一次函数(方案选取)练习题与解答
一次函数练习题及答案

一次函数一、填空题 1、函数m x m y-+-=5)2(是一次函数,则m 满足的条件是 ,若此函数是正比例函数,则m 的值为2、已知函数y=4x+5,当x=-3时,y=;当y=5时,x=3、在直角坐标系中,画一次函数y=kx+b 的图象通常过点和画一条直线4、在同一直角坐标系中,把直线y=-2x 向平移单位,就得到了y=-2x+3的图像.5、已知一次函数21y x =+,则y 随x 的增大而_______________(填“增大”或“减小”).6、一次函数的图象经过点A(-2,-1),且与直线y=2x-1平行,则此函数解析式为7、如图1直线AB 对应的函数表达式为8、已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________.9、一次函数y=kx+b 的图象如图所示,看图9填空:(1)当x=0时,y=_________;当x=______时,y=0.(2)k=__________,b=__________. (3)当x=5时,y=________;当y=30时,x=________. 二、选择题1、下列函数中,y 是x 的一次函数的是( )0.65y 2x 3xy 432y21y 4x 3y 3=+=-==+==x x yA.3个B.4个C.5个D.2个 2、下列说法不正确的是( )A.一次函不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数 3、一次函数32-=x y 的大致图像为 ( )A B C D23xy 图7图9o yxo yx yx o oy x4、小敏家距学校1200米,某天小敏从家里出发骑自行车上学,开始她以每分钟1V米的速度匀速行驶了600米,遇到交通堵塞,耽搁了3分钟,然后以每分钟2V米的速度匀速前进一直到学校)(21VV<,你认为小敏离家的距离y 与时间x之间的函数图象大致是()5、药品研究所开发一种搞菌新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图2所示,则当1≤x≤6时,y的取值围是()A.83≤y≤6411B.6411≤y≤8C.83≤y≤8 D.8≤y≤16三、解答题1、函数54)3(12+-+=-xxky k是一次函数,求k的值。
一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。
为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。
方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。
(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。
(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:(1)求a的值;(2)求泄洪20小时,水库现超过警戒线水量;(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
(1)问小李分别购买精品盒与普通盒多少盒(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配最大的总利润是多少4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式。
一次函数练习题(附答案)

、选择题1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( )(A) y=8x (B) y=2x+6 (C) y=8x+6 (D) y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A) 一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A) 4 (B) 6 (C) 8 (D) 164.若甲、乙两弹簧的长度y ( cmj)与所挂物体质量x (kg)之间的函数解析式分别为y=k i x+a i和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y i,乙弹簧长为丫2,则y i与y2的大小关系为( )(A) y i>y2 (B) y i=y2(C) y i<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组(A) (BJ (C)a, b的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A) 一(B)二(C)三(D)四7. 一次函数y=kx+2经过点(1, 1),那么这个一次函数( )(A) y随x的增大而增大(B) y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=- 3x-4的图像,可把直线y=- -x ().2 2(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10 .若函数y= (m-5) x+ (4m+1) x 2(m 为常数)中的y 与x 成正比例,则 m 的值为()合条件的点P 共有()16 . 一次函数y=ax+b (a 为整数)的图象过点(98, 19),交x 轴于(p, 0),交y 轴于(?0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A ) 0(B ) 1(C ) 2(D )无数17 .在直角坐标系中,横坐标都是整数的点称为整点, 设k 为整数.当直线y=x-3与y=kx+k的交点为整点时,k 的值可以取()(A ) 2 个 (B ) 4 个 (Q 6 个 (D ) 8 个18 . (2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线 y=x-3与丫=权+卜的交点为整点时,k 的值可以取()(A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个19 .甲、乙二人在如图所示的斜坡 AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是 1a 米/分,下山的速度是2b 米/分.如2果甲、乙二人同时从点 A 出发,时间为t (分),离开点A 的路程为S (米),?那么下面11/A 、 1(A) m>— — 4■若直线y=3x-1 , 7 ,小1 (B) m>5 (C) m=——4与y=x-k 的交点在第四象限, (D) m=5 k 的取值范围是().12/、 1(A) k<- 3P (-1 (B) 1<k<1 33)直线, (C) k>1,、八 1(D) k>1 或 k<- 使它与两坐标轴围成的三角形面积为35, ?