一直线上的4点A、B、C、D只能表示5条不同的线段②经过两点有一条直线并且只有一条直线③同一锐角的补角一定大于它的余角,说法正确的是()A.②③B.③C.①②D.①14、下列说法正确的是()A.射线和射线是同一条射线B.连接两点的线段叫两点间的距离 C.两点之间,直线最短 D.六边形的对角线一共有9条15、如图是一副三角板摆成的图形,如果,那么等于()A.15°B.20°C.30°D.40°二、填空题(共10题,共计30分)16、如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________.17、如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=________.18、操作:某数学兴趣小组在研究用一副三角板拼角时,小明、小亮分别拼出图1、图2所示的两种图形,如图1,小明把30°和90°的角按如图1方式拼在一起;小亮把30°和90°的角按如图2方式拼在一起,并在各自所拼的图形中分别作出∠AOB、∠COD的平分线OE、OF.小明很容易地计算出图1中∠EOF=60°.计算:请你计算出图2中∠EOF=________度.归纳:通过上面的计算猜一猜,当有公共顶点的两个角∠α、∠β有一条边重合,且这两个角在公共边的异侧时,则这两个角的平分线所夹的角=________.(用含α、β的代数式表示)拓展:小明把图1中的三角板AOB绕点O顺时针旋转90°后得到图3,小亮把图2中的三角板AOB绕点O顺时针旋转90°后得到图4(两图中的点O、B、D在同一条直线上).在图3中,易得到∠EOF=∠DOF﹣∠BOE= ∠COD﹣∠AOB=45°﹣15°=30°;仿照图3的作法,请你通过计算,求出图4中∠EOF的度数(写出解答过程).反思:通过上面的拓展猜一猜,当有公共顶点的两个角∠α、∠β(∠α>∠β)有一条边重合,且这两个角在公共边的同侧时,则这两个角的平分线所夹的角=________.19、如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成________个三角形.20、将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD的度数是________.21、如图,平分,,则________.22、如图,将长方形纸片按如图所示的方式折叠,为折痕,点落在,点落在点在同一直线上,则________度;23、如图,点C在线段AB上,点E、F分别是AB、AC的中点,若BC=4,则EF=________.24、如图,C、D是线段AB上两点,D是AC的中点,若CB=3,DB=7,则AC的长为________.25、正三角形的外接圆半径、边心距之比为________.三、解答题(共5题,共计25分)26、计算11°23′26″×3.27、已知,如图,线段AD=10cm,点B,C都是线段AD上的点,且AC=7cm,BD=4cm,若E,F分别是线段AB,CD的中点,求BC与EF的长度.28、如图,点在线段上,,线段的中点之间的距离是20,求线段的长.29、如图,在平行四边形ABCD中,AB=5,AD=8,∠ABC的平分线BE交AD于点E,求线段ED的长。

北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)

北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)
A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)
4.如图,对于直线 AB ,线段 CD ,射线 EF ,其中能相交的图是( )
A.
B.
C.
D.
5.如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
6.如图,点 B , O , D 在同一直线上,若∠1=15°,∠2=105°,则 AOC 的度数是
( )
A.75°
B.90°
C.105°
D.125°
7.已知点 C 是线段 AB 上的一点,不能确定点 C 是 AB 中点的条件是( )
A. AC = CB
B. AC = 1 AB C. AB =2 BC 2
14. 如图,一副三角尺放在桌面上且它们的直角顶点重合在点 O 处,若 AOD =150°,则 BOD 的度数为________.
15.已知 A 、 B 、 C 三点在同一直线上,其中点 A 与点 B 的距离等于 2.4 千米,点 B 与点 C 的距离等于 3.5 千米,那么点 A 与点 C 的距离等于________千米. 16.如图所示,点 C 是线段 AB 上一点, AC < CB , M 、 N 分别是 AB 、 CB 的中点, AC =8, NB =5, 则线段 MN = .
180°的角),其
余条件不变,请借助图 3 探究 EOF 的大小,直接写出 EOF 的度数.
20.(12 分)如图, AOB =90°, AOC =30°,且 OM 平分 BOC , ON 平分 AOC ,
(1)求 MON 的度数; (2)若 AOB = 其他条件不变,求 MON 的度数; (3)若 AOC = ( 为锐角)其他条件不变,求 MON 的度数;

