行政院原子能委员会委托研究计画研究报告
国家国防科工局、财政部关于印发《核技术研发科研项目管理办法》的通知

国家国防科工局、财政部关于印发《核技术研发科研项目管理办法》的通知文章属性•【制定机关】国家国防科技工业局,财政部•【公布日期】2024.07.05•【文号】•【施行日期】2024.07.05•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】核能及核工业正文国家国防科工局财政部关于印发《核技术研发科研项目管理办法》的通知教育部、中国科学院,有关地方国防科技工业管理部门,中国核工业集团公司、中国广核集团有限公司、国家电力投资集团有限公司、中国华能集团有限公司,中国工程物理研究院:现将《核技术研发科研项目管理办法》印发给你们,请遵照执行。
该办法自发布之日起实施,原《核能开发科研项目管理办法》(科工二司〔2010〕592号)、《核能开发科研项目事前立项事后补助管理实施细则》(科工二司〔2017〕1542号)同时废止。
国家国防科工局财政部2024年7月5日核技术研发科研项目管理办法第一章总则第一条为规范核技术研发科研项目管理,提升科研项目绩效,根据国家科研和预算管理有关规定,制定本办法。
第二条本办法所称核技术研发科研项目,是指全部或部分使用中央财政科研经费,由核技术研发科研计划安排的,与核科技发展相关的研究与开发活动。
包括反应堆及核动力、核燃料循环、核安全与辐射防护、核技术应用及相关支撑技术等专业领域。
第三条核技术研发科研项目模式包括审批立项资助、事前立项事后补助和奖励性后补助。
事前立项事后补助项目是指按照本办法规定的程序立项后,项目单位先行投入资金开展研究开发活动,取得成果并获得项目验收批复后,根据评定等次,由中央财政给予相应资金补助的项目,一般用于技术成熟度高且具有量化考核指标的项目。
奖励性后补助项目是指项目单位根据国家战略和产业发展需求,及自身发展需要先行投入资金组织开展研究开发活动,取得的成果在核工业发展中发挥了基础性、前瞻性、示范性和支撑性作用,经成果征集、审查评估和公示后,由中央财政给予相应资金补助的项目。
行政院原子能委员会会议规则

【法规名称】行政院原子能委员会会议规则【颁布部门】【颁布时间】 2001-03-28【效力属性】已修正【正文】行政院原子能委员会会议规则第 1 条本规则依行政院原子能委员会 (以下简称本会) 组织条例第十九条规定订定之。
第 2 条本会委员会议 (以下简称委员会议) 由主任委员、副主任委员及委员组成之。
委员会议以主任委员为主席,主任委员因故不能出席时,指定由副主任委员一人代理。
主任委员、副主任委员均不能出席时,由委员互推一人为主席。
第 3 条委员会议每月举行一次,必要时得召开临时会议。
第 4 条委员会议讨论事项如左:一关于原子能科技发展方针及政策之审议事项。
二关于原子能科技年度施政计划之审议及考核事项。
三关于本会主管法律制定、修正及废止之审议事项。
四关于委员提案之审议事项。
五其他经主任委员核定应提委员会议决议事项。
第 5 条委员会议之决议,应有全体委员过半数之出席,及出席委员过半数之同意行之。
可否同数时,取决于主席。
前项所称全体委员,包括主任委员及副主任委员。
第 6 条委员对于会议决议有不同意见时,得要求将不同意见载入会议纪录,以备查考。
第 7 条委员应亲自出席委员会议。
但由机关代表兼任之委员,如因故不能亲自出席时,得指派其职务代理人代表出席。
前项指派之代表列入委员出席人数,并参与会议发言及表决。
第 8 条委员因故不能出席委员会议时,应先期通知幕僚作业单位或有关人员。
委员对于审议事件有利害关系者,应行回避。
第 9 条委员会议列席人员如左:一本会主任秘书、各业务处主管及所属机关首长。
二其他经主任委员指定或邀请之人员。
第 10 条委员会议议程,依左列次序编列之:一报告事项。
二讨论事项。
第 11 条议程应于开会前分送各出、列席人员。
但具有时效性之议案,不及编入议程者,经主席核定后,得并列入临时议程,并于开会时分送之。
第 12 条各项议案经委员会议决议后,交由本会各有关承办单位执行及管制考核。
第 13 条委员会议纪录,应分别载明左列事项:一会议次别。
原子能法

【法规名称】原子能法【颁布部门】【颁布时间】 1971-12-24【效力属性】已修正【正文】原子能法第 1 条为促进原子能科学与技术之研究发展,资源之开发与和平使用,特制定本法。
第 2 条本法中之专用名词,其意义如左:一原子能:谓原子核发生变化所放出之一切能量。
二核子原料:谓铀矿物、钍矿物及其他经行政院指定为核子原料之物料。
三原子燃料:谓能由原子核分裂之自续连锁反应而产生能量之物料,及其他经行政院指定为核子燃料之物料。
四游离辐射:谓直接或间接使物质产生游离作用之电磁辐射或粒子辐射。
五核子反应器:谓具有适当安排之核子燃料,而能发生原子核分裂之自续连锁反应之任何装置。
六放射性物质:谓产生自发性核变化,而放出一种或数种游离辐射之物质。
第 3 条原子能主管机关为原子能委员会,隶属行政院,其组织以法律定之。
第 4 条原子能委员会为推进原子能科学与技术之研究发展,开发原子能资源,扩大原子能在农业、工业、医疗上之应用,得设立研究机构。
第 5 条原子能委员会为推广原子能和平用途,得报请行政院令有关部会设立原子能事业机构。
私人设立原子能研究及事业机构时,均须经原子能委员会核准。
第 6 条原子能委员会对外得代表政府,从事国际合作事宜。
第 7 条关于原子能科学与技术之研究发展,应由原子能委员会筹拨专款,延聘专家,订定计划,统筹进行。
第 8 条原子能委员会应辅导国内各大学与研究所,增设有关原子科学学系,充实设备,发展原子科学教育。
第 9 条原子能委员会应会同教育行政主管机关及国内各科学研究机构,统筹选送科学人才,出国进修原子科学。
第 10 条原子能委员会得报请行政院,于有关科学研究机构,设立原子能科学与技术研究发展部门。
第 11 条国内各科学研究机构,对于原子能科学及其应用之研究,应依据本法第七条所定计划,互助合作,使研究人员及设备作有效之运用。
第 12 条国内各大学及有关原子能科学研究机构,与友邦及国际有关组织订立研究合作协定时,应申报原子能委员会核准。
行政院国家科学委员会专题研究计划成果报告

¦æ¬F°|°ê®a¬ì¾Ç©e-û·|±MÃD¬ã¨s-p¹º¦¨ªG³ø§i¥xÆW¨ÅÀù¯f²z¦¨¦]¤§¬ã¨s-§íÀù°ò¦]¦b¨ÅÀù§Î¦¨¤¤¤§-«-n©Ê (²Ä¤T¦~)-p¹º½s¸¹: NSC 88-2314-B-002-365°õ¦æ¦~--: 87¦~08¤ë1¤é¦Ü88¦~7¤ë31¤é¥D«ù¤H : ³\ª÷¥É¥x¤jÂå¾Ç°|¥Í¤Æ©Ò¤¤¤åºK-nÃöÁäµü¡G¨ÅÀù/§íÀù°ò¦]p53,TSG101³\¦hªº¬ã¨s³ø§iÅã¥Ü¦b¨ÅÀù²Ó-M¤¤¦³«Ü°ª¤ñ¨Òªº¬V¦âÅé11p15¤§LOH(Loss of Heterozygosity )Åܲ§¡A Åã¥Ü¦¹°Ï°ì¤§°ò¦]Åܲ§»P¨ÅÀù¤§§Î¦¨¦³Ãö¡F¦ÓTSG101¬O 1997¦~¤~µo ²{¤§§íÀù°ò¦]¡A ¦¹°ò¦]´N ¦ì©ó11p15¡A¦Ó¥B³Ìªñªº³ø¾É«ü¥X ¡A¨ÅÀù²Ó-M¤¤½T¹ê·|§t¦³¦¹°ò¦]¤£¥¿±`ªºmRNA ªí²{¡A ¦]¦¹¦b³o-Ó-pµeùØ¡A §Ú-̥ΨӦۥx¤jÂå°|ªº¤@§å¨ÅÀùÀËÅé°µTSG101ªº¤ÀªR (Table 1)¡A¤S¥Ñ©ó³o§åÀËÅé¡A§Ú-̤w¸g¤ÀªR¹L¨äER¡A erbB2(HER2/neu)¤Îp53ªºªí²{±¡§Î(Table2, 3)¡A±N¨Ó§Ú-Ì¥i¥H¦P®É©Î¤À¶}¨Ó¤ÀªR TSG101¤Î³o¨Ç°ò¦]»PÁ{§É¯fª¬ªº¬ÛÃö©Ê¡A³o±N´£¨Ñ¤@-Ó§ó-ѯS²§©Êªºgenetic markers ¨ÓÀ°§U¤F¸Ñ¦¹Àù¯g¥i¯àªº-P¯f¾÷Âà¡A ¦Ó¥B¥i¥H´£¨Ñ±N¨Ó¬ã¨s T SG101ªº¥Í²z ¥\¯àªº¤è¦V ¡A ¥H¤Î³o ¨Ç°ò¦]¬Û¤¬¶¡ªº§@¥Î¡C -^¤åºK-nKeywords¡G Tumor Suppressor Gene p53 and TSG101/Breast CancerLoss of heterozygosity (LOH) on chromosome 11p15 occurs frequently