操作系统实验三时间片轮转法完成进程调度
进程调度实验报告

进程调度实验报告
实验名称实验三进程调度
⼀.实验⽬的
了解进程的调度机制,掌握短作业优先算法、时间⽚轮转算法(RR)和优先数算法,并理解响应时间和周转时间的意义。
⼆.实验内容
模拟短作业优先算法、时间⽚轮转算法(RR)和优先数算法的执⾏情况,并动态画出其进程执⾏的 Gantt 图,计算以上算法的每个进程的响应时间和周转时间。
三.实验步骤和结果
1、需要模拟执⾏的进程序列如下:
进程名到达时间运⾏时间优先数
P1 0 7 5
P2 1 1 1
P3 1 3 4
P4 2 5 3
P5 4 4 2
假设:优先数越⼩优先级越⾼;所有进程都是纯 CPU 型进程。
请把上表的数据按照你⾃⼰设计的格式存为⼀个⽂本⽂件 JOB1.TXT。
2、编写⼀个模拟程序,可以读⼊⽂本⽂件 JOB1.TXT 中描述的进程序列,然后模拟短作业优先算法、时间⽚轮转算法(RR)和优先数算法的执⾏情况,并动态画出其进程执⾏的 Gantt 图,计算以上算法的每个进程的响应时间和周转时间。
3、读⼊⽂本⽂件 JOB1.TXT 中描述的进程序列,按照短作业优先算法执⾏程序。
4、按照时间⽚轮转算法执⾏程序时间⽚⼤⼩分布为 1、2 和 3。
5、按照优先数算法执⾏程序。
程序执⾏结果见下图:
第1页,共2页
教务处制
四.实验总结
通过这次试验,我们更加深刻地理解了有关于进程调度的内容,响应时间就是进程刚开始被执⾏的时间,等待时间就是进程在就绪队列中等待的时间,周转时间就是进程被执⾏完毕的时间(包括等待进⼊内存的时间,在就绪队列中的等待时间,执⾏时间,I/O时间)。
操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。
其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。
实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。
实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。
在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。
实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。
在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。
2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。
在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。
3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。
在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。
实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。
在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。
因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。
结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。
同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。
操作系统实验三 时间片轮转法完成进程调度

实验三:时间片轮转法完成进程调度一、实验目的:(1)加深对进程的理解(2)理解进程控制块的结构(3)理解进程运行的并发性(4)掌握时间片轮转法进程调度算法实验内容:(1)建立进程控制块(2)设计三个链队列,分别表示运行队列、就绪队列和完成队列(3)用户输入进程标识符以及进程所需的时间,申请空间存放进程PCB信息。
(4)每一个时间片结束输出各进程的进程号,CPU时间(即已经占用的CPU时间),所需时间(即还需要的CPU时间),以及状态(即用W表示等待,R表示运行,F表示完成)实验程序:#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node{char name[10];/*进程标识符*/int prio;/*进程优先数*/int round;/*进程时间轮转时间片*/int cputime; /*进程占用CPU时间*/int needtime; /*进程到完成还要的时间*/int count;/*计数器*/char state; /*进程的状态*/struct node *next; /*链指针*/}PCB;PCB *finish,*ready,*tail,*run; //队列指针int N,t; //进程数,时间片的大小void firstin(){run=ready;//就绪队列头指针赋值给运行头指针run->state='R'; //进程状态变为运行态ready=ready->next; //就绪队列头指针后移到下一进程}void prt1(char a)//输出标题函数{if(toupper(a)=='P')//优先级法printf("进程名占用CPU时间到完成还要的时间轮转时间片状态\n");} void prt2(char a,PCB *q)//进程PCB输出{if(toupper(a)=='P')//优先级法的输出printf("%4s %8d %12d %14d %8c\n",q->name,q->cputime,q->needtime,q->roun d,q->state);}void prt(char algo)//输出函数二、三、{PCB *p;prt1(algo);//输出标题if(run!=NULL)//如果运行指针不空prt2(algo,run);//输出当前正在运行的PCBp=ready;//输出就绪队列PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}p=finish;//输出完成队列的PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}getchar(); //按住任意键继续}void insert(PCB *q)//时间片轮转的插入算法{PCB *p1,*s,*r;s=q;//待插入的PCB指针p1=ready;//就绪队列头指针r=p1;//*r做pl的前驱指针while(p1!=NULL)if(p1->round<=s->round){r=p1;p1=p1->next;}if(r!=p1){r->next=s;s->next=p1;}else{s->next=p1;//否则插入在就绪队列的头ready=s;}}void create(char alg)//时间片轮转法创建链表进程PCB{PCB *p;int i,time;char na[10];ready=NULL;finish=NULL;run=NULL;printf("输入进程名及其需要运行的时间(中间以空格隔开):\n"); for(i=1;i<=N;i++){p=new PCB;scanf("%s %d",&na,&time);strcpy(p->name,na);p->cputime=0;p->needtime=time;p->state='W';//进程的状态p->round=0;if(ready!=NULL)insert(p);else{p->next=ready;ready=p;}}printf("*************时间片轮转法进程调度过程*************\n"); prt(alg);run=ready;ready=ready->next;run->state='R';}void timeslicecycle(char alg)//时间片轮转法{while(run!=NULL){run->cputime=run->cputime+t;//处理时间加trun->needtime=run->needtime-t;//完成需要时间减trun->round=run->round+t;//运行完将其变为完成态,插入完成队列if(run->needtime<=0)//当进程完成时{run->next=finish;finish=run;run->state='F';run=NULL;if(ready!=NULL)//就绪队列不空,将第一个进程投入进行firstin();}else{run->state='W';//将进程插入到就绪队列中等待轮转insert(run);//将就绪队列的第一个进程投入运行firstin();}prt(alg);}}void main()//主函数{char algo='P';//算法标记printf("输入进程的个数:");scanf("%d",&N);//输入进程数printf("定义时间片大小:");scanf("%d",&t);//输入时间片大小create(algo);//创建进程timeslicecycle(algo);//时间片轮转法调度}//main()四、实验结果:五、实验小结:时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法。
时间片轮转调度算法实验

