统计学第七章、第八章课后题答案之欧阳地创编

合集下载

统计学第七章、第八章课后题答案之欧阳学创编

统计学第七章、第八章课后题答案之欧阳学创编

统计学复习笔记第七章第八章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5.简述样本量与置信水平、总体方差、估计误差的关系。

1.估计总体均值时样本量n为其中:2.样本量n与置信水平1-α、总体方差、估计误差E之间的关系为▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

二、练习题1.从一个标准差为5的总体中采用重复抽样方法抽出一个样本量为40的样本,样本均值为25。

统计学原理 第七章课后习题及答案

统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。

(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。

(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。

(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。

(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。

(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。

(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。

(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。

(1)21.2 2(3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。

(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。

(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。

统计学课后习题答案(全)

统计学课后习题答案(全)

<<统计学>>课后习题参考答案第四章1. 计划完成相对指标==⨯++%100%51%81102.9% 2. 计划完成相对指标=%9.97%100%41%61=⨯-- 3.4.5.解:(1)计划完成相对指标=%56.115%1004513131214=⨯+++(2)从第四年二季度开始连续四季的产量之和为:10+11+12+14=47天完成任务。

个月零该产品总共提前天完成的天数已提前完成任务,提前该产品到第五年第一季1510459010144514121110∴=--+++=6.解:计划完成相对指标=%75.126%100%1.0102005354703252795402301564=⨯⨯⨯++++++(2)156+230+540+279+325+470=2000(万吨) 所以正好提前半年完成计划。

