(完整版)5G终端关键技术
5G网络技术有哪些?20种5G关键技术详解

5G⽹络技术有哪些?20种5G关键技术详解前传和回传5 前传和回传技术回传(Backhaul)指⽆线接⼊⽹连接到核⼼⽹的部分,光纤是回传⽹络的理想选择,但在光纤难以部署或部署成本过⾼的环境下,⽆线回传是替代⽅案,⽐如点对点微波、毫⽶波回传等,此外,⽆线mesh⽹络也是5G回传的⼀个选项,在R16⾥,5G ⽆线本⾝将被设计为⽆线回传技术,即IAB(5G NR集成⽆线接⼊和回传)。
前传(Fronthaul)指BBU池连接拉远RRU部分,如C-RAN章节所述。
前传链路容量主要取决于⽆线空⼝速率和MIMO天线数量,4G前传链路采⽤CPRI(通⽤公共⽆线接⼝)协议,但由于5G⽆线速率⼤幅提升、MIMO天线数量成倍增加,CPRI⽆法满⾜5G时代的前传容量和时延需求,为此,标准组织正在积极研究和制定新的前传技术,包括将⼀些处理能⼒从BBU下沉到RRU单元,以减⼩时延和前传容量等。
⽆线接⼊⽹为了提升容量、频谱效率,降低时延,提升能效,以满⾜5G关键KPI,5G⽆线接⼊⽹包含的关键技术包括:C-RAN、SDR(软件定义⽆线电)、CR(认知⽆线电)、Small Cells、⾃组织⽹络、D2D通信、Massive MIMO、毫⽶波、⾼级调制和接⼊技术、带内全双⼯、载波聚合、低时延和低功耗技术等。
6 云⽆线接⼊⽹(C-RAN)云⽆线接⼊⽹(C-RAN),将⽆线接⼊的⽹络功能软件化为虚拟化功能,并部署于标准的云环境中。
C-RAN概念由集中式RAN发展⽽来,⽬标是为了提升设计灵活性和计算可扩展性,提升能效和减少集成成本。
在C-RAN构架下,BBU功能是虚拟化的,且集中化、池化部署,RRU与天线分布式部署,RRU通过前传⽹络连接BBU池, BBU池可共享资源、灵活分配处理来⾃各个RRU的信号。
C-RAN的优势是,可以提升计算效率和能效,易于实现CoMP(协同多点传输)、多RAT、动态⼩区配置等更先进的联合优化⽅案,但C-RAN的挑战是前传⽹络设计和部署的复杂性。
5g原理概念、关键技术及应用

5g原理概念、关键技术及应用5G是第五代移动通信技术的简称,是一种新一代的无线通信技术标准。
它具备更高的带宽、更快的传输速度、更低的延迟和更大的连接密度,为用户提供更加稳定和高质量的通信服务。
以下是5G原理概念、关键技术和应用的介绍:1. 原理概念:- 更高的频谱利用率:5G采用了更高的频率范围,能够在相同的频段上实现更高的数据传输速率。
- 基于软件定义网络(SDN)和网络功能虚拟化(NFV):5G网络不仅支持传统的基础设施,更能够灵活地适应不同的应用场景。
- 面向异构网络的融合:5G网络能够融合多种不同类型的网络,如无线网络、有线网络和物联网等,以实现更高效、更可靠的通信服务。
2. 关键技术:- 大规模的天线阵列:采用了更多的天线,能够提供更好的信号覆盖和更高的传输速率。
- 毫米波通信技术:利用更高的频率范围,能够提供更大的带宽和更高的传输速度。
- 低延迟通信技术:通过减少信号传输的时间延迟,能够实现更快的响应速度,适用于实时应用场景。
- 车联网通信技术:支持大规模的车辆连接,实现车辆之间的通信和与基础设施的交互,从而提升道路安全性和交通效率。
- 边缘计算技术:将计算资源放在网络边缘,减少数据的传输延迟,提高数据处理的效率。
3. 应用:- 超高清视频传输:5G网络能够提供更高的带宽和更快的传输速度,能够支持高清视频的实时传输。
- 车联网和自动驾驶:5G网络的低延迟和高可靠性,能够支持车辆之间的实时通信和与交通基础设施的互联互通。
- 物联网:5G网络能够连接大量的物联网设备,实现物物互联和实时数据的传输与分析。
- 增强现实与虚拟现实:5G网络的高带宽和低延迟,能够提供更好的用户体验,支持增强现实和虚拟现实应用的实时传输和处理。
总之,5G技术的发展将会推动各种新型应用的出现,并在未来的通信领域发挥重要作用。