这样的直线可以作1314 (A) 4 条(B) 3 条 (C) 2 条 (D) 1 条a.已知abcw0,而且一(A )第一、二象限 (C )第三、四象限 ,当-1 WxW2时,函数 (B)(D) a第二c a 一,,, 、一,--- =p,那么直线 y=px+p 一TE 通过(----- )b第一、四象限y=ax+6满足y<10,则常数a 的取值范围是( )(A) -4<a<0 (B) 0<a<2 15 (C) -4<a<2 且 aw0.在直角坐标系中,已知(D) -4<a<2A (1,1),在x 轴上确定点P,使△AOP^J 等腰三角形,则符(A) 1 个(B) 2 个 (C) 3 个 (D) 4 个图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S (米)?之间的函数关系的是()20 .若k、b是一元二次方程x2+px- 1 q =0的两个实根(kbw0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1 .已知一次函数y=-6x+1 ,当-3WxW 1时,y的取值范围是 .2 .已知一次函数y= (m-2) x+m-3的图像经过第一,第三,第四象限,则m的取值范围是3 .某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.4 .已知直线y=-2x+m不经过第三象限,则m的取值范围是 .5 .函数y=-3x+2的图像上存在点P,使得P砌x?轴的距离等于3, ?则点P?的坐标为6 .过点P (8, 2)且与直线y=x+1平行的一次函数解析式为 .7 . y=2x与y=-2x+3的图像的交点在第象限. 38.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(bwa), 他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、?q?)表示元.9 .若一次函数y=kx+b ,当-3WxW1时,对应的y值为1WyW9, ?则一次函数的解析式为.10 .(湖州市南滑区2005年初三数学竞赛试)设直线kx+ (k+1) y-1=0 (为正整数)与两坐标所围成的图形的面积为S k(k=1, 2, 3,……,2008),那么Si+S2+---+S2008=.11.据有关资料统计,两个城市之间每天的电话通话次数现测得A B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为 t,那么B C 两个城市间每天的电话次数为 次(用t 表 示).三、解答题1 .已知一次函数 y=ax+b 的图象经过点 A (2, 0)与B (0, 4). (1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数 y 的值在-4WyW4范围内,求相应的 y 的值在什么范围内.2.已知y=p+z,这里p 是一个常数,z 与x 成正比仞ij,且x=2时,y=1; x=3时,y=-1 .(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1WxW4,求y 的取值范围.T?与这两个城市的人口数 mr n (单位:万人)以及两个城市间的距离 d (单位: kmn km )有 T= 2~ d 2的关系(k 为常数).?3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. ?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,?测量了家里的写字台和凳子, 写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象. (1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) ?求小明出发多长时间距家125.已知一次函数的图象,交x轴于A (-6,0),交正比例函数的图象于点B,且点B? 在第三象限,它的横坐标为-2,4AOB的面积为6平方单位,?求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A (0, 1)出发,经过x轴上点C反射后经过点B (3, 3),求光线从A点到B点经过的路线的长.7.由方程I x-1 + y-1 =1确定的曲线围成的图形是什么图形,其面积是多少?28.在直角坐标系x0y中,一次函数y=——x+J2的图象与x轴,y轴,分别交于A、B两点,?点C坐标为(1, 0),点D在x轴上,且/ BCD=/ ABQ求图象经过B、D?两点的一次函数的解析式.9 .已知:如图一次函数 y= - x-3的图象与x 轴、210 .已知直线y=4x+4与x 轴、y 轴的交点分别为3(?0, -1), Q (0, k),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当 k 取何值时, OQ?与直线AB 相切?11 . (2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有 50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往 A B 两地收割小麦,其中 30?台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金 乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为 y (元),请用x 表示y,并注明x 的范围.(2)若使租赁公司这 50台联合收割机一天获得的租金总额不低于79600元,?说明有多少种分派方案,并将各种方案写出.0)作AB 的垂线交AB 于点E,交y 轴于点D,求点 Dy 轴分别交于A 、B 两点,过点C(4, EA 、B.又P 、Q 两点的坐标分别为 P12.已知写文章、出版图书所获得稿费的纳税计算方法是(x 800)・20%・(1 30%), x 400 - - —占…八f (x)= 其中f (x)表本稿费为x兀应缴纳的x(1 20%)・20%y 30%),x 400税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,?问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元, 乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.?