7.8.略第五章 平均指标与标志变异指标1.甲X =.309343332313029282726=++++++++乙X =44.319403836343230282520=++++++++ AD 甲=}22.29303430333032303130303029302830273026=-+-+-+-+-+-+-+-+-AD 乙=}06.594044.313844.313644.313444.313244.313044.312844.312544.3120=-+-+-+-+-+-+-+-+-R 甲=34-26=8 R 乙=40-20=20σ甲 =9)3334()3033()3032()3031()3030()3029()3028()3027()3026(222222222-+-+-+-+-+-+-+-+-=2.58 σ乙=9)44.3140()44.3138()44.3136()44.3134()44.3132()44.3130()44.3128()44.3125()44.3120(222222222-+-+-+-+-+-+-+-+-=6.06V 甲=1003058.2⨯%=8.6% V 乙=%3.19%10044.3106.6=⨯ 所以甲组的平均产量代表性大一些. 2.解:计算过程如下表:甲X =.)(5.101780元= 乙X =(元)9708077600= 3.解:计算过程如下表:甲X =.4.11980=(件) 乙X =8.120809660=(件) σ甲=06.98075.6568=(件) σ乙=81.10809355=(件) V 甲=1004.11906.9⨯%=7.58% V 乙=%94.8%1008.12081.10=⨯ 所以甲厂工人的平均产量的代表性要高些.4. 解:()()94.761018102457047.7610121871871870775121873595128518757653550=⨯-+==⨯-+--+==++++⨯+⨯+⨯+⨯+⨯=e M M X 5.解:(1)上期的平均计划完成程度为:()()第六章元解解度为下期的平均计划完成程tH V P X P P P P /3.2884102950943.5062900255.3212800604.43210943.506255.321604.432:.7%1.32%1009067.0291.0291.0%67.901%67.90%67.90%67.90%10030028300:.6%37.103%1031400%1011200%107810%110961400120081096:)2(%67.99%1001500100070080%951500%1001000%108700%1108044=⨯⎪⎭⎫ ⎝⎛++⨯++==⨯==-⨯====⨯-==++++++=⨯+++⨯+⨯+⨯+⨯σ1.()())(7.788%67.41500:2000%67.41500600:.6)(6.62126907106557306806702650600269071061527106556552655730620273068060026806706402670650:2)(7.62327107006907206806202680610271070062527006906452690720640272068062026806206002620680:)1(:.5%63.79%10026206005802580257646245002435:.4%85.105%100%113385%102350%97463%120485%105412%112410%98368%106350%105310%110324%102306%101303385350463485412410368350310324306303::.3872232122221030980329809002290010201210208402284067022670600.2104万吨年该县粮食产量为平均增长速度解元工人的月平均工资为乙工区上半年建筑安装元工人的月平均工资为甲工区上半年建筑安装解解度为全年月平均计划完成程解=+⨯=-==++++++⨯++⨯++⨯++⨯++⨯++⨯+=++++++⨯++⨯++⨯++⨯++⨯++⨯+=⨯++++++==⨯++++++++++++++++++++++=+++++⨯++⨯++⨯++⨯++⨯++⨯+=C a 7解:计算过程如下表:)(94.6653.444.45:1994:3.46025844.4594092万元年的地方财政支出额为则直线趋势方程为=⨯++=======∑∑∑bta y t tyb ny a二次曲线方程为:y = 0.0108x 2 + 4.1918x + 24.143(过程略) 指数曲线方程为:y = 26.996e 0.0978x8.解:计算过程如下表:9.解:(1)同季平均法求季节比率的过程如下表:(2)趋势剔除法测定的季节变动如下表:第七章 统计指数()()()()01001011111175000124000081138.44%5000012350008750002540000182138.03%500002535000181075000940000390.98%127500084000022750002540000425qqzpk q z q zq p q p q z kq z p q k p q⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯==∑∑∑∑∑∑∑∑111111110102.12%75000184000015602.108.8%1200360110%105%pp q p q k p q p q p p=⨯+⨯====+∑∑∑∑11111560.135.65%1150135.65%124.68%108.8%.120%1800115%90096%6003.114.27%330042003300111.38%114.27%.pqpq qpqpq p qp q k p qk k k q q p q p q k q p q pkk k======⨯+⨯+⨯=======∑∑∑∑∑∑ 110101001013200005.100%128%250000128%123.1%14%320000307692.3104%307692.325000057692.3320000307692.312307.pq pqq PpK K K p qp q K p q p qq p q =⨯====+===-=-=-=-=∑∑∑∑∑∑1解:K 零售量变动对零售额变动影响的绝对值为:(万元)零售物价变动对零售总额变动影响的绝对值为:p 1110010000107350000120%120%180000110%110%116%116%17.6%107.6%350000291666.67120%180000163636.36.110%1pq pq q q pq pq q q K q K q p q Kq p q K p q p q ==+===+==+==+========⨯=∑∑∑∑∑∑∑∑城1城农城农1农1城城城1农农农城城城(万元)6.解:已知p ,,p ,,K ,K p 则p K 0010111101001116%291666.67338333.33107.6%163636.36176072.72350000180000103.03%338333.33176072.723%q pp q p q p q q q k p q p q p q ⨯==⨯=⨯=++====++∴∑∑∑∑∑∑∑∑农农农11城农城农K p p 该地区城乡价格上涨了。

《统计学》教材各章参考答案

《统计学》教材各章参考答案

各章思考与练习参考答案第一章导论(一)单项选择题1.D 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.B 10.A (二)多项选择题:1.ABCD 2.CD 3.AD 4.BCDE 5.ABDE(三)判断题:1.×2.×3.×4.√5.×(四)简答题:答案略(五)综合题答案略第二章统计调查(一)单项选择题:1.C 2.C 3.B 4.C 5.C 6.A 7.B 8.C 9.C 10.B (二)多项选择题:1.ACD 2.ABC 3.ABCD 4.ABC 5.ACD6.ABCD 7.ABDE 8.BCE 9.ABE 10.CD(三)判断题:1.×2.×3.×4.√5.×(四)名词解释:答案略㈤(五)简答题:答案略第三章统计整理(一)单项选择题:1.C 2.B 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.B (二)多项选择题:1.AB 2.BD 3.ACD 4.AD 5.BCD6.BD 7.ABC 8.AC 9.ABC 10.CD(三)判断题:1.×2.√3.×4.×5.×(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:2可见,组距1000元的分布数列,更为合理。