in breast cancer indicating that this region may have a role in the pathogenesis of breast cancer. TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3fibroblasts.The human homologue of this gene was then isolated and mapped to 11p15.Moreover, abnormalities of TSG101transcripts in human breast cancer and prostate cancer from western country have been reported recently. To determine whether abnormal TSG101 expression has correlation with unique characteristics of breast cancer from Taiwan, TSG101 gene status of breast cancer specimens from National Taiwan University Hospital (NTUH) and several breast cancer cell lines have been studied by reverse transcription-polymerase chain reaction (RT-PCR ) and directly sequencing the cDNA of this gene (Table 1). We haveaccomplished the study about variants ofestrogen receptor (ER), over expression of erbB2(HER2/neu) and the mutation of p53 in same pool of breast cancer specimens mentioned above for the past two years.Those genetic alterations do provide someclues about breast carcinogenesis (Table 2, 3).More genetic analysis will help to developeffective genetic markers for this cancer’sprogression. Therefore, our specific aims ofthis proposed study are the following.Screening a large pool of breast cancer samples with known clinical stages for mutation in the TSG101 gene. The status of ER, erbB2(HER2/neu), p53 and TSG101 in the tumor samples will be correlated with their clinical stages. Moreover, any positivecorrelation between phenotype and mutation would provide scientifically importantdirection to explore inter-relationshipbetween these genes.Background TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3 fibroblasts. The human homologous of this gene was then isolated and mapped to 11P15(6,8). Some previous reports indicate that the major function of TSG101 is the following. TSG101 proteins of putative DNA-binding and transcriptional activation domains, it has suggested that the 43kD TSG101 protein may act to control gene expression and regulate the cell cycle.On the other hand, the coiled-coil domain of TSG101 can interact with stathmin. This finding suggests that this gene may control cell growth and differentiation (4,9,12,14,15,16). Other reports indicate thatTSG101 transcripts are frequently abnormal in human cancer cell, including breast cancer (1,2,3,13,17), prostate cancer (11), and leukemia (5). The major type of abnormality of TSG101 is aberrant splicing but not mutations (7,10). The relaxation of RNA splicing fidelity of TSG101 may be an oncodevelopment marker in cancer. We,therefore, plan to screen the status of TSG101 in a large pool of breast cancer samples that has been analyzed for ER,erbB2(HER2/neu) and p53 alterations in my laboratory. Clinical data including the pathologic stage, histologic type and follow-up will be collected. Then, the statistical analysis will be use to clarity the association between genetic alterations of ER,erbB2(HER2/neu), p53 as well as TSG101and clinical outcome.ResultTo detect the aberrant transcripts of TSG101 gene in breast cancer as well as the normal counterpart.According to the structure of TSG101 gene,two pairs of primer (p1/p2 and p3/p4) have been used to analyze any of the TSG101truncated transcripts by RT-PCR. Further restriction enzyme mapping or sequencing of RT-PCR products have been performed to dissect those truncated transcripts as well.The results were listed in table 3.DiscussionIn this preliminary study the abnormal TSG101 transcripts have been detected in tissues of breast cancers but not normal counterparts. These abnormalities of TSG101may play some role in