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,图中可以只用一个大写字母表示的角有()A.1个B.2个C.3个D.4个2、如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是( )A.18°B.126°C.18°或126°D.以上都不对3、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定4、我们把钟表的时针、分针及两针尖所连线段所围成的图形面积叫做这个钟表的该时刻面积.如图,△AOB的面积即为该钟表8点30分的时刻面积,那么从9时到10时,钟表的时刻面积等于该钟表8点30分的时刻面积的时刻数有( )A.4个B.3个C.2个D.1个5、如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处 D.灯塔在轮船的南偏西65°,120 n mile处6、一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条7、六边形的对角线共有()A.6条B.8条C.9条D.18条8、如图,将三角板的直角顶点放在直尺的一边上,若,则的度数为()A. B. C. D.9、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )A.8B.10C.12D.1410、将一块直角三角尺ABC按如图所示的方式放置,其中点A、C分别落在直线a、b上,若a∥b,∠1=62°,则∠2的度数为()A.28°B.30°C.38°D.62°11、如图,射线表示的方向是()A.北偏东35°B.北偏西65°C.南偏东65°D.南偏西35°12、下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A.1B.2C.3D.413、下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′14、钟表在8:25时,时针与分针的夹角度数是( )A.101.5°B.102.5°C.120°D.125°15、将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短 D.两点之间,线段最短二、填空题(共10题,共计30分)16、在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________17、如果∠AOB=34°,∠BOC=18°,那么∠AOC的度数是________.18、如图,有一个只有短针和长针的时钟,短针OA长6cm,长针OB长8cm,△0AB随着时间的变化不停地改变形状,则△AOB的最大面积为________ cm2.19、以的顶点O为端点引射线OC,使∶=5∶4,若,则的度数是________.20、如图,射线的方向是北偏东,射线的方向是北偏西,是的反方向延长线,若是的平分线,则________.21、如图,在一次活动中,位于A处的1班准备前往相距8km的B处与2班会合,如果用方位角和距离描述位置,则1班在2班的________.22、两点之间,________ 最短;在墙上固定一根木条至少要两个钉子,这是因为________23、如图,已知.若,则________.24、如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________°.25、钟表在3点40分时,它的时针和分针所成的角是________度.三、解答题(共5题,共计25分)26、已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.27、如图,,平分,且,求度数.28、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.29、已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度数.30、如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C 处在B处的北偏东82°方向,求∠C的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、B6、C7、C8、C9、B10、A11、C12、B13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