(2)对选中的分布数列,计算频率、较小制累计次数、较大制累计次数、组中值:(3)略第四章总量指标与相对指标(一)单项选择题:1.C 2.B 3.A 4.B 5.C 6.B 7.B 8.C 9.B 10.D(二)多项选择题:1.ABCD 2.CE 3.ABCDE 4.BCE 5.ABCD(三)判断题:1.X 2.X 3.X 4.√5.X(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:该企业集团实现利润比去年增长百分比 =110%/(1+7%)-1=2.80%2.解:(1)2011年的进出口贸易差额=12178-9559=2619(亿元)(顺差)2011年进出口总额的发展速度=21737/17607×100%=123.46%(2)2011年进出口额比例相对数=9559/12178×100%=78.49%2011年出口额结构相对数=12178/21737×100%=56.02%(3)该地区进出口贸易发展速度较快,出现贸易顺差。

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1、相关分析就是研究变量之间得A、数量关系B、变动关系C、因果关系D、相互关系得密切程度2、在相关分析中要求相关得两个变量A、都就是随机变量B、⾃变量就是随机变量C、都不就是随机变量D、因变量就是随机变量3、下列现象之间得关系哪⼀个属于相关关系?A、播种量与粮⾷收获量之间关系B、圆半径与圆周长之间关系C、圆半径与圆⾯积之间关系D、单位产品成本与总成本之间关系4、正相关得特点就是A、两个变量之间得变化⽅向相反B、两个变量⼀增⼀减C、两个变量之间得变化⽅向⼀致D、两个变量⼀减⼀增5、相关关系得主要特点就是两个变量之间A、存在着确定得依存关系B、存在着不完全确定得关系C、存在着严重得依存关系D、存在着严格得对应关系6、当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A、直线相关关系B、负相关关系C、曲线相关关系在着A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系8、当变量X值增加时,变量Y值都随之增加,则变量X与Y之间存在着A、直线相关关系B、负相关关系C、曲线相关关系D、正相关关系9、判定现象之间相关关系密切程度得最主要⽅法就是A.对现象进⾏定性分析 B、计算相关系数C、编制相关表D、绘制相关图10、相关分析对资料得要求就是A.⾃变量不就是随机得,因变量就是随机得B、两个变量均不就是随机得C、⾃变量就是随机得,因变量不就是随机得D、两个变量均为随机得11、相关系数A、既适⽤于直线相关,⼜适⽤于曲线相关B、只适⽤于直线相关C、既不适⽤于直线相关,⼜不适⽤于曲线相关D、只适⽤于曲线相关12、两个变量之间得相关关系称为A、单相关B、复相关C、不相关D、负相关13、相关系数得取值范围就是A、-1≤r≤1B、-1≤r≤0C、0≤r≤114、两变量之间相关程度越强,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于115、两变量之间相关程度越弱,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于116、相关系数越接近于-1,表明两变量间A、没有相关关系B、有曲线相关关系C、负相关关系越强D、负相关关系越弱17、当相关系数r=0时,A.现象之间完全⽆关 B、相关程度较⼩B.现象之间完全相关 D、⽆直线相关关系18、假设产品产量与产品单位成本之间得相关系数为-0、89,则说明这两个变量之间存在A、⾼度相关B、中度相关C、低度相关D、显著相关19、从变量之间相关得⽅向瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关20、从变量之间相关得表现形式瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关21、物价上涨,销售量下降,则物价与销售量之间属于B、负相关C、正相关D、⽆法判断22、配合回归直线最合理得⽅法就是A、随⼿画线法B、半数平均法C、最⼩平⽅法D、指数平滑法23、在回归直线⽅程y=a+bx中b表⽰A、当x增加⼀个单位时,y增加a得数量B、当y增加⼀个单位时,x增加b得数量C、当x增加⼀个单位时,y得平均增加量D、当y增加⼀个单位时, x得平均增加量24、计算估计标准误差得依据就是A、因变量得数列B、因变量得总变差C、因变量得回归变差D、因变量得剩余变差25、估计标准误差就是反映A、平均数代表性得指标B、相关关系程度得指标C、回归直线得代表性指标D、序时平均数代表性指标26、在回归分析中,要求对应得两个变量A、都就是随机变量B、不就是对等关系C、就是对等关系D、都不就是随机变量27、年劳动⽣产率(千元)与⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