carcinogenesis of breast. Therefore , clinical data including the pathologic stage, histologic type and fellow-up will be collected. Then, the statistical analysis will be used to clearify the associations between genetic alterations of ER, neu, p53 as well as TSG101 and clinical outcome.Table 1:HER-2/neu Row-P=0.018P53+Column Total56.3%43.7%100% HER-2/neuRow -P=0.031PR+Column Total 56.4%43.6%100%p53Row-P=0.004ER+Column Total74.2%25.8%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G¡Ï¡÷ point mutation¡Ð¡÷ wild-typeTable 2:p53 Row-P=0.00193Systemic recurrence+Column Total74.1%25.9%100%HER-2/neuRow -P=0.5617Systemic recurrence +Column Total 56.1%43.9%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G + ¡÷ point mutatation¡Ð¡÷ wild-typeSystemic recurrence¡G¡Ï¡÷three year’s follow-up¡Ð¡÷no recurrence on follow-up dateREFERENCES1. Benard J. Ahomadegbe JC. TSG101 and breast ca Ali, I.U., Lidereau, R., Theillet, C. & Callahan, R. Reduction to homozygosity of genes on ncer: a correctly named tumor-suppressor gene? Bulletin du Cancer. 84(12):1141-2, 1997Dec.2. Driouch K. Briffod M. Bieche I. Champeme MH. Lidereau R. Location of several putative genes possibly involved in human breast cancer progression. Cancer Research. 58(10):2081-6, 1998 May 15.3. Hofferbert S. Brohm M. Weber BH. Search for TSG101 germ-line mutations in BRCA1/BRCA2-negative breast/ovarian cancer families Cancer Genetics & Cytogenetics. 102(1):86-7, 1998 Apr 1.4. Koonin EV. Abagyan RA. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators Nature Genetics. 16(4):330-1, 1997 Aug.5. Lin PM. Liu TC. Chang JG. Chen TP. Lin SF. Aberrant TSG101 transcripts in acute myeloid leukaemia. British Journal of Haematology. 102(3):753-8, 1998Aug.6. Lee MP. Feinberg AP. Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Research. 57(15):3131-4, 1997 Aug 1.7. Li L. Li X. Francke U. Cohen SN. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell.88(1):143-54, 1997.8. Li L. Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell.85(3):319-29, 1996 May 3.9. Ponting CP. Cai YD. Bork P. The breast cancer gene product TSG101: a regulator of ubiquitination?. Journal of Molecular Medicine. 75(7):467-9, 1997 Jul.10. Steiner P. Barnes DM. Harris WH. Weinberg RA. Absence of rearrangements in the tumour susceptibility gene TSG101 in human breast cancer Nature Genetics. 16(4):332-3, 1997 Aug.11. Sun Z. Pan J. Bubley G. Balk SP.Frequent abnormalities of TSG101 transcripts in human prostate cancer. Oncogene. 15(25):3121-5, 1997 Dec 18.12. Thomson TM. Khalid H. Lozano JJ. Sancho E. Arino J. Role of UEV-1A, a homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Letters. 423(1):49-52, 1998 Feb 13. 13. Wang Q. Driouch K. Courtois S. Champeme MH. Bieche I. Treilleux I. Briffod M.Rimokh R. Magaud JP. Curmi P. Lidereau R. Puisieux A. Low frequency of TSG101/CC2 gene alterations in invasive human breast cancers. Oncogene. 16(5):677-9, 1998Feb 5.14. Watanabe M. Yanagi Y. Masuhiro Y. Yano T. Yoshikawa H. Yanagisawa J. Kato S. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochemical & Biophysical Research Communications.245(3):900-5, 1998 Apr 28.15. Xie W. Li L. Cohen SN. Cell cycle-dependent subcellular localization of the TSG101protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proceedings of the National Academy of Sciences of the United States of America.95(4):1595-600, 1998 Feb 17.16. Zhong Q. Chen Y. Jones D. Lee WH. Perturbation of TSG101 protein affects cell cycle progression. [Journal Article] Cancer Research. 58(13):2699-702, 1998 Jul 1.17. Zhong Q. Chen CF. Chen Y. Chen PL. Lee WH. Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Research.57(19):4225-8, 1997 Oct 1.Table 3 Truncated transcripts of TSG101 in pair specimens4。