七年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.如图,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段(第1题)(第4题)2.已知三点A,B,C.画直线AB,画射线AC,连接BC.按照上述语句画图正确的是()3.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN4.如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD 的长为()A.6 B.4 C.2 D.55.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON等于()A.66°B.114°C.170°D.147°(第5题)(第6题)(第8题)6.如图是某住宅小区的平面图,点B是小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A-C-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B7.当时钟指向下午4:30时,时针和分针的夹角是()A.30°B.45°C.60°D.75°8.如图,OC是∠AOB的平分线,OD是∠COB的平分线,则下列各式正确的是()A.∠COD=12∠AOC B.∠AOD=23∠AOBC.∠BOD=13∠AOB D.∠BOC=23∠AOB9.如图,将一张长方形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD于点F,再将三角形DEF沿DF折叠,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是()(第9题)A.18°B.20°C.36°D.45°10.已知点C在线段AB上,则共有三条线段:AB,AC和BC.若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. 若AB =15,点C是线段AB的“巧点”,则AC的长为()A.5 B.7.5C.5或10 D.5或7.5或10二、填空题(每题3分,共15分)11.74°19′30″=________°.12.如图,甲从点A出发向北偏东62°方向走到点B,乙从点A出发向南偏西18°方向走到点C,则∠BAC的度数是__________.(第12题)(第13题)13.如图,小李同学在参加“几何小能手”社团活动时,制作了一副与众不同的三角尺,用它们可以画出一些特殊的角度.在①9°;②18°;③55°;④117°中,能用这副三角尺画出的角度是________(填序号).14.已知线段MN=12,点P在直线MN上,PM=3,点Q为MN的中点,则线段PQ的长为______________.15.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数为________.三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.在如图所示的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试着写出来.(第16题)17. 如图,已知线段a、b(a>b),用尺规作图法作一条线段,使其等于2a-b (不写作法,保留作图痕迹).(第17题)18.如图,已知∠AOB=130°,过∠AOB的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,求∠DOE的大小.(第18题)19.如图,把一个圆分成四个扇形,请分别求出这四个扇形的圆心角的度数.若该圆的半径为2 cm,请分别求出它们的面积.(第19题)20.已知一条直线上有A,B,C,共3个点,那么这条直线上总共有多少条线段?小亮的思路是这样的:以A为端点的线段有AB,AC,共2条,同样以B为端点,以C为端点的线段也各有2条,这样共有3×2=6(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有3×22=3(条)线段.那么,如果一条直线上有6个点,则这条直线上共有________条线段.如果在一条直线上有n个点,那么这条直线上共有________条线段.(1)请你帮小亮计算,并填空;(2)你能用上面的思路来解决“10名同学参加班上组织的乒乓球比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?21.阅读材料并回答问题:数学课上,老师给出了如下问题:如图①,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺).解:如图②.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=________.因为∠COD=65°,所以∠BOD=∠BOC+________=________.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图②中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图①中画出另一种情况对应的图形,并求∠BOD的度数.(第21题)22.如图,P是线段AB上一点,AB=12 cm,M,N两点分别从P,B出发以1 cm/s、3 cm/s的速度同时沿直线AB向左运动(M在线段AP上,N在线段BP上),运动时间为t s.(1)当M,N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.(第22题)23.阅读材料:如图①,将一副三角尺的直角顶点C叠放在一起,若∠DCE=35°,则∠ACB =________;若∠ACB=150°,则∠DCE=________.由此你能得到什么结论?解:因为∠ACD=90°,∠DCE=35°,所以∠ACE=90°-35°=55°,因为∠BCE=90°,所以∠ACB=∠ACE+∠BCE=55°+90°=145°;因为∠BCE=90°,∠ACB=150°,所以∠ACE=150°-90°=60°,因为∠ACD=90°,所以∠DCE=∠ACD-∠ACE=90°-60°=30°,所以能得到结论∠ACB+∠DCE =180°.故答案为:145°;30°∠ACB+∠DCE=180°.解决问题:(1)当图①变为图②时,∠ACB与∠DCE之间的数量关系还存在吗?为什么?(2)如图③,若将两个同样的三角尺的60°角的顶点A重合在一起,请你猜想∠BAD与∠CAE有何关系,请说明理由;(3)如图④,如果把任意两个锐角∠AOB,∠COD的顶点O重合在一起,设∠AOB=α,∠COD=β(α,β都是锐角),请你直接写出∠AOD与∠BOC的关系.(第23题)答案一、1.B 2.A 3.C 4.C5.D6.D7.B8.A9.C10.D二、11.74.32512. 136°13. ①②④14.3或915.6三、16.解:线段:线段AB、线段AC、线段BD、线段BE、线段CD、线段CF、线段DE、线段DF、线段EF.射线:射线AB、射线AC、射线BA、射线CA.直线:直线AB、直线AC.17.解:如图所示,线段OC即为所求.(第17题)18.解:因为OD,OE分别平分∠AOC和∠BOC,所以∠DOC=12∠AOC, ∠COE=12∠BOC,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.又因为∠AOB=130°,所以∠DOE=12×130°=65°.19.解:扇形AOB的圆心角为360°×35%=126°.扇形BOC的圆心角为360°×10%=36°.扇形COD的圆心角为360°×25%=90°.扇形AOD的圆心角为360°×30%=108°.圆的面积为π×22=4π(cm2).所以扇形AOB的面积为4π×35%=1.4π(cm2).扇形BOC的面积为4π×10%=0.4π(cm2).扇形COD的面积为4π×25%=π(cm2).扇形AOD的面积为4π×30%=1.2π(cm2).20.解:(1)15;n(n-1)2.(2)把10名同学看成直线上的10个点,每两名同学之间的一场比赛看成一条线段,直线上10个点所构成的线段条数就等于比赛的场数,因此一共要进行10×(10-1)2=45(场)比赛.21.解:(1)45°;∠COD;110°.(第21题)(2)正确.如图.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=45°.因为∠COD=65°,所以∠BOD=∠COD-∠BOC=20°.22.解:(1)当M,N运动1 s时,PM=1 cm,BN=3 cm.因为AB=12 cm,所以AM+PN=12-1-3=8(cm).因为PN=3AM,所以4AM=8 cm,所以AM=2 cm.所以AP=AM+PM=3 cm.(2)AP的长度不会变化.根据题意可知PM=t cm,BN=3t cm.因为AB=12 cm,所以AM+PN=(12-4t)cm.因为PN=3AM,所以4AM=(12-4t)cm,所以AM=(3-t)cm.所以AP=AM+PM=3-t+t= 3 cm.(3)由已知条件可知,点Q在线段BA的延长线上或在线段AP上时不符合题意,所以当点Q在线段PB上时,由(2)可知AP=3 cm,则BP=9 cm.所以AQ=PQ+BQ=BP=9 cm.因为AQ=AP+PQ,所以PQ=AQ-AP=6 cm.当点Q在线段AB的延长线上时,AQ=AB+BQ.因为AQ=PQ+BQ,所以PQ=AB=12 cm.综上所述,PQ=6 cm或12 cm.23.解:(1)存在.理由:因为∠ACD=90°,∠BCE=90°,所以∠ACD+∠BCE=180°.所以∠ACB+∠DCE=360°-(∠ACD+∠BCE)=360°-180°=180°. (2)∠BAD-∠CAE=120°.理由:因为∠CAD=60°,∠BAE=60°,所以∠BAD-∠CAE=∠CAD+∠CAE+∠BAE-∠CAE=∠CAD+∠BAE =60°+60°=120°.(3)∠AOD+∠BOC=α+β.11。