A、增加70元B、减少70元C、增加80元D、减少80元固定成本6000元,则总⽣产成本对产量得⼀元线性回归⽅程为:A、y=6+0、24xB、y=6000+24xC、y=24000+6xD、y=24+6000x29、⽤来反映因变量估计值代表性⾼低得指标称作A、相关系数B、回归参数C、剩余变差D、估计标准误差⼆、多项选择题1、下列现象之间属于相关关系得有A、家庭收⼊与消费⽀出之间得关系B、农作物收获量与施肥量之间得关系C、圆得⾯积与圆得半径之间得关系D、⾝⾼与体重之间得关系E、年龄与⾎压之间得关系2、直线相关分析得特点就是A、相关系数有正负号B、两个变量就是对等关系C、只有⼀个相关系数D、因变量就是随机变量E、两个变量均就是随机变量3、从变量之间相互关系得表现形式瞧,相关关系可分为A、正相关B、负相关C、直线相关D、曲线相关E、单相关与复相关4、如果变量x与y之间没有线性相关关系,则A、相关系数r=0B、相关系数r=1C、估计标准误差等于0D、估计标准误差等于15、设单位产品成本(元)对产量(件)得⼀元线性回归⽅程为y=85-5、6x,则A.单位成本与产量之间存在着负相关B、单位成本与产量之间存在着正相关C、产量每增加1千件,单位成本平均增加5、6元D、产量为1千件时,单位成本为79、4元E、产量每增加1千件,单位成本平均减少5、6元6、根据变量之间相关关系得密切程度划分,可分为A、不相关B、完全相关C、不完全相关D、线性相关E、⾮线性相关7、判断现象之间有⽆相关关系得⽅法有A、对现象作定性分析B、编制相关表C、绘制相关图D 、计算相关系数E 、计算估计标准误差8、当现象之间完全相关得,相关系数为A 、0B 、-1C 、1D 、0、5E 、-0、59、相关系数r =0说明两个变量之间就是A 、可能完全不相关B 、可能就是曲线相关C 、肯定不线性相关D 、肯定不曲线相关E 、⾼度曲线相关10、下列现象属于正相关得有A.家庭收⼊愈多,其消费⽀出也愈多B 、流通费⽤率随商品销售额得增加⽽减少D 、⽣产单位产品耗⽤⼯时,随劳动⽣产率得提⾼⽽减少E 、⼯⼈劳动⽣产率越⾼,则创造得产值就越多11、直线回归分析得特点有A 、存在两个回归⽅程B 、回归系数有正负值C 、两个变量不对等关系D 、⾃变量就是给定得,因变量就是随机得E 、利⽤⼀个回归⽅程,两个变量可以相互计算12、直线回归⽅程中得两个变量A 、都就是随机变量B 、都就是给定得变量C 、必须确定哪个就是⾃变量,哪个就是因变量D 、⼀个就是随机变量,另⼀个就是给定变量E 、⼀个就是⾃变量,另⼀个就是因变量13、从现象间相互关系得⽅向划分,相关关系可以分为A 、直线相关B 、曲线相关C 、正相关D 、负相关E 、单相关14、估计标准误差就是A.说明平均数代表性得指标B 、说明回归直线代表性指标C 、因变量估计值可靠程度指标D 、指标值愈⼩,表明估计值愈可靠E 、指标值愈⼤,表明估计值愈可靠15、下列公式哪些就是计算相关系数得公式16、⽤最⼩平⽅法配合得回归直线,必须满⾜以下条件A 、∑(y-y c )=最⼩值B 、∑(y-y c )=0C 、∑(y-y c )2=最⼩值D 、∑(y-y c )2=0E 、∑(y-y c )2=最⼤值17、⽅程y c =a+bx)((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这就是⼀个直线回归⽅程B、这就是⼀个以X为⾃变量得回归⽅程C、其中a就是估计得初始值D、其中b就是回归系数E、y c就是估计值18、直线回归⽅程y c=a+bx中得回归系数bA.能表明两变量间得变动程度B、不能表明两变量间得变动程度C、能说明两变量间得变动⽅向D、其数值⼤⼩不受计量单位得影响E、其数值⼤⼩受计量单位得影响19、相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B、回归系数⼩于零则相关系数⼩于零C、回归系数等于零则相关系数等于零D、回归系数⼤于零则相关系数⼩于零E、回归系数⼩于零则相关系数⼤于零20、配合直线回归⽅程得⽬得就是为了A.确定两个变量之间得变动关系 B、⽤因变量推算⾃变量C、⽤⾃变量推算因变量D、两个变量相互推算E、确定两个变量之间得相关程度21、若两个变量x与y之间得相关系数r=1,则A.观察值与理论值得离差不存在B、y得所有理论值同它得平均值⼀致C、x与y就是函数关系D、x与y不相关E、x与y就是完全正相关22、直线相关分析与直线回归分析得区别在于A.相关分析中两个变量都就是随机得;⽽回归分析中⾃变量就是给定得数值,因变量就是随机得B.回归分析中两个变量都就是随机得;⽽相关分析中⾃变量就是给定得数值,因变量就是随机得C、相关系数有正负号;⽽回归系数只能取正值E、相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1、研究现象之间相关关系称作相关分析。