又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x, y的值.am3时,只付基本费814.某市为了节约用水,规定:每户每月用水量不超过最低限量元和定额损耗费c元(c W 5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部3 .分每1m付b兀的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15. A市、B市和C市有某种机器10台、10台、8台,?现在决定把这些机器支援给 D 市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从8所调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E 市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x (台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.答案:1. B2.B3. A4. A5. B 提示:由方程组 y bx a 的解知两直线的交点为(1, a+b ), ?y ax b而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2W1,故图C 不对;图D 外交点纵坐标是大于 a,小于b 的数,不等于a+b, 故图D 不对;故选B.… — , 一『 k 0,,一6. B 提小::直线y=kx+b 经过一、一、四象限,,对于直线y=bx+k,b 0••• ',图像不经过第二象限,故应选 B.b 07. B 提示:丁 y=kx+2 经过(1, 1), • . 1=k+2, • . y=-x+2 ,・「k=-1<0 , y 随x 的增大而减小,故 B 正确.y=-x+2不是正比例函数,,其图像不经过原点,故 C 错误. •••k<0, b=?2>0, .•.其图像经过第二象限,故 D 错误. 8. C 9 . D 提示:根据y=kx+b 的图像之间的关系可知,・•・当 p=2 时,y=px+q 过第一、 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.14. D 15 . D 16 . A 17 . C 18 . C 19 . C将y=- 3x?的图像向下平移 4个单位就可得到 y=- - x-4的图像.210. C 提示:•••函数y= (m-5)2x+ (4m+D x 中的y 与x 成正比例,4m 10,即0, 5,1 , 41 ...m=——,故应选 4 C.11. B 12 , C 13 . ,①若 a+b+cw0, ②若a+b+c=0,则B 提示:a —bc 则 p=(a b) (b a Ip=a b c = 1 c c 'a c) (cb cc a "V 平 义=2;20. A 提示:依题意,△ =p2+4 q >0,1.4.5. k*b k*b一次函数y=kx+b中,y随x的增大而减小过一、二、四象限,选A.-5WyWl9 2 . 2Vm<3 3.如y=-x+1 等.P |q| 0m>0.提示:应将y=-2x+m的图像的可能情况考虑周全. (1, 3)或(5,-3 ).提示:二,点P到x轴的距离等号当y=3时,3x= 1;当y=-3时,x=?;,点P的坐标为(3 3一次函数的图像一定经3,,点3)提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为P的纵坐标为3或-35或(一,-3 ).33,故点P的纵坐标应有两种情况.6. y=x-6 .提示:设所求一次函数的解析式为y=kx+b. .,直线y=kx+b 与y=x+1 平行,k=1,,y=x+b.将P (8, 2)代入,得2=8+b, b=-6,,所求解析式为y=x-6 .7.解方程组y 2一x,32x得3,,两函数的交点坐标为9,83,43 . 」3),在第一象限. 42 28 aq bp 2(bp aq) y=2x+7 或y=-2x+3101004200911.据题意,有80t=501602k, .,k=32t.5因此,B、C两个城市间每天的电话通话次数为80 1002-T BC=kx32t 5 t5 64 2,曲'/口 2a b 0a 21 . (1)由题息得:解得b 4 b 4,这个一镒函数的解析式为: y=-2x+4 (?函数图象略).(2) y=-2x+4 , -4WyW4,.•--4 <-2x+4 <4, 0<x<4.2. (1) ; z 与x 成正比例,,设 z=kx (kw0)为常数,则 y=p+kx.将 x=2, y=1 ; x=3, y=-1 分别代入 y=p+kx, ,口 2k p 1 〃,口得解得k=-2 , p=5,3k p 1二. y 与x 之间的函数关系是 y=-2x+5 ;(2) .1 1<x< 4,把 x-1, x2=4 分别代入 y=-2x+5 ,得 y 『3, y2=-3 .・ ・・当 1WxW4 时,-3 WyW3. 另解:: 1<x<4,-8 < -2x < -2 , -3W-2x+5W3,即-3WyW3.3. (1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0 , 70.0 )和(42.0 , 78.0 )代入,得,一次函数关系式为 y=1.6x+10.8 .X 43.5+10.8=80.4 . 77W80.4 , •••不配套. 4. (1)由图象可知小明到达离家最远的地方需(2)设直线 CD 的解析式为 y=k 1x+b 1,由 C (2, 15)、D (3, 30),代入得:y=15x-15 , (2<x<3). 当 x=2.5 时,y=22.5 (千米) 答:出发两个半小时,小明离家.(3)设过E 、F 两点的直线解析式为 y=k 2x+b 2,由 E (4, 30), F (6, 0),代入得 y=-15x+90, (4<x<6) 过A 、B 两点的直线解析式为 y=k 3x,B (1, 15), y=15x . (0<x<1), ?分别令y=12 ,得x= 26(小时),x=-(小时).5 52k p 1 3k p 13小时;此时,他离家 30千米.26 4答:小明出发小时26■或4小时距家12千米.5 55.设正比例函数 y=kx, 一次函数 y=ax+b,•・•点B 在第三象限,横坐标为-2 ,设B (-2 , yB),其中yB<0,S A AOB =6, — AO, yB | =6,21. yB=-2 ,把点B (-2, -2)代入正比例函数 y=kx, ?得卜=1.0 6aba 把点 A (-6, 0)、B (-2,-2)代入 y=ax+b,得解得2 2ab, bD,彳D 吐y 轴,BHx 轴,交于 E.