原子能动力设备项目可行性研究报告

原子能动力设备项目可行性研究报告核心提示:原子能动力设备项目投资环境分析,原子能动力设备项目背景和发展概况,原子能动力设备项目建设的必要性,原子能动力设备行业竞争格局分析,原子能动力设备行业财务指标分析参考,原子能动力设备行业市场分析与建设规模,原子能动力设备项目建设条件与选址方案,原子能动力设备项目不确定性及风险分析,原子能动力设备行业发展趋势分析提供国家发改委甲级资质专业编写:原子能动力设备项目建议书原子能动力设备项目申请报告原子能动力设备项目环评报告原子能动力设备项目商业计划书原子能动力设备项目资金申请报告原子能动力设备项目节能评估报告原子能动力设备项目规划设计咨询原子能动力设备项目可行性研究报告【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】原子能动力设备项目可行性研究报告、申请报告【交付方式】特快专递、E-mail【交付时间】2-3个工作日【报告格式】Word格式;PDF格式【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。
【报告说明】本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。
可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。
可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。
对整个可行性研究提出综合分析评价,指出优缺点和建议。
为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。
澄清行政院停建核四决策文核能专业资讯错误

澄清行政院停建核四決策文核能專業資訊錯誤我們要對教育良心、專業知識、與歷史負責陳總統在電視媒體發言說,廢核四是道德問題,呂副總統在召開首次總統府科技諮詢委員會時說,廢核是良心與真理問題,並呼籲國人依據科技、良心、以及道德討論核四興建問題。
行政院張院長十月二十七日正式宣佈停止興建核四電廠,決策文『打造非核家園唯一的選擇』(附件一)在隔日各大報紙正式公佈。
我們是一群長期從事核能專業教育工作的大學教授,本著教育良心、專業知識、以及對台灣核電發展歷史負責的態度,對於行政院停建核四決策文(以下簡稱廢核四決策文)中,引用核能專業資訊錯誤以及對核能專業知識嚴重扭曲,正式提出澄清:一、廢核四決策文引言一開始,張院長引用愛因斯坦的話『人類悲慘的命運,就是製造出最具威力的毀滅方法,原子能的釋放,改變了一切,卻改變不了我們的思考模式,因此才會走向前所未見的大災難。
』決策文的結尾語,張院長再度引用愛因斯坦的話『我的一生犯了一個最大的錯誤,就是簽署那一封支持製造原子彈的信給羅斯福總統。
』我們的澄清:核能電廠不等於原子彈。
愛因斯坦對於原子能被濫用做成原子彈感到非常沈痛,因此才會講出那一段懊悔的話。
愛因斯坦1955年過世時世界尚未有核能發電。
原子彈是原子能的軍事應用,愛好和平的人都厭惡、摒棄原子彈;核能發電是原子能的和平應用,用來提供民生用電造福人類,就像原子能科技在各大醫院用來診斷及治療重大疾病一樣,是原子能的民生應用。
原子能本身是一項文明科技產品,是中性的,用在原子彈做為殺人工具,是恐怖的,用於核電及醫、農、工和其他科技研究做為和平用途,則是造福人類的。
聯合國設有國際原子能總署(IAEA),其目的在於協助世界各國,一方面防止核子武器擴散,另一方面則促進包括核能發電在內的原子能和平用途。
核能發電是一項一般民眾感到陌生的複雜科技產品,因受原子彈之累,在世界上包括我國在內32個使用核能發電的國家,向來就是一項引起部份民眾爭議的對象,各國反核運動也所在多有,只是程度上有輕重差異而已。
行政院国家科学委员会补助专题研究计划作业要点

行政院国家科学委员会补助专题研究计划作业要点状态:有效发布日期:2005-05-18生效日期:2005-05-18发布部门:台湾发布文号:台会综二字第0940036292号一、行政院国家科学委员会(以下简称本会)为补助大专院校及学术研究机构执行科学技术研究工作,以提升我国科技研发水准,特订定本要点。
二、申请机构(即执行机构):(一)公私立大专院校及公立研究机构。
(二)经本会认可之财团法人学术研究机构。
三、计划主持人(申请人)及共同主持人之资格:(一)申请机构编制内按月支给待遇之专任教学、研究人员,具有专门学识与研究经验,且有具体研究成绩,并具备下列资格之一者:1.助理教授级以上人员。
2.具博士学位之专任教学或研究人员。
3.担任讲师职务四年以上,并有著作发表于国内外著名学术期刊或专利技术报告专书者。
4.研究机构副研究员、技正或相当副研究员资格以上人员。
5.于教学医院担任主治医师二年以上或获硕士学位从事研究工作四年以上,并有著作发表于国内外著名学术期刊之医药相关人员。
具有前项计划主持人资格,且依相关规定被借调之人员,得由原任职机构提出申请。
(二)已退休之教学、研究人员,如为中央研究院院士、曾获得教育部国家讲座或学术奖、本会特约研究人员或杰出研究奖三次以上、财团法人杰出人才发展基金会杰出人才讲座、或其它相当奖项经本会认可者,且其原任职机构于申请研究计划函内叙明愿意提供相关设备供其进行研究并负责一切行政作业者,得申请一般型研究计划补助。
(三)实施校务基金制度之学校,于校务基金自筹经费范围内,依国立大学校院进用项目计划教学人员、研究人员暨工作人员实施原则聘任之专任教学、研究人员,按月支给待遇,经学校各级教评会审议通过遴聘,符合第(一)项计划主持人资格者,得申请专题研究计划补助。
(四)公立大专校院依公立大专校院稀少性科技人员遴用资格办法遴用具博士学位之核能、信息及航天等三类稀少性科技人员,得申请专题研究计划补助。
行政院国家科学委员会专题研究计画期中进度报告

Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2,I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond (UNCD) films were grown on bias-enhaned nucleation substrate to improve the of growth behavior.Keywords: UNCD, high speed growth, BEN, MPECVDSubmission of this paper has been approved by the co-authors.Corresponding author: Prof. I-Nan Line-mail: inanlin@.twTel. 886-2-26268907; Fax. 886-2-26207717Department of physics, Tamkang University;151 Yin-Chuan Rd. Tamsui, Taipei, Taiwan 251, R. O. C.Estimated word count: 3571words1Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2, I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond films were grown on bias-enhaned nucleation substrate to improve the growth.Keywords: UNCD, high speed growth, BEN, MPECVD2I. IntroductionThe unique combination of the physical and chemical properties of diamond film save drawn more attention among researcher to use diamond in many applications. However, the high roughness of microcrystalline diamond films made them inapplicable in