统计学课后答案第七八章之欧阳语创编

统计学课后答案第七八章之欧阳语创编

6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为μ盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差 1.0σ=盎司的正态分布。

随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。

试确定样本均值偏离总体均值不超过0.3盎司的概率。

解:总体方差知道的情况下,均值的抽样分布服从()2,N nσμ的正态分布,由正态分布,标准化得到标准正态分布:x()0,1N ,因此,样本均值不超过总体均值的概率P 为:()0.3P x μ-≤=P⎫≤=x P ⎛⎫≤≤=()0.90.9P z -≤≤=2()0.9φ-1,查标准正态分布表得()0.9φ=0.8159因此,()0.3P x μ-≤=0.63186.2在练习题6.1中,我们希望样本均值与总体均值μ的偏差在0.3盎司之内的概率达到0.95,应当抽取多大的样本?解:()0.3P x μ-≤=P ⎫≤=x P ⎛⎫≤≤=210.95Φ-≥0.975⇒Φ≥6.3 1Z ,2Z ,……,6Z 表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b ,使得解:由于卡方分布是由标准正态分布的平方和构成的: 设Z 1,Z 2,……,Z n 是来自总体N (0,1)的样本,则统计量服从自由度为n 的χ2分布,记为χ2~ χ2(n ) 因此,令6221ii Zχ==∑,则()622216i i Z χχ==∑,那么由概率6210.95i i P Z b =⎛⎫≤= ⎪⎝⎭∑,可知: b=()210.956χ-,查概率表得:b=12.596.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差21σ=的标准正态分布。

假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差22211(())1ni i S S Y Y n ==--∑,确定一个合适的范围使得有较大的概率保证S 2落入其中是有用的,试求b 1,b 2,使得解:更加样本方差的抽样分布知识可知,样本统计量: 此处,n=10,21σ=,所以统计量根据卡方分布的可知: 又因为: 因此: 则:查概率表:()20.959χ=3.325,()20.059χ=19.919,则()20.95199b χ==0.369,()20.05299b χ==1.887.1 从一个标准差为5的总体中采用重复抽样方法抽出一个样本容量为40的样本,样本均值为25。