5G网络架构与关键技术

5G网络架构与关键技术随着技术的进步和人们对通信需求的不断增长,5G网络已成为当前科技领域的热门话题。
5G网络将是第五代移动通信技术的缩写,它将以更高的速度、更低的延迟和更稳定的连接来实现更快速、更可靠的数据传输。
本文将主要介绍5G网络的架构和关键技术。
1.5G网络架构核心网络:5G核心网络具有分布式架构,它分为多个网络切片(Network Slicing),每个切片都专门用于实现不同的通信需求,如增强型移动宽带(eMBB)、大规模机器通信(mMTC)和超可靠低延迟通信(URLLC)。
这样的设计可以为不同行业和业务提供个性化的网络体验。
边缘计算:由于5G网络下的大量数据传输和处理可能导致网络延迟增加,为了使数据传输更加高效,5G引入了边缘计算概念。
边缘计算通过将计算和存储能力推向网络边缘,将计算任务分配到更接近终端用户的边缘节点上,从而降低网络延迟和流量负载,提高网络性能和用户体验。
无线接入网:5G无线接入网具有多层次的分布式结构,包括宏基站、微基站和室内小基站。
宏基站用于覆盖广域,微基站用于提供高密度的覆盖和容量,室内小基站用于提供室内覆盖。
此外,5G还引入了Massive MIMO(Massive Multiple Input Multiple Output)技术,通过使用大量天线和波束成形技术来提高网络容量和覆盖范围。
2.关键技术为了实现5G网络的高速率、低时延和大容量等特点,5G网络依赖于许多关键技术。
毫米波通信:5G网络广泛使用毫米波频段(mmWave),它具有更宽的频谱和更高的传输速率。
然而,由于毫米波频段的特殊传播特性,如高传输损耗和较短的传输距离,需要使用波束成形和中继技术来克服这些问题。
超密集组网:5G网络可以实现超密集组网,即高密度的基站部署。
通过将基站部署在更多的地方,并使用更小的基站,可以提供更好的覆盖和更高的容量。
网络切片技术:5G网络可以根据不同的应用需求,将网络划分为多个独立的逻辑切片,每个切片都适用于不同的应用场景。
5g的关键技术有哪些?六大基本特点

5g的关键技术有哪些?六大基本特点5G的三大场景不仅要解决人们一直关注的速度问题,让用户在使用通信时获得更快的速度,而且对功耗、时延等提出了更高的要求,一些方面完全超出了人们对传统通信的理解,要把更多的能力整合到5G中。
在这三大场景下,5G还拥有完全不同于传统移动通信的特点,有些特点并不包括在三大场景中,但必须要逐渐完善,成为5G体系的特点。
5G具有六大基本特点。
1.高速度每一代移动通信技术的更迭,用户最直接的感受就是速度的提升。
3G时代刚到,人们大为惊喜,但几年以后,日益增长的需求已不是3G可以满足的,于是人们开始期待4G。
4G时代到来,网速取得重大突破,人们惊叹不已,移动手机上传输文件、观看视频完全不会再卡壳,下载一部高清电影只需几分钟。
而5G的速度高达1Gbps,最快可达10Gbps,速度单位已不再以Mb计算,下载一部超清电影只需几秒,甚至1秒不到,快得像火箭!这种令人叹为观止的高速度,5G时代将全面应用到所有智能技术移动终端产品上。
网速的大幅提升能保证我们的网络体验品质。
最开始的网上内容叫新闻组,没有图像,只有文字内容。
那时候有个朋友过年给我发了一个经过高度压缩的问候视频,只有2M,但是我花了好几个小时来下载。
在3G时代,我们使用微博等功能的时候,有图片的话都被默认为缩略图,想看的时候需要点击一下才能打开,在4G时代,这些图片就都是默认打开的,这也是网络速度得到大幅提升的结果。
5G时代,值得我们注意的不仅仅是手机,高速度的5G网络将承载增强移动宽带(eMBB)的应用场景,最贴近日常生活的就是在家里用智能电视收看超高清视频。
与此同时,多样终端产品也在积极研发当中,以迎接5G时代带来的超高速度所成就的大流量应用。