specific applications. In the recent past, very smooth ultra nano-crystalline diamond (UNCD) films deposited by CH4/Ar mixture has been established. The detail mechanism for the formation of UNCD from CH4/Ar plasma has been reported[1, 2]. Recent application of nano-diamond films in bio-sensors[3], filed emission[4, 5] and bio-medical application[6] have shown the promising future of this nano-material. Even so, no detailed study has been performed on the growth rate and formation of nucleation sites by biased enhanced nucleation (BEN) method to grow uniform UNCD film on the silicon surface. Therefore, it is significant to understand more precisely on the deposition rate and deposition conditions influencing growth process of UNCD film.The substrate pretreatment strongly affects the nucleation and growth process of diamond films determining the initial deposition rate, crystal quality and surface roughness. High deposition rate is primarily important to grow thick diamond films normally required for application like SAW devices[7]. Moreover, a smooth surface of diamond film is another important requirement. Thus, suitable conditions need to be established to grow ultrananocrystalline diamond grains to directly obtain a smoother film. One of the most effective methods of diamond nucleation is bias enhanced nucleation (BEN) method[8, 9]. The formation of nano-diamond phase on silicon acts as nucleation center for the growth of either nano-crystalline or microcrystalline diamond depending on the deposition parameters used.One of the main objectives of the present work was to systematically investigate the nucleation behavior of UNCD on silicon surface using a BEN technique. As BEN method does not involve any scratching by diamond abrasives, it avoids the confusion of presence of any residual diamond particle on the substrate. Another objective of current study is to find a suitable deposition condition for the high and uniform growth of UNCD. The effect of microwave power, substrate temperature, CH4 to Ar ratio and total pressure on the growth rate is reported in this article.3II. ExperimentalThe bias enhanced nucleation (BEN) diamond films were grown in a 2.45 GHz ASTeX microwave plasma enhanced chemical vapor deposition (PECVD) system on N-type mirror polished Si (100) substrates. A microwave power of 1.5 kW (ASTeX 5400), total pressure of 55 torr and 300 sccm H2 flow rate were used during biased treatment. Different substrates were biased treated for different time intervals (0 to 15 minutes) at constant biased voltage (-125 V) and the resulted bias current – time relationship was measured. Silicon substrates after BEN process were used for the deposition of UNCD in an IPLAS MPCVD system. Table I presents the detail experimental deposition conditions used for UNCD growth. In Series - P, C, T and MW, chamber pressure, CH4/Ar ratio, temperature and microwave power was varied respectively, keeping rest of the parameters constant.Surface morphology of samples was examined with a field emission scanning electron microscope (JEOL 6010). Crystal quality of UNCD films was investigated by Raman Spectroscopy using 514 nm argon laser beam (Renishaw). Surface topography and roughness was measured with atomic force microscopy (PARK).III. Results and discussion(a) Nucleation processThe formation of nanodiamond phase for the nucleation of diamond growth during BEN is known for last few years. Therefore BEN time is crucial to create uniform nucleation center on the silicon. Figure 1 shows the nucleation of nano-diamond films deposited after different BEN time intervals. The SEM images show uniform