统计学第五版课后答案(贾俊平)之欧阳体创编

统计学第五版课后答案(贾俊平)之欧阳体创编

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:StatisticsMissing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.007512.504.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo 有两个:19、23;从累计频数看,中位数Me=23。

(2)根据定义公式计算四分位数。

Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。

(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

为分组情况下的直方图:为分组情况下的概率密度曲线: 分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 最小值)÷ 组数=(4115)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的均值与方差:分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。

统计学原理 第七章课后习题及答案

统计学原理 第七章课后习题及答案

第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。

(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。

(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。

(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。

(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。

(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。

(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。

(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。

(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。

(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。

(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学复习笔记第七章第八章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5.简述样本量与置信水平、总体方差、估计误差的关系。

1.估计总体均值时样本量n为其中:2.样本量n与置信水平1-α、总体方差、估计误差E之间的关系为▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

二、练习题1.从一个标准差为5的总体中采用重复抽样方法抽出一个样本量为40的样本,样本均值为25。

1)样本均值的抽样标准差等于多少?2)在95%的置信水平下,估计误差是多少?解: 1)已知σ = 5,n = 40, = 25∵∴ = 5 /√40≈ 0.792)已知∵∴ 估计误差 E = 1.96×5÷√40≈1.552.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

1)假定总体标准差为15元,求样本均值的抽样标准误差。

2)在95%的置信水平下,求估计误差。

3)如果样本均值为120元,求总体均值µ的95%的置信区间。

解:1)已知σ = 15,n = 49∵∴= 15÷√49 = 2.142)已知∵∴ 估计误差 E = 1.96×15÷√49 ≈ 4.2 3)已知 = 120∵ 置信区间为±E∴ 其置信区间= 120±4.23.从一个总体中随机抽取n =100的随机样本,得到=104560,假定总体标准差σ = 85414,试构建总体均值µ的95%的置信区间。

解:已知n =100,=104560,σ = 85414,1-a=95% ,由于是正态总体,且总体标准差已知。

总体均值m在1-a置信水平下的置信区间为104560 ± 1.96×85414÷√100= 104560 ±16741.1444.从总体中抽取一个n =100的简单随机样本,得到=81,s=12。

要求:1)构建µ的90%的置信区间。

2)构建µ的95%的置信区间。

3)构建µ的99%的置信区间。

解:由于是正态总体,但总体标准差未知。

总体均值m 在1-a置信水平下的置信区间公式为81±×12÷√100 = 81±×????????4)= 25,σ = 3.5,n =60,置信水平为95%5)=119,s =23.89,n =75,置信水平为98%6)=3.149,s =0.974,n =32,置信水平为90%解:∵∴ 1) 1-a=95% ,其置信区间为:25±1.96×3.5÷√60= 25±0.8852)1-a=98% ,则a=0.02, a/2=0.01, 1-a/2=0.99,查标准正态分布表,可知: 2.33其置信区间为: 119±2.33×23.89÷√75= 119±6.3453) 1-a=90%, 1.65其置信区间为:3.149±1.65×0.974÷√32= 3.149±0.2845.利用下面的信息,构建总体均值µ的置信区间:1)总体服从正态分布,且已知σ = 500,n = 15,=8900,置信水平为95%。

解: N=15,为小样本正态分布,但σ已知。

则1-a=95%,。

其置信区间公式为∴置信区间为:8900±1.96×500÷√15=(8646.7 , 9153.2)2)总体不服从正态分布,且已知σ = 500,n = 35,=8900,置信水平为95%。