4G用户一般体验的速度可以做到上传6Mbps,下载50Mbps,通过载波聚合技术可以达到150Mbps左右。
5G理论上可以做到每一个基站的速度为20Gbps,每一个用户的实际效度可能接近1Gbps,如此高的速度不仅是用户下载一部超清电影1秒钟完成那么简单,它还会给大量的业务和应用带来革命性的改变。
5G的基本特点与关键技术

5G的基本特点与关键技术
5G是第五代移动通信技术的简称,它可以在更低的延迟、更大的容量和更快的数据传输速度等多个方面都能提供极好地网络条件,支持多种服务,它的基础是新的技术和新的信号传输技术,以及传输速度更快的技术结构。
1、高速:5G网络可以提供高达数百兆的速度,比现有的4G更快,可以满足高清视频流媒体服务、云计算等多种不同的应用需求。
2、容量大:5G网络的容量比4G网络大,可以支持更大的吞吐量,能够满足大量用户的同时使用。
3、低延迟:5G网络的延迟比4G网络低,从而支持高实时性应用,如自动驾驶等。
4、安全:5G网络提供了更强大的安全性,可以保护数据传输过程中的隐私安全,防止病毒和木马的侵入,从而保护网络的安全性。
此外,5G技术还具有可扩展性、低成本和普及性等优势,这些技术可以让更多的用户更广泛地使用5G网络服务,从而带来更多的经济和社会好处。
5G的关键技术主要包括:
1、空口有效利用率(ENU)技术:ENU技术可以改善信道利用率,从而提高信号传输的稳定性和覆盖范围。
2、多边形通信(M2M)技术:M2M技术是5G网络的关键技术。
列举5g中的关键技术

列举5g中的关键技术5G关键技术随着信息技术的迅速发展,移动通信技术也在不断进步。
作为第五代移动通信技术,5G具有更高的速度、更低的延迟和更多的连接能力,为人们提供了更加智能和便捷的通信体验。
在5G中,有许多关键技术的应用,下面将列举其中的五个。
1. 大规模天线阵列技术大规模天线阵列技术是5G网络的关键技术之一。
传统的移动通信系统主要使用单个天线进行数据传输,而大规模天线阵列技术则可以同时使用多个天线进行数据传输,从而极大地提高了网络容量和覆盖范围。
这种技术可以通过波束赋形来实现精确的信号传输,有效地减少了信号干扰,提高了数据传输的可靠性和速度。
2. 毫米波技术毫米波技术是5G网络中的另一个关键技术。
相比于之前的移动通信技术,5G采用了更高频率的毫米波段,可以提供更大的带宽和更高的数据传输速率。
然而,毫米波信号的传输距离较短,易受到障碍物的影响。
为了解决这个问题,5G引入了波束赋形技术和中继技术,可以使毫米波信号在传输过程中更加稳定可靠。
3. 软件定义网络技术软件定义网络技术是5G网络的核心技术之一。
传统的移动通信网络通常需要通过硬件设备进行配置和管理,而软件定义网络技术可以将网络的控制平面和数据平面进行分离,使网络的配置和管理更加灵活和智能化。
这种技术可以根据不同的应用场景和服务需求,对网络进行动态调整和优化,提高网络的性能和效率。
4. 网络切片技术网络切片技术是5G网络的重要技术之一。
网络切片可以将一块物理网络划分为多个逻辑网络,每个逻辑网络都可以满足不同的应用需求和服务质量要求。
这种技术可以为不同的应用场景提供定制化的网络服务,例如工业控制、智能交通和虚拟现实等。
通过网络切片技术,5G网络可以提供更加灵活和可靠的通信服务。
5. 边缘计算技术边缘计算技术是5G网络的另一个关键技术。
传统的移动通信网络主要依靠云计算中心进行数据处理和存储,但是由于数据量庞大和时延要求,云计算中心往往无法满足实时性的要求。
5G的基本特点与关键技术

5G的基本特点与关键技术第五代移动通信技术(5G)是目前移动通信技术发展的最高峰,也是人类希望不仅改变生活,更要改变社会的重要力量。
5G是在4G基础上,对于移动通信提出更高的要求,它不仅在速度而且还在功耗、时延等多个方面有了全新的提升。
由此业务也会有巨大提升,互联网的发展也将从移动互联网进入智能互联网时代。