island growth at the beginning after 5 minutes of BEN (Fig 1a) and subsequent increase of coverage in nano-diamond grains clusters on the surface after 7 minutes (Fig 1b). After 8 minutes of BEN, the whole silicon surface is covered by cluster of nano-diamond crystals. The average size of nano-diamond cluster is around 150 nm and size of each diamond grain in the clusters is ~ 20 nm (Fig 1c). A saturation of nano-diamond growth occurs after 8 minutes of BEN, covering whole area of silicon substrate. At 10 min of BEN, cluster size of nano-diamond is decreased but diamond grain of size 50 nm started to appear (Fig 1d). The surface morphology is almost same after 10 minutes BEN. This4establishes the minimum time (8 minutes) required for the creation of high nucleation centers and uniform nano-diamond layer on silicon. The grain size is also found to be smallest (~20 nm) after 8 minutes of BEN. The thickness was about 250 nm.The measurement of bias current during BEN in our study indicates direct correlation in the formation of nano-diamond phase on silicon, which is shown in fig. 2 for the trend of bias current versus time at a constant negative bias voltage of 125 V. When there is no methane flow, bias current is about -52 mA. This current starts to decrease in the first 3 minutes, which may be due to methane content increases and changes plasma condition. The subsequent increase of bias current which has been attributed to the enhancement in electron emission from the highly emissive diamond formed on silicon substrate surface and the bias current become saturated after 10 minutes indicating no more nano-diamond coverage increase in surface.(b) Growth processFigure 3 shows the effect of various parameters on the deposition rate of UNCD. The deposition rate of diamond film is found to depend significantly on the temperature and the ratio of CH4 to Ar in the reactant gas compared to microwave power and total pressure. The effect of chamber pressure in the deposition rate is linearly increases from 100 torr to 150 torr. There is no much effect of pressure on the deposition rate. However, there is a striking increase in deposition rate when CH4/Ar ratio was increased from 0.5 % to 2.0 %. The substrate temperature is another important parameter for increasing deposition rate. The deposition rate is found to increase around 4 times with increase in temperature from 400o C to 600o C while all other parameters were held constant. The deposition rate of UNCD increases with microwave power from 600 W to 750 W. However, deposition rate comes down and become almost constant in the microwave power range of 900 W to 1200 W. We have grown a UNCD film having highest deposition rate of ~1 µm/hr at 750 W with combination of parameters: 150 torr pressure, 600 o C temperature and 1 % methane.Figure 4 shows typical SEM images of UNCD film. Diamond grains of size less than 10 nm have been grown under above described deposition conditions. Unlike the agglomeration observed after bias enhanced nuclation, UNCD film shows a uniform and5smooth surface having numerical diamond crystallites density of as high as 1012 /cm2. This high nucleation density was due to formation of high nucleation centers during BEN and the growth in CH4/Ar plasma. The inset shows a cross-sectional image of UNCD film. The surface roughness of the diamond films is strongly affected by deposition method. AFM analysis shows that the surface roughness of the BEN film using CH4/H2 source gas under continuous bias (-125 V) in 8 minutes period was about 13.2 nm. This surface roughness reduces to 10 nm after deposition of UNCD using CH4/Ar