先证^ AOC2△ DOC・•.OD=OA=?,1 CA=CD CA+CB=DB=DE 2 BE 2 32 42 = 5.7 .当 x>1, y>1 时,y=-x+3 ;当 x> 1, y<1 时,y=x-1 ;当 x<1 , y> 1 时,y=x+1 ;当 x<?1 , y<1 时,y=-x+1 . 由此知,曲线围成的图形是正方形,其边长为J2,面积为2.8 . .••点A B 分别是直线y=12x+应与x 轴和y 轴交点, ••A (-3, 0), B (0,夜),•・•点C 坐标(1,0)由勾股定理得 BC=/3, AB=V 11 , 设点D 的坐标为(x, 0).(1)当点D 在C 点右侧,即x>1时, ・• / BCD h ABR / BDC=/ ADR .BCD^△ ABRBC CD .3 |x 1| ①AB BD '而,x 2 2• • X I = — , x2=—,经检验: X I = — , x2=—,都是方程①的根,24 24.x=1,不合题意,,舍去,,x=5,,D?点坐标为(卫,0).422・・尸’T-3即所求.6.延长BC 交x 轴于 3_11 x 2 2x 1••• 8x 2-22x+5=0 ,2 2设图象过B、D两点的一次函数解析式为y=kx+b , 55k b2・••所求一次函数为y=- 2/2x+J2 .59 .(2)若点D在点C左侧则x<1 ,可证△ ABS△ AD^AD BD . |x 3| . x2 2AB CB' -11—一飞一• • 8x2-18x-5=0 ,--- x i=— - , x2=5 ,经检验x i=—,4 245 , 、,…,x2=-,都是方程②的根.2x2= 5不合题意舍去,,x i=-),,D点坐标为(-1,0),2 4 4,图象过B、D (- 1, 0)两点的一次函数解析式为y=4,2x+J2,4综上所述,满足题意的一次函数为y=- 2^2 x+ J2或y=4 J2 x+ J2 .5直线y= —x-3与x轴交于点A (6, 0),与y轴交于点B (0, -3),2OA=6 OB=3 「OAL OB CD! AB, ,/ ODC= OABcot / ODC=cotZ OAB 即OD OAOC OB '“OC,OA 4 6 一,一OD=------- ------=8.,点D 的坐标为(0, 8),OB 3设过CD的直线解析式为y=kx+8 ,将C (4, 0)代入0=4k+8,解得k=-2 .1一, y -x・・・直线CD y=-2x+8,由2y 2x3 .3解得82254「•点E的坐标为(—,--).5 510 .把x=0, y=0分别代入y=±x+4得3「.A 、B 两点的坐标分别为(-3, 0), (0, 4) ?. ?•. OA=3 OB=4,,AB=5, BQ=4-k, QP=k+1.当 QQ LAB 于 Q'(如图),当QQ =QP 时,O Q 与直线 AB 相切.由 Rt^BQQ Rt△ BA(O 得BQ QQ' BQ Qp . 4 k k 1 . _ 7 BA AO BA AO •-53 ' " 8 .・・・当k=7时,O Q 与直线 AB 相切.811 . (1) y=200x+74000, 10<x<30(2)三种方案,依次为 x=28, 12 .设稿费为 x 元,.. x>7104>400,• ・x-f (x) =x-x (1-20%) 20% (1-30%) =x-x - 4 - 1• — x=111 x=7104.5 5 10 125,x=7104X 卫1=8000 (元).答:这笔稿费是 8000元.12513 . (1)设预计购买甲、乙商品的单价分别为 a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5 )(x-10 ) + (b+1) y=1529,②再由甲商品单价上涨 1元,而数量比预计数少 5个,乙商品单价上涨仍是1元的情形得:(a+1) (x-5) + (b+1) y=1563. 5, ③.1.5x y 10a 44,由①,②,③得:,④-⑤X2并化简,得x+2y=186.x y 5a 68.5.2(2)依题意有:205<2x+y<210 及 x+2y=186,得 54<y<55 —.3由于y 是整数,得y=55,从而得x=76 .0, 4;x 3, y0.29, 30的情况.由题意知:0<cW5, 0<8+cWl3.从表中可知,第二、三月份的水费均大于 13元,故用水量15m 3、22m 3均大于最低限量 am,19 8 b (15 a ) c将x=15, x=22分别代入②式,得( ) 解得b=2, 2a=c+19,⑤.33 8 b (22 a ) c再分析一月份的用水量是否超过最低限量,不妨设9>a ,将 x=9 代入②,得 9=8+2 (9-a ) +c,即 2a=c+17, ⑥. ⑥与⑤矛盾.故9w a,则一月份的付款方式应选①式,则8+c=9,,c=1代入⑤式得,a=10.综上得 a=10 , b=2, c=1 . ()15. (1)由题设知,A 市、B 市、C 市发往D 市的机器台数分 x, x, 18-2x ,发往E 市的机器台数分别为10-x, 10-x, 2x-10 .于是 W=200x+300x+400( 18-2x ) +800( 10-x ) +700( 10-x ) +500(2x-10 ) =-800x+17200 .0 x 10,0 x 10, 又0 18 2x 8,5 x 9,••.5<x<9, .. W=-800x+17200 (5W x<9, x 是整数).由上式可知,W 是随着x 的增加而减少的, 所以当x=9时,W 取到最小值10000元;? 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为 x, y, 18-x-y ,发往E 市的机器台数分别是 10-x , 10-y , x+y-10 ,于是 W=200x+800( 10-x ) +300y+700 ( 10-y ) +?400( 19-x-y ) +500(x+y-10 )=-500x-300y-17200 .0 x 10,0 x 10, 又 0 y 10,0 y 10, 0 18 x y 8,10 x y 18,14.设每月用水量为 xm3,支付水费为 y 元.则 y=8 c,0 x a8 b(x a) c,x0 x 10,W=-500x-300y+17200 ,且0 y 10, (x,y 为整数) .0 x y 18.W=-200x-300 (x+y) +17200>-200 X 10-300 X 18+17200=9800.当x=?10, y=8时,W=9800所以,W 的最小值为 9800.又 W=-200x-300 (x+y) +17200W-200 X 0-300 X 10+17200=14200.当 x=0, y=10 时,W=14200 所以,W 的最大值为14200. 1.在一次函数y 2x 3中,y 随x 的增大而(填“增大”或“减小”),当 0 x 5时,y 的最小值为2.如图,直线y 1=kx b 过点A(0, 2),且与直线y 2=mx 交于点P(1, m),则不等式组 mx>kx b>mx 2 时,x 的取值范围是。