5G的三大场景国际标准化组织3GPP定义了5G的三大场景。
其中,eMBB指3D/超高清视频等大流量移动宽带业务,mMTC指大规模物联网业务,URLLC指如无人驾驶、工业自动化等需要低时延、高可靠连接的业务。
通过3GPP的三大场景定义我们可以看出,对于5G,世界通信业的普遍看法是它不仅应具备高速度,还应满足低时延这样更高的要求,尽管高速度依然是它的一个组成部分。
从1G到4G,移动通信的核心是人与人之间的通信,个人的通信是移动通信的核心业务。
但是5G的通信不仅仅是人的通信,而且是物联网、工业自动化、无人驾驶等业务被引入,通信从人与人之间通信,开始转向人与物的通信,直至机器与机器之间的通信。
5G的三大场景显然对通信提出了更高的要求,不仅要解决一直需要解决的速度问题,把更高的速率提供给用户;而且对功耗、时延等提出了更高的要求,一些方面已经完全超出了我们对传统通信的理解,把更多的应用能力整合到5G 中。
这就对通信技术提出了更高要求。
在这三大场景下,5G 具有6大基本特点。
5G的六大基本特点高速度相对于4G,5G要解决的第一个问题就是高速度。
网络速度提升,用户体验与感受才会有较大提高,网络才能面对VR/超高清业务时不受限制,对网络速度要求很高的业务才能被广泛推广和使用。
因此,5G第一个特点就定义了速度的提升。
其实和每一代通信技术一样,确切说5G的速度到底是多少是很难的,一方面峰值速度和用户的实际体验速度不一样,不同的技术不同的时期速率也会不同。
对于5G的基站峰值要求不低于20Gb/s,当然这个速度是峰值速度,不是每一个用户的体验。
5G的基本特点与关键技术

5G的基本特点与关键技术
5G是下一代无线通信技术,它将在现有的4GLTE技术之上实现更快
的网速和更低的延迟。
它可以提供更大的网络容量,以支持更多应用程序
和多媒体服务。
5G的关键技术以及其突出特点可归纳如下:
(1)传输技术:5G技术采用了新的无线传输技术,如新的频谱资源分
配算法、宽带系统、多载波通信和空时多收发器技术。
这些新技术的应用
不仅可以提高信号传输效率,而且可以提高网络覆盖范围。
(2)安全性:5G技术在安全性方面也进行了极大的改进,采用了新的
架构设计,实现了多重安全机制。
它采用的新型认证机制可以有效避免数
据注册和传输过程中的安全漏洞,保障了用户数据的安全性。
(3)自组织网络(SON):5G技术也采用了新的自组织网络(SON)技术,该技术可以解决现有网络中的复杂管理问题,自动完成网络故障检测、路由优化和覆盖优化等任务,大大提高网络的可靠性和效率。
(4)全网络资源调度:5G系统采用了全网络资源调度技术,为用户提
供更高的服务质量,通过精细化的资源调度,可以根据不同服务和用户的
实时需求来调度网络资源,有效控制用户的服务质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1 5G终端总体策略 2 5G终端若干关键技术 3 5G终端产业推进
运营商5G终端(Sub-6GHz )推进需求
2016
2017
2018
2019
2020
2021
标准进展 研发计划
Layer1/2 冻结
R15 Release
R16 Release
2018.2 巴展发布《 5G预商用技术要求》, 启动5G终端联合研发项目
729-746MHz 2110-2170MHz 1930-1990MHz 869-894MHz
推荐 必选 必选
必选
组网需求-> 5G频谱(Sub-6GHz)
• 3.5GHz频段:覆盖能力接近甚至超过现有4G 网络,且被中国、日本、韩国、欧洲等国家广 泛认可为5G首发频段,因此建议优先争取
• 4.8GHz-5GHz频段:传播特性较差,且国际 支持度较低,但是我公司被分配该频段的概率 较高,建议尽早明确频段分配方案
869-894MHz
推荐
Band 7
2500-2570MHz