source gas. The decrease of surface roughness is well matched with decrease of diamond grain size measured by SEM. Size of diamond grains were less than 10 nm after UNCD deposition on a 20 nm diamond crystallites film formed during negative biasing.Raman technique is one of the important non-destructive characterization techniques to study the properties of any type of carbon forms. There are four main peaks normally observed at around 1140 cm-1, 1330 cm-1, 1470 cm-1 and 1560 cm-1 in visible Raman spectrum of UNCD films[10, 11]. Figure 5 shows the Raman spectra of UNCD films deposited on silicon at different experimental conditions. These Raman spectra are found to be very similar to as reported in literature[10, 11]. The broad peak at 1330 cm-1 and 1560 cm-1 are commonly termed as D-band and G band respectively. The peaks at 1140 cm-1 and 1470 cm-1 are sometimes assigned to nano-crystalline diamond films[12, 13].However, there is certain ambiguity in these two peaks. Ferrari et. al.[14] and Kuzmany et. al.[15] have assigned these two peaks at 1140 cm-1 and 1470 cm-1 to trans-polyacetylene segments present at the grain boundaries and surfaces of diamond films. However, these two peaks are most commonly observed in UNCD or NCD film[10, 11]. Since the sp2-bonded carbon is highly sensitive to visible Raman spectroscopy than sp3-bonded carbon, sharp peak at 1332 cm-1 is not observed. In our study, the peak height of 1140 cm-1 and 1470 cm-1 suggests the increase in trans-polyacetylne percentage with substrate temperature. Raman spectra of series –P, -C and -MW samples are almost same indicating not much change in crystallinity of UNCD films by varying pressure, CH4/Ar ratio and microwave power.6IV. ConclusionUNCD film of diamond grain less than 10 nm was grown on BEN treated silicon surface. Nucleation density of ~1012 grains/cm2 was obtained in the growth process. Silicon substrate was biased for different time interval to study the formation of nucleation center. Our study has shown that a minimum 8-minute of bias enhanced nucleation was needed for uniform growth of UNCD film. Agglomeration of diamond crystallites obtained in BEN diamond growth was not observed after the growth of UNCD in a CH4-Ar medium. AFM study depicted the improvement in smoothness of UNCD film to 6.83 nm from 10.83 nm obtained by BEN NCD film. Raman spectra have shown the peak at respective positions that normally observed in UNCD films.V. AcknowledgmentThe authors would like to thank National Science Council, R.O.C. for the support of this research through the project No. NSC 93-2112-M-032-010.VI. References[1] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, J. Appl. Phys.83 (1998) 540.[2] D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211.[3] A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Sreinmuller, M. Stutzmann, Nature Materials, 3 (2004) 736.[4] W. Zhu, G.P. Kochanski, S. Jin, Science282 (1998) 1471.[5] K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, J. Appl. Phys.88 (2000) 2967.[6] M. D. Fries, Y.K. Vohra, Diam. Rel. Mater. 13 (2004) 1740.[7] F. Benedic, M.B. Assouar, F. Mohasseb, O. Elmazria , P. Alnot , A. Gicquel, Diam. Rel. Mater. 13 (2004) 347.[8] S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.[9] Q. Chen, Z. Lin, J. Appl. Phys. 80 (1996) 797.[10] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232.[11] Y. Hayashi, T. Soga, Tribology International 37 (2004) 965.[12] W.A. Yarbrough, R. Messier, Science 247 (1990) 688.7[13] R.J. Nemanich, J.T. Glass, G. Lucovsky, R.E. Shroder, J. Vac. Sci. Technol. A 6 (1988) 1783.[14] A.C. Ferrari, J. Robertson, Phys. Rev. B, 63 (2001) 121405.