一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1.函数y=中,自变量某的取值范围是()某1A.某≥0B.某1C.某0且某≠1D.某≥0且某≠12.已知正比例函数y=-2某,当某=-1时,函数y的值是()A.2B.-2C.-0.5D.0.53.一次函数y=-2某-3的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间某(分钟)之间的函数关系,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。
5.已知一次函数y=(m+2)某+(1-m),若y随某的增大而减小,且此函数图像与y轴的交点在某轴上方,则m的取值范围是()A.m-2B.m1C.-2D.-2m16.(2007福建福州)已知一次函数y(a1)某b的图象如图所示,那么a的取值范围是()A.a1B.a1C.a0D.a07.(2007上海市)如果一次函数yk某b的图象经过第一象限,且与y轴负半轴相交,那么()A.k0,b0B.k0,b0C.k0,b0D.k0,b08.(2007陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某2C.y某2B.y某2D.y某2)9.(2007浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
八年级数学-一次函数练习题(含解析)

八年级数学-一次函数练习题(含解析)一、单选题1.下列的点在函数y =13x -2上的是( ) A .(0,2) B .(3,-2) C .(-3,3) D .(6,0)2.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-93.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对4.下列不是一次函数关系的是( )A .矩形一条边的长固定,面积与另一条边的长的关系B .矩形一条边的长固定,周长与另一条边的长的关系C .圆的周长与直径的关系D .圆的面积与直径的关系5.已知函数()15my m x m =-+是一次函数,则m 的值为( ) A .1 B .1- C .0或1- D .1或1-6.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 7.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .38.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >9.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <010.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( )A .2种B .3种C .4种D .5种二、填空题 11.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________. 12.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=____.13.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.14.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为________cm .15.若直线y mx n =-+经过第一、二、三象限,则直线y nx m =-+不经过第________象限.三、解答题16.如图,正比例函数的图像经过点()1,2-,求此函数的解析式.17.已知y 与23x -成正比例,且当4x =时,10y =,求y 与x 的函数解析式.18.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.19.已知一次函数的图象经过A(−2,−3),A(1,3)两点. (1)求这个一次函数的表达式;(2)试判断点A(−1,1)是否在这个一次函数的图象上.20.如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足时,y1>y2.21.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.参考答案1.D【解析】A 选项:当x =0时,102223y =⨯-=-≠. 因此,点(0, 2)不在该函数的图象上. 故A 选项不符合题意.B 选项:当x =3时,132123y =⨯-=-≠-. 因此,点(3, -2)不在该函数的图象上. 故B 选项不符合题意.C 选项:当x =-3时,()132333y =⨯--=-≠. 因此,点(-3, 3)不在该函数的图象上. 故C 选项不符合题意.D 选项:当x =6时,16203y =⨯-=. 因此,点(6, 0)在该函数的图象上. 故D 选项符合题意.故本题应选D.2.C【解析】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.3.A【解析】解:由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.故选:A .4.D【解析】A 项,矩形的面积=一条边长×另一条边长,当矩形一条边的长固定,面积与另一条边的长的关系是一次函数关系,故本选项不符合题意;B 项,矩形的周长=2×一条边长+2×另一条边长,当矩形一条边的长固定,周长与另一条边的长的关系是一次函数关系,故本选项不符合题意;C 项,圆的周长=π×直径,圆的周长与直径的关系是一次函数关系,故本选项不符合题意;D 项,圆的面积=4π×直径2,圆的面积与直径的关系不是一次函数关系,故本选项符合题意.故选D .5.B【解析】 由题意可知:110m m =-≠⎧⎪⎨⎪⎩,解得:m=−1故选:B . 6.D【解析】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =, Q 两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-. 故选:D .7.A【解析】把(0,0)代入y=(k+2)x+k 2-4得k 2-4=0,解得k=±2,而k+2≠0,所以k=2.