2620-2690MHz
必选
Band 1
1920-1980MHz
2110-2170MHz
推荐
Band 3
1710-1785MHz
1805-1880MHz
必选
LTEFDD
Band 17 Band 4
704-716MHz 1710-1755MHz
Band 12(17) (下行700M)
组网需求->5G终端多模多频实现复杂度分析
终端支持多模多频段与基带芯片、射频芯片、射频前端三部分有关 多模实现主要影响基带芯片,多频段实现主要依赖于射频芯片和射频前端。
多模多频对终端实现带来较大挑战:
➢ 对射频芯片的影响:随着终端支持的频段增多,射频芯片需提供的收发通道 也 要增加。
➢ 对天线的影响:可单根或多根天线支持多个频段(例如:700MHz~3.5GHz); 单根天线支持大带宽可能需要引入天线调谐模块,引起成本增加。
➢ 对终端成本、体积和性能都带来挑战:性能挑战体现为网络搜索时间变长,系 统间共存干扰引起射频性能下降等。
组网需求- > 独立组网模式(SA)和非独立组网模式(NSA)
室外场景 ✓ 部署HPUE对现网未见明显干扰:室外IoT抬升 0.5dB~1dB@CDF=50%,属于可接受范围
产业情况
4G高功率终端已于2017H1在美国商用,即将于2018H2在日本、中国商用,目前已有21款商用终端(三星 、LG、Moto、中兴等);已写入终端公司白皮书要求(2018年12月1日起,3000元及以上产品必选支持 TD-LTE Band41 power class 2 )
3dB DL
UL@+23dBm
UL@+26dBm
双发(SA):上行双天线,在小区中心通过双流MIMO实现上行峰值速率翻番,在小区边缘通过发射分集 提升上行覆盖1-2dB
256QAM:与64QAM相比,可提升上行速率33% SA终端双发高功率方案
NSA终端高功率方案 (标准制定中,预计R16引入)
➢ 对射频前端器件(滤波器、功放、开关等)的影响:频段增加对射频前端器件 数量影响最大,随着终端支持频段数的增加,其器件数量将逐渐增加 。每个频 段需配置专门的滤波器或双工器,不可共用;不同模式支持相同频段时可共用 滤波器或双工器。如果PA的工作带宽较宽,在该带宽内的多个相邻频段可以共 用1个PA。
+23dBm
+26dBm +23dBm +23dBm
+23dBm +20dBm +20dBm
+26dBm +23dBm +23dBm
5G
5G
4G 5G
4G 5G
组网需求->4G多模多频终端
4G终端必选频段要求:TD-LTE Band 34/38/39/40/41,LTE FDD Band 3/7/8,TD-SCDMA Band 34/39,WCDMA Band
• 毫米波频段:虽然美、日、韩均有计划在2020 年部署5G,但预期应用规模不大,首发终端很 可能不是智能机。同时考虑到我国应用毫米波 比6GHz以下低频段至少晚2年左右,建议适时 推动
• 其他潜在5G频段:建议密切跟踪,待政策、国 际运营商部署策略进一步明确后适时推动
组网需求-> 5G终端多模多频段要求
2010-2025MHz 1880-1920MHz
必选 必选
Band 8
880-915MHz
925-960MHz
必选
GSM/GPRS/EDGE
Band 3 Band 2
1710-1785MHz 1850-1910MHz
1805-1880MHz 1930-1990MHz
必选 必选
Band 5
824-849MHz
TD-LTE
Band 39
1880-1920MHz
1880-1920MHz
必选
Band 41
2496-2690MHz
2496-2690MHz
必选
Band 34
2010-2025MHz
2010-2025MHz
必选
TD-SCDMA/TD-HSPA
Band 34 Band 39
2010-2025MHz 1880-1920MHz