[15] H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, Carbon 42 (2004) 911.89Table I: Experimental deposition conditions for UNCD growth on BEN silicon surface. Materials Pressure(Torr)CH 4/Ar Ratio (%) Temperature (o C) MW Power (W) Series-P100~150 1 % 400 1200 Series-C150 0.5 ~ 2 % 4001200 Series-T150 1 % 400 ~ 600 750 Series-MW150 1 % 600 600 ~ 1200Figure captionsFig 1. SEM images of diamond films grown on silicon surface after different BEN time intervals, (a) 5 min., (b) 7 min., (c) 8 min. and (d) 10 min of BEN.Fig. 2. Bias current from the electrode to the substrate holder during the bias enhanced nucleation as a function of time.Fig. 3. Effect of pressure, CH4 to Ar ratio, substrate temperature and microwave power on the deposition rate of UNCDFig. 4. FE-SEM image of UNCD grown under deposition condition of 750 W microwave power, 150 torr total pressure, total flow of 200 sccm Ar-CH4 (CH4-1 %) andsubstrate temperature 600 o C in 3 hr deposition period. Inset shows a cross-sectional view.Fig. 5. Visible Raman spectra UNCD films obtained under different experimental conditions.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ii
ABSTRACT Modern Instrumentation and Control (I&C) Systems of Nuclear Power Plant (NPP) are moving into complete digitalization. However, digitalization for I&C could induce new failure modes, and impact the diversity and defense-in-depth D3 design characteristic which
952001INER005
PCTRAN-ABWR (ECCS)
(ECCS) (RCIC) (RHR) (ECCS) (ECCS) (ECCS) / (ECCS) (5) (4) (RHR) (1) (2) (Interlock) (3) (HPCF)
i
[1]
LOCA
[2]
ECCS
Alternate Rod Insertion
are also developed to reinforce the abilities
of PCTRAN-ABWR. Some brief introductions and basic efforts are also included in this report.
iv
and Residual Heat Removal
. The approaches are as followings:
(1) Three indepandant divisions of ECCS are builded. (2) The essential operation modes and interlock logics are builded. (3) The Thermal-Hydraulic relationships among the ECCS, the reactor core model and the containment are clarified.
iii
(4) The process flow models for ECCS are improved. (5) The heat exchanger of RHR is improved. The data like the process flow diagrams[1] and the LOCA Analysis[2] of GE are utilized as benchmarks for the modified simulation of the ECCS system. The advanced discussions, like the failure of the ECCS by division, on the case of loss of all feedwater flow can be an example of extended analysis in the future. By the way, the Alternate Rod Insertion Run-in FMCRD Run-in ARI and Fine Motion Cortrol Rod Drive
nuclear power plants rely on. The redundancy characteristic can be defeated by software common mode failure. The complexity of software could possess some paths which can interrupt or bypass defense-in-depth design. Therefore, the regulation requests that the new digitalized I&C NPP designs shall be performed defense-in-depth analysis to understand whether the defense-in-depth design is capable to resist the software design defects. In various defense-in-depth analysis methods, computer simulation for digital I&C systems of NPP is a crucial item. By simulating various case studies for defense-in-depth failure, the research people can understand and realize the event sequence, and can also derive various possible events to search the residual design vulnerability. We focus on the improvements and modifications of the Emergency Core Cooling system(ECCS) of the PCTran-ABWR. Basing on the original structure, we modify three subsystems of the ECCS system, which includes of Reactor Core Isolation Cooling System Pressure Core Flooder System System RHR HPCF RCIC , High