故选A .8.B【解析】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .9.B【解析】∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.10.C【解析】①将(0,−2)代入解析式得,左边=−2,右边=−2,故图象过(0,−2)点,正确;②当y=0时,y=−x−2中,x=−2,故图象过(−2,0),正确;③因为k=−1<0,所以y随x增大而减小,错误;④因为k=−1<0,b=−2<0,所以图象过二、三、四象限,正确;⑤因为y=−x−2与y=−x的k值(斜率)相同,故两图象平行,正确.故选C.11.112y x=-+【解析】由平移的规律知,得到的一次函数的解析式为112y x=-+.12. -23【解析】∵y=kx+b的图象平行于直线y=−2x,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为:−2,3.【解析】解:∵y 随x 增大而减小,∴k<0,∴2m -6<0,∴m<3.14.32【解析】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg 时,弹簧的长度为:y=14+18=32(cm ).故答案为:32.15.一【解析】由直线y=-mx+n 的图象经过第一、二、三象限,∴-m >0,n >0,∴m<0,-n <0∴直线y=-nx+m 经过第二、三、四象限,∴直线y=-nx+m 不经过第一象限,故答案为:一.16.2y x =-.解:设该正比例函数的解析式为()0y kx k =≠.∵该正比例函数经过点()1,2-,则21k -=⨯,解得:2k =-.∴该正比例函数的解析式为:2y x =-.17.46y x =-【解析】设函数解析式为()()230y k x k =-≠,把4x =,10y =代入()23y k x =-,得:()1083k =-, 解得,2k =,所以,函数解析式为()22346y x x =-=-.18.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x −2k+6的图象y 随x 的增大而减小, ∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.19.(1)A =2A +1;(2)点A (−1,1)不在这个一次函数的图象上.【解析】解:(1)设这个一次函数的表达式为A =AA +A .由题意得{−2A +A =−3,A +A =3, 解得{A =2,A =1,∴这个一次函数的表达式为A =2A +1.(2)当A =−1时,A =2×(−1)+1=−1≠1.∴点A (−1,1)不在这个一次函数的图象上.20.(1)m=3, n=4;(2)4;(3)x <2.【解析】(1)∵点A (2,n )在正比例函数y=2x 的图象上,∴n=2×2=4,∴A(2,4);∵点A (2,4)在一次函数y 1=(m ﹣2)x+2的图象上,∴4=2(m-2)+2,解得m=3,∴y 1=x+2.(2)当y 1=0时,x+2=0,即x=-2,∴点B 的坐标为(-2,0), ∴12442AOB S ∆=⨯⨯=. (3)观察图象可知,当x 满足x <2时,y 1>y 2.21.(1)y=x+1;(2)C (0,1);(3)1【解析】(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2), ∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩== 则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.。
一次函数专题练习题含答案

一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
一次函数练习题以及解析解读

【解题方法指导】例1. (1y与x成正比例函数,当时,y=5.求这个正比例函数的解析式.(2已知一次函数的图象经过A(-1,2和B(3,-5两点,求此一次函数的解析式. 解:(1设所求正比例函数的解析式为把,y=5代入上式得,解之,得∴所求正比例函数的解析式为(2设所求一次函数的解析式为∵此图象经过A(-1,2、B(3,-5两点,此两点的坐标必满足,将、y=2和x=3、分别代入上式,得解得∴此一次函数的解析式为点评:(1不能化成带分数.(2所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.例2. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升与工作时间t(时之间的函数关系式,指出自变量x的取值范围,并且画出图象. 分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解:图象如下图所示点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.例3. 已知一次函数的图象经过点P(-2,0,且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.解:设所求一次函数解析式为∵点P的坐标为(-2,0∴|OP|=2设函数图象与y轴交于点B(0,m根据题意,SΔPOB=3∴∴|m|=3∴∴一次函数的图象与y轴交于B1(0,3或B2(0,-3将P(-2,0及B1(0,3或P(-2,0及B2(0,-3的坐标代入y=kx+b中,得解得∴所求一次函数的解析式为点评:(1本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.【综合测试】一、选择题:1. 若正比例函数y=kx的图象经过一、三象限,则k的取值范围是(A. B. C. D.2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm与燃烧时间x (小时的函数关系用图象表示为(3. (北京市一次函数的图象不经过的象限是(A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. (陕西省课改实验区直线与x轴、y轴所围成的三角形的面积为(A. 3B. 6C.D.5. (海南省一次函数的大致图象是(二、填空题:1. 若一次函数y=kx+b的图象经过(0,1和(-1,3两点,则此函数的解析式为_____________.2. (2006年北京市中考题若正比例函数y=kx的图象经过点(1,2,则此函数的解析式为_____________.三、一次函数的图象与y轴的交点为(0,-3,且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.四、(芜湖市课改实验区某种内燃动力机车在青藏铁路试验运行前,测得该种机车机械效率η和海拔高度h(,单位km的函数关系式如图所示.