2018年底发布5G系列企标、中
国移动5G终端白皮书
系统验证
大规模试验
5G 商用
终端测试 测试仪表
5G 原型机测试 通用测试仪表
5G 芯片/终端测试 5G 芯片/终端商用产品
5G IOT/FT测 试 5G友好用户测试
综测仪等仪表
5G一致性测试系统、OTA等
3
5G终端总体策略
5G终端将具备更多形态,更强能力,从而实现“以用户为中心”
TD-LTE
LTE FDD
Band 41 (2.6G) Band 7 (下行2.6G)
Band n79(4.4G-5G )Band 40(2.3G Band 3 (下行1.8G) )
Band n77(3.3G4.2G)
Band 34(2.0G) Band 1 (下行2.1G)
Band n41(2.6G) Band 39(1.9G) Band n8(900M) Band n3(1800M)
面向网络演进方案,标准化中讨论了多种5G网络部署方式,划分思路根据无线网络和核心网的不同,区分为两 大类:SA(独立部署)和NSA(非独立部署)
• SA (独立组网):SA是5G网络连续覆盖的目 标形态,新空口基站可以不依赖于LTE基站独 立工作,UE可以通过新空口基站完成与核心 网的交互(如:注册,鉴权等)
需求场景
终端策略
3.5G频段上行覆盖受限
高功率终端
26dBm
组网 需求
多种网络制式长期共存和全球 漫游的需要
5G组网有NSA和SA两种方式
终端多模多频要求
终端对SA/NSA组网 的支持能力
同时支持SA/NSA
业务 需求
语音业务需求 面向5G的新业务新应用
支持语音解决方案 多形态终端
性能 需求
5G高速率需求 5G高速移动需求
目标方案
VoLTE/SRVCC
语音业务通过LTE分组域提供
•在LTE覆盖区内由LTE提供基于IMS的语音 业务;通话过程中离开LTE覆盖区,由 S R V C C 保证LTE语音与2 / 3 G 语音的连续性
过渡方案
CSFB
语音业务通过2/3G电路域提供
• 开机驻留LTE,需要语音业务时,将由LTE 回落至2/3G提供
1/2/5,GSM Band 2/3/8,一共11频段(去掉重复)。4G终端必选+ 推荐频段一共15频段(去掉重复)。
网络模式
工作频段
上行(终端发) 下行(终端收)
要求
Band 40
2300-2400MHz
2300-2400MHz
必选
Band 38
2570-2620MHz
2570-2620MHz
推荐
• NSA(非独立组网):NSA是5G网络的过渡方案, 主要优化5G初期无线覆盖不完善,解决互操作频 繁的问题,UE需要通过LTE基站与核心网信令交互 (如:注册,鉴权等);新空口基站不能够独立 工作,仅作为LTE的数据管道的增强
核心网
Option 2
核心网
Option 3系列
NR gNB
LTE eNB
业务需求->4G终端语音解决方案
4G存在CSFB( Circuit Switched fallback )、单卡双待机、VoLTE/SRVCC等多种LTE手机 语音解 决方案:CSFB和双待机方案,由2/3G电路域提供语音,VoLTE方案由LTE分组域提 供语音, 并通过SRVCC功能保证与2/3G话音平滑切换
测试验证
室内弱覆盖场景
✓ HPUE可显著提升室内弱覆盖场景(RSRP<-110dBm )的上 行 数据速率: 提升幅度为20%~200%+
✓ HPUE对各种场景的VoLTE语音质量普遍有所提升:在 RSRP<-90dBm的范围内,MOS值提升幅度为0.02~0.24
✓ HPUE可有效提升上行业务半径:数据业务覆盖范围提升2dB
SA(独立组网)场景 Vo N R方案
EPS Fallback方案
N S A ( 非独立组网)场景 VoLTE方案
VoIP
VoIP
LTE
LTE
EPC
EPC
VoLTE
VoLTE
LTE
LTE
LTE