解:为大样本总体非正态分布,但σ已知。

则1-a=95%,。

其置信区间公式为∴置信区间为:8900±1.96×500÷√35=(8733.9 9066.1)3)总体不服从正态分布,σ未知,n = 35,=8900,s =500,置信水平为90%。

解:为大样本总体非正态分布,且σ未知,1-a=90%,1.65。

其置信区间为:8900±1.65×500÷√35=(8761 9039)4)总体不服从正态分布,σ未知,n = 35,=8900,s =500,置信水平为99%。

解:为大样本总体非正态分布,且σ未知,1-a=99%,2.58。

其置信区间为:8900±2.58×500÷√35=(8681.9 9118.1)6.某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时)(略)。

求该校大学生平均上网时间的置信区间,置信水平分别为90%解:先求样本均值:= 3.32再求样本标准差:置信区间公式:7.从一个正态总体中随机抽取样本量为8的样本,各样本值分别为:10,8,12,15,6,13,5,11。

求总体均值µ的95%置信区间。

解:本题为一个小样本正态分布,σ未知。

先求样本均值:= 80÷8=10再求样本标准差:= √84/7 = 3.4641于是 , 的置信水平为的置信区间是,已知,n = 8,则,α/2=0.025,查自由度为n-1 = 7的分布表得临界值 2.45所以,置信区间为:10±2.45×3.4641÷√78.某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离分别是:10,3,14,8,6,9,12,11,7,5,10,15,9,16,13,2。

假设总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

解:小样本正态分布,σ未知。

已知,n = 16,,则, α/2=0.025,查自由度为n-1 = 15的分布表得临界值 2.14样本均值=150/16=9.375再求样本标准差:= √253.75/15 ≈4.11于是 , 的置信水平为的置信区间是?? ??????????????????±??×??÷√??9.从一批零件是随机抽取????个,测得其平均长度是??????,标准差是????。

1)求确定该种零件平均长度的????S h a'b a n的置信区间。

2)在上面估计中,你使用了统计中的哪一个重要定理?请解释。

解:)??这是一个大样本分布。

已知N??????,??????????????,S????????,α?? ????,。

其置信区间为:149.5±1.96×1.93÷√362)中心极限定理论证:如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。

在现实生活中,一个随机变量服从正态分布未必很多,但是多个随机变量和的分布趋于正态分布则是普遍存在的。

样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近于正态分布,这为抽样误差的概率估计理论提供了理论基础。

10.某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100克,现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量如下:(略)已知食品包重服从正态分布,要求:1)确定该种食品平均重量的95%的置信区间。

2)如果规定食品重量低于100克属于不合格,确定该批食品合格率的95%的置信区间。

解:1)本题为一个大样本正态分布,σ未知。

已知N=50,µ=100,1-α=0.95,。

① 每组组中值分别为97、99、101、103、105,即此50包样本平均值= (97+99+101+103+105)/5 = 101② 样本标准差为:=√{(97-101)²×2+(99-101)²×3+(101-101)²×34+(103-101)²×7+(105-101)²×4}÷(50-1)≈ 1.666③其置信区间为:101±1.96×1.666÷√50 2)∵ 不合格包数(<100克)为2+3=5包,5/50 = 10%(不合格率),即P = 90%。

∴ 该批食品合格率的95%置信区间为:= 0.9 ±1.96×√(0.9×0.1)÷50= 0.9 ±1.96×0.04211.假设总体服从正态分布,利用下面的数据构建总体均值μ的99%的置信区间。

(略)解:样本均值样本标准差:尽管总体服从正态分布,但是样本n=25是小样本,且总体标准差未知,应该用T统计量估计。

1-α=0.99,则α=0.01, α/2=0.005,查自由度为n-1 =24的分布表得临界值 2.8的置信水平为的置信区间是,12.一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18个员工,得到他们每周加班的时间数据如下(单位:小时):(略)假定员工每周加班的时间服从正态分布,估计网络公司员工平均每周加班时间的90%的置信区间。

相关文档
最新文档