(1请你根据图象写出机车的机械效率η和海拔高度h(km的函数关系;(2求在海拔3km的高度运行时,该机车的机械效率为多少?五、(浙江省丽水市如图建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米.羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.(1求羽毛球飞行轨迹所在直线的解析式;(2在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到0.1米【综合测试答案】一、选择题:1. B2. B3. D4. A5. B二、填空题:1. 2.三、分析:一次函数的解析式y=kx+b有两个待定系数,需要利用两个条件建立两个方程.题目中一个条件比较明显,即图象和y轴的交点的纵坐标是-3,另一个条件比较隐蔽,需从“和坐标轴围成的面积为6”确定.解:设一次函数的解析式为,∵函数图象和y轴的交点的纵坐标是-3,∴∴函数的解析式为 .求这个函数图象与x轴的交点,即解方程组:得即交点坐标为(,0由于一次函数图象与两条坐标轴围成的直角三角形的面积为6,由三角形面积公式,得∴∴∴这个一次函数的解析式为四、解:(1由图象可知,与h的函数关系为一次函数设∵此函数图象经过(0,40%,(5,20%两点∴解得∴(2当h=3km时,∴当机车运行在海拔高度为3km的时候,该机车的机械效率为28%五、解:(1依题意,设直线BF为y=kx+b∵OD=1.55,DE=0.05∴即点E的坐标为(0,1.6又∵OA=OB=6.7∴点B的坐标为(-6.7,0由于直线经过点E(0,1.6和点B(-6.7,0,得解得,即(2设点F的坐标为(5,,则当x=5时,则FC=2.8∴在这次直线扣杀中,羽毛球拍击球点离地面的高度是2.8米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数(方案选取)练习题与解答2018.5 1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。
为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。
方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。
(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。
(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:(1)求a的值;(2)求泄洪20小时,水库现超过警戒线水量;(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
(1)问小李分别购买精品盒与普通盒多少盒(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配最大的总利润是多少4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式。
(2)若要求总运费不超过900元.共有哪几种调运方案(3)求出总运费最低的调运方案,最低运费是多少元5.某玩具厂在圣诞节期间准备生产A、B两种玩具共80万套,两种玩具的成本和售价如下表:(1)若该厂所筹集资金为2180万元,且所筹资金全部用于生产,则这两种玩具各生产多少万套(2)设该厂生产A种玩具x万套,两种玩具所获得的总利润为w万元,请写出w与x的关系式。
(3)由于资金短缺,该厂所筹集的资金有限,只够生产A种49万套、B种31万套或者A 种50万套、B种30万套.但根据市场调查,每套A种玩具的售价将提高a元(a>0),B种玩具售价不变,且所生产的玩具可全部售出,该玩具厂将如何安排生产才能获得最大利润6.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱7.随着信息技术的快速发展,“互联网”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦.现有某教学网站策划了A,B两种上网学习的月收费方式:设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.(1)下图是yB与x之间函数关系的图象,请根据图象填空:m=____,n=____;(2)写出yA与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么8.某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.9.某单位准备印刷一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价;(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元10.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.【答案】1.解:(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x;故答案为:400x-2000,350x;(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000;(3)令400x-2000=350x,解得x=40即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一。
2.解:(1)(640-520)÷(14×2-16)=10,∴a=10;(2)如图所示:设直线AB的解析式为y=kx+b,将(10,520)和(30,0)代入得:10k+b=520;30k+b=0解得:k=?26;b=780∴直线AB得解析式为y=-26x+780。
将x=20代入得:y=260。
答:求泄洪20小时,水库现超过警戒线水量为260万m3。
(3)设打开x个泄洪闸.根据题意得:15×(14x-16)≥640.解得:x≥4所以x取5。
答:泄洪一开始至少需要同时打开5个泄洪闸。
3.解:(1)设小李购买精品盒x盒,普通盒y盒,根据题意得x+y=6060x+40y=3100,解得:x=35;y=25。
答:小李购买精品盒35盒,普通盒25盒。
(2)由(1)可知精品盒共35盒,普通盒共25盒。
则分给甲店精品盒a盒,则分给乙店精品盒35-a盒,甲店分得普通盒30-a盒,乙店分得普通盒a-5盒。
故答案为:30-a;35-a;a-5。
获取的总利润W=30a+40×(30-a)+24×(35-a)+35×(a-5)=a+1865。