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。

初一数学(上册)《第四章基本平面图形》单元测试题(十)

初一数学(上册)《第四章基本平面图形》单元测试题(十)

初一数学(上册)《第四章 基本平面图形》单元测试题(十)一、填空题:1.两点之间的所有连线中,_______最短.2.两点之间线段的__________,叫做这两点之间的距离.3.如图,根据图形填空.AD =AB+ + ,AC = + ,CD =AD - .4.如图,学生要去博物馆参观,从学校A 处到博物馆B 处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A 处赶到B 处,假设行走的速度不变,你认为应该走第________条线路(只填序号)最快,理由是___________________。

5.若AB=BC=CD 那么AD= AB AC= ADDCBA(3题)DCBA(7题)6.点B 把线段AC 分成两条相等的线段,点B 就叫做线段AC 的_______,这时,有AB=_______,AC=_______BC ,AB=BC=_______AC.点B 和点C 把线段AD 分成三条相等的线段,则点B 和点C 就叫做AD 的_______.7.如图所示,BC =4cm ,BD =7cm,D 是AC 的中点,则AC =_______cm,AB=_____cm.8.比较两名学生的身高,我们有_______种方法. 一种为直接用卷尺量出,另一种可以让两人站在一块平地上,再量出差.这两种方法都是把身高看成一条___ . 方法(1)是直接量出线段的_______,再作比较.方法(2)是把两条线段的一端_______,再观察另一个_______.9.延长线段AB 到C ,使BC =2AB ,再反向延长线段AB 到D.使AD =3AB ,那么DC =_______AB =_______BC ,BD =______AB=______BC.10.若线段AB=a ,C 是线段AB 上的任意一点,M 、N 分别是AC 和CB 的中点,则MN=_______. 11.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定 条直线。

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、经过A、B两点可以确定几条直线()A.1条B.2条C.3条D.无数条2、如图,和都是直角.如果,则下列判断错误的是()A. B. C.D.若变小,则变大3、从十二边形的一个顶点出发,可引出对角线()条A.9条B.10条C.11条D.12条4、如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(有阴影部分)面积之和为S2,则=()A. B. C. D.15、一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条6、根据下图,下列说法中不正确的是()A.图①中直线经过点B.图②中直线,相交于点C.图③中点在线段上D.图④中射线与线段有公共点7、已知抛物线与x轴交于两点,则线段AB 的长度为()A.1B.2C.3D.48、将一长方形纸片,按图中的方式折叠,BC、BD为折痕,折叠后点E′刚好落在A′B 上,则∠CBD的度数为()A.60°B.75°C.90°D.95°9、把一条弯曲的河流改成直道,可以缩短航程,用数学知识解释其道理为()A.两点确定一条直线B.经过两点有且仅有一条直线C.直线可以向两端无限延伸D.两点之间,线段最短10、如图过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直11、已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是()A.( ,)B.( ,)C.(-3,-1) D.(-3,)12、已知线段AB=1.8cm,点C在AB的延长线上,且AC=BC,则线段BC等于()A.2.5cmB.2.7cmC.3cmD.3.5cm13、一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有()A.42条B.54条 C.66条D.78条14、钟表8时30分时,时针与分针所成的角的度数为()A.30°B.60°C.75°D.90°15、如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°二、填空题(共10题,共计30分)16、如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC= ∠AOD,则∠AOD=________.17、五边形共有________条对角线。

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章 基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)

第四章基本平面图形数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.2、“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短3、如图是我们常用的塑料三角板,则图中阴影部分面积是( )A.ab-2πrB. ab-2πrC. ab-πr 2D.ab-πr 24、下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段,则点是线段的中点;③射线与射线是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有()A.1个B.2个C.3个D.4个5、上午,时钟上分针与时针之间的夹角为()A. B. C. D.6、利用一副三角板上已知度数的角,不能画出的角是()A.15°B.135°C.165°D.100°7、京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6B.12C.15D.308、下列结论中,正确的是()A.﹣7<﹣8B.85.5°=85°30′C.﹣|﹣9|=9D.2a+a 2=3a 29、如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O,则下列说法一定成立的是()A. B. C. 与互补 D. 与互余10、如图,下列语句中,描述错误的是()A.直线AB与射线OP相交于点OB.点P在直线AB上C.∠AOP与∠BOP互为补角D.点O在直线AB上11、如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:()A.两点之间,直段最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线12、下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个13、下列语句中,不正确的有()①直径是弦;②弧是半圆;③经过圆内一定点可以作无数条弦;④长度相等的弧是等弧.A.①③④B.②③C.②D.②④14、下列说法错误的是( )A.如果两条直线都与第三条直线平行,那么这两条直线平行B.“画一条线段AB=5cm”是一个命题C.过直线外一点有且只有一条直线与这条直线平行D.两点之间,线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学(上册)《第四章 基本平面图形》单元测试题(十)
一、填空题:
1.两点之间的所有连线中,_______最短.
2.两点之间线段的__________,叫做这两点之间的距离.
3.如图,根据图形填空.AD =AB+ + ,AC = + ,CD =AD - .
4.如图,学生要去博物馆参观,从学校A 处到博物馆B 处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A 处赶到B 处,假设行走的速度不变,你认为应该走第________条线路(只填序号)最快,理由是___________________。

5.若AB=BC=CD 那么AD= AB AC= AD
D
C
B
A
(3题)
D
C
B
A
(7题)
6.点B 把线段AC 分成两条相等的线段,点B 就叫做线段AC 的_______,这时,有AB=_______,AC=_______BC ,AB=BC=_______AC.点B 和点C 把线段AD 分成三条相等的线段,则点B 和点C 就叫做AD 的_______.
7.如图所示,BC =4cm ,BD =7cm,D 是AC 的中点,则AC =_______cm,AB=_____cm.
8.比较两名学生的身高,我们有_______种方法. 一种为直接用卷尺量出,另一种可以让两人站在一块平地上,再量出差.这两种方法都是把身高看成一条___ . 方法(1)是直接量出线段的_______,再作比较.
方法(2)是把两条线段的一端_______,再观察另一个_______.
9.延长线段AB 到C ,使BC =2AB ,再反向延长线段AB 到D.使AD =3AB ,那么DC =_______AB =_______BC ,BD =______AB=______BC.
10.若线段AB=a ,C 是线段AB 上的任意一点,M 、N 分别是AC 和CB 的中点,则MN=_______. 11.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定 条直线。

12.已知:A 、B 、C 三点在一条直线上,且线段AB=15cm ,BC=5cm ,则线段AC=_______。

13.已知线段AB =
3
1
AC ,AB+AC =16cm.那么AC =______cm ,AB=_____cm. 14.OC 是∠AOB 内部的一条射线,若∠AOC=1
2
________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC.
15.如图(2),∠AOC=______+
______=______-______;∠BOC=______-______=
_____-________.
O D
C
(2)
A
B
16. 下图中,有 条直线, 条射线, 条线段,这些线段的名称分别是:

17.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是 .
18. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其
中以B 为端点的线段是________;经过点D 的直线是________,可以表示出来的射线有________条.
二.选择题:
1.O 、P 、Q 是平面上的三点,PQ=20㎝,OP+OQ=30㎝,那么下列正确的是( )
A.O 是直线PQ 外
B.O 点是直线PQ 上
C.O 点不能在直线PQ 上
D.O 点可能在直线PQ 上 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( ) A.MB =
2
1
AB B.AM =MB C.AM+MB =AB D.AB =2AM 3.下列语句正确的是( )
A.在所有连结两点的线中,直线最短.
B.两点之间线段最短.
C.画出A 、B 两点间的距离.
D.连结两点的线段叫做两点间的距离.
4.如图,C 、D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =a ,CD =b ,则AB =( ) A.a-b B.a+b C.2a-b D.2a+b
F
E
D
C
B
A
(4题图)
5.已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =5cm ,则线段AC 的长度为( ) A.3cm 或13cm B.3cm C.13cm D.18cm
6. 下列说法错误的是( )
A. 平面内过一点有且只有一条直线与已知直线垂直
B. 两点之间的所有连线中,线段最短
C.经过两点有且只有一条直线
D. 过一点有且只有一条直线与已知直线平行 7.平面上的三条直线最多可将平面分成( )部分 A .3 B .6 C . 7 D .9 8.如果A BC 三点在同一直线上,且线段AB=4CM ,BC=2CM ,那么AC 两点之间的距离为( )
A .2CM
B . 6CM
C .2 或6CM
D .无法确定 9.下列说法正确的是( )
A .延长直线A
B 到
C ; B .延长射线OA 到C ; C .平角是一条直线;
D .延长线段AB 到C 10.如果你想将一根细木条固定在墙上,至少需要几个钉子( ) A .一个 B .两个 C .三个 D .无数个 11.点P 在线段EF 上,现有四个等式①PE=PF;②PE=
12EF;③1
2
EF=2PE;④2PE=EF;其中能表示点P 是EF 中点的有( ) A .4个 B .3个 C .2个 D .1个
12. 如图所示,从A 地到达B 地,最短的路线是( ). A .A →C →E →B B .A →F →E →B C .A →D →E →B
D .A →C →G →
E →B
13.在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线 段AC 的中点,那么线段OB 的长度是( )
A .2㎝
B .0.5㎝
C .1.5㎝
D .1㎝ 14.如果AB=8,AC=5,BC=3,则( )
A . 点C 在线段A
B 上 B . 点B 在线段AB 的延长线上
C . 点C 在直线AB 外
D .点C 可能在直线AB 上,也可能在直线AB 外 15.下列说法错误的有( )个 A 、0 B 、1 C 、2 D 、3
①角的大小与角的边画出部分的长短没有关系;②.角的大小与它们的度数大小是一致的; ③.角的和差倍分的度数等于它们的度数的和差倍分; ④.若∠A+∠B>∠C,那么∠A 一定大于∠C 。

16.用一副三角板不能画出( ) A.75°角 B.135°角 C.160°角 D.105°角 17.如图(3),若∠AOC=∠BOD,那么∠AOD 与∠BOC 的关系是( )
A.∠AOD>∠BOC
B.∠AOD<∠BOC;
C.∠AOD=∠BOC
D.无法确定
O
D
C
(3)
A B
18.手电筒射出的光线,给我们的形象是( ) A .直线 B .射线 C .线段 D .折线 19.下列各图中直线的表示法正确的是( ).
20.如图所示,点C 、B 在线段AD 上,且AB =CD ,则AC 与BD 的大小关系是( )
A .AC >BD
B .A
C =B
D C .AC <BD D .不能确定 三、能力提升
1.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

3.观察图①,由点A 和点B 可确定 条直线;观察图②,由不在同一直线上的三点A 、B 和C 最多能确定 条直线;
(1)动手画一画图③中经过A 、B 、C 、D 四点的所有直线,最多共可作 条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定 条直线、n 个点(n ≥2)最
多能确定 条直线。

4.如图,∠AOB 是平角,OD 、OC 、OE 是三条射线,OD 是∠AOC 的平分线, 请你补充一个条件,使∠DOE=90°,并说
明你的理由.
O
D C
A
E B。

相关文档
最新文档