∵甲店获利不少于1000元,∴30a+40×(30-a)=1200-10a≥1000,解得:a≤20。
由W=a+1865的单调性可知:当a=20时,W取最大值,最大值为20+1865=1885(元)。
此时30-a=10;35-a=15;a-5=15。
答:甲店分精品盒20盒普通盒10盒,乙店分精品盒15盒普通盒15盒,才能保证总利润最大,总利润最大为1885元。
4.解:(1)若乙仓库调往A县农用车x辆(x≤6),则乙仓库调往B县农用车6-x辆,A 县需10辆车,故甲给A县调农用车10-x辆,那么甲仓库给B县调车8-(6-x)=x+2辆,根据各个调用方式的运费可以列出方程如下:y=40(10-x)+80(x+2)+30x+50(6-x),化简得:y=20x+860(0≤x≤6);(2)总运费不超过900,即y≤900,代入函数关系式得20x+860≤900,解得x≤2,所以x=0,1,2,即如下三种方案:甲往A:10辆;乙往A:0辆甲往B:2辆;乙往B:6辆,甲往A:9;乙往A:1甲往B:3;乙往B:5,甲往A:8;乙往A:2甲往B:4;乙往B:4;(3)要使得总运费最低,由y=20x+860(0≤x≤6)知,x=0时y值最小为860,即上面(2)的第一种方案:甲往A:10辆;乙往A:0辆;甲往B:2辆;乙往B:6辆,总运费最少为860元。
5.解:(1)设生产A种玩具x万套,B种玩具(80-x)万套,根据题意得,25x×10000+28(80-x)×10000=2180×10000,解得x=20,80-20=60,答:生产A种玩具20万套,B种玩具60万套。
(2)w×10000=(30-25)x×10000+(34-28)(80-x)×10000。
化简,得w=-x+480。
即w与x的关系式是;w=-x+480。
(3)根据题意可得,获得的利润为:w=-x+480+ax。
当x=49时,w1=-49+480+49a=431+49a①;当x=50时,w2=-50+480+50a=430+50a②。
①-②,得w1-w2=1-a。
∴当a<1时,选择生产A种49万套、B种31万套;当a>1时,选择生产A种50万套、B种30万套。
即当a<1时,玩具厂将选择生产A种49万套、B种31万套能获得最大利润;当a>1时,玩具厂将选择生产A种50万套、B种30万套能获得最大利润。
6. 解:(1)y 甲=⎩⎪⎨⎪⎧22x (0<x ≤1),15x +7(x >1);y 乙=16x +3 (2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =12;令y 甲>y 乙,即22x >16x +3,解得12<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3,解得x >4;令y 甲=y 乙,即15x +7=16x +3,解得x =4;令y 甲>y 乙,即15x +7>16x +3,解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱7. 解:(1) 10 50(2) yA =⎩⎪⎨⎪⎧7(0≤x ≤25)0.6x -8(x >25) (3)当x ≤50时,yB =10;当x >50时,yB =0.6x -20.当0<x ≤25时,yA =7,yB =10,∴yA <yB ,∴选择A 方式上网学习合算;当25<x ≤50时,令yA =yB ,即0.6x -8=10,解得x =30,∴当25<x <30时,yA <yB ,选择A 方式上网学习合算,当x =30时,yA =yB ,选择A 或B 方式上网学习都行,当30<x ≤50,yA >yB ,选择B 方式上网学习合算;当x >50时,∵yA =0.6x -8,yB =0.6x -20,∴yA >yB ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,yA <yB ,选择A 方式上网学习合算;当x =30时,yA =yB ,选择A 或B 方式上网学习都行;当x >30时,yA >yB ,选择B 方式上网学习合算8. 解:(1)银卡:y =10x +150;普通票:y =20x(2)把x =0代入y =10x +150,得y =150,∴A(0,150);由题意知⎩⎪⎨⎪⎧y =20x ,y =10x +150,解得⎩⎪⎨⎪⎧x =15,y =300,∴B(15,300);把y =600代入y =10x +150,得x =45,∴C(45,600) (3)当0<x <15时,选择购买普通票更合算;当x =15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x <45时,选择购买银卡更合算;当x =45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x >45时,选择购买金卡更合算9. 解:(1) 制版费1千元,y 甲=0.5x +1,证书印刷单价0.5元(2) 把x =6代入y 甲=0.5x +1中得y =4,当x ≥2时,由图象可设y 乙与x 的函数关系式为y 乙=kx +b ,由已知得⎩⎪⎨⎪⎧2k +b =3,6k +b =4,解得⎩⎪⎨⎪⎧k =0.25,b =2.5,则y 乙=0.25x +2.5,当x =8时,y 甲=0.5×8+1=5,y 乙=0.25×8+2.5=4.5,5-4.5=0.5(千元),即当印制8千张证书时,选择乙厂,节省费用500元 (3)设甲厂每个证书的印刷费用降低a 元,则8000a ≥500,解得a ≥0.0625,则甲厂每个证书印刷费用最少降低0.0625元10. 解:(1)由于派往A 地乙型收割机x 台,则派往B 地乙型收割机为(30-x)台,派往A ,B 地区的甲型收割机分别为(30-x)台和(x -10)台,∴y =1600x +1200(30-x)+1800(30-x)+1600(x -10)=200x +74000(10≤x ≤30且x 为整数) (2)由题意得200x +74000≥79600,解得x ≥28,∵28≤x ≤30,x 是正整数,∴x =28,29,30,∴有3种不同分派方案:①当x =28时,派往A 地区的甲型收割机2台,乙型收割机28台,余者全部派往B 地区;②当x =29时,派往A 地区的甲型收割机1台,乙型收割机29台,余者全部派往B 地区;③当x =30时,即30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区 (3)∵y =200x +74000中y 随x 的增大而增大,∴当x =30时,y 取得最大值,此时,y =200×30+74000=80000, 建议农机租赁公司将30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区,这样公司每天获得租金最高,最高租金为80000元。