时间片轮转调度算法实验时间片轮转调度算法是一种广泛应用于计算机操作系统中的调度算法。
本文将介绍时间片轮转调度算法的基本原理、特点以及实验过程。
一、时间片轮转调度算法的基本原理时间片轮转调度算法是一种基于时间片的调度算法,它将CPU时间分配给多个进程,每个进程都被赋予一个时间片,当时间片用完后,该进程将被挂起,CPU时间将被分配给下一个进程。
被挂起的进程将被放入一个就绪队列中,等待下一轮时间片到来。
二、时间片轮转调度算法的特点1.公平性:时间片轮转调度算法可以保证每个进程都能够得到一定的CPU时间,从而保证了公平性。
2.响应时间快:时间片轮转调度算法可以保证进程的响应时间快,因为每个进程都会被分配一定的CPU时间。
3.适用性广:时间片轮转调度算法适用于多种场景,包括多用户、多任务、实时任务等。
4.实现简单:时间片轮转调度算法的实现比较简单,可以通过一个就绪队列和一个定时器来实现。
三、时间片轮转调度算法的实验过程1.实验环境:本次实验使用了Linux操作系统,编程语言为C++。
2.实验步骤:(1)创建进程:首先需要创建多个进程,并将它们放入就绪队列中。
(2)分配时间片:为了模拟时间片轮转调度算法,需要为每个进程分配一个时间片。
(3)执行进程:按照就绪队列中的顺序,依次执行每个进程,并在执行完一个时间片后,将进程放回就绪队列中。
(4)更新进程状态:根据进程的执行情况,更新进程的状态,包括运行中、就绪、阻塞等。
(5)输出结果:最后,输出每个进程的执行结果,包括进程的状态、执行时间等。
3.实验结果:经过实验,我们发现时间片轮转调度算法可以保证每个进程都能够得到一定的CPU时间,并且响应时间较快。
同时,我们也发现时间片的大小会对进程的执行时间和响应时间产生影响。
如果时间片过小,会导致进程频繁切换,从而降低CPU的利用率;如果时间片过大,会导致进程响应时间过长,影响用户体验。
四、总结时间片轮转调度算法是一种广泛应用于计算机操作系统中的调度算法,具有公平性、响应时间快、适用性广、实现简单等特点。
进程调度操作系统实验报告

进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。
二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。
先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。
这种算法简单直观,但可能导致短作业等待时间过长。
短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。
如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。
优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。
四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。
2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中取出第一个进程进行调度执行,直到其完成。
3、实现短作业优先算法计算每个进程的剩余服务时间。
将进程按照剩余服务时间从小到大排序,放入就绪队列。
从就绪队列中取出剩余服务时间最短的进程进行调度执行。
4、实现时间片轮转算法设定时间片大小。
将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。
进程在时间片内未完成的,放回就绪队列末尾。
5、实现优先级调度算法为每个进程设置优先级。
将进程按照优先级从高到低排序,放入就绪队列。
从就绪队列中取出优先级最高的进程进行调度执行。
6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。
操作系统进程调度实验

操作系统进程调度实验操作系统进程调度是操作系统中非常重要的一个功能,它决定了多个进程的执行顺序和调度策略。
进程调度的好坏直接影响着系统的性能和资源利用率。
本实验旨在通过实现一个简单的进程调度模拟,了解不同的调度算法,探讨其优劣和适用场景。
一、实验目的和原理本实验的目标是实现进程调度模拟,并探究不同调度算法的性能和适用场景。
通过实验,我们可以了解以下内容:1.进程调度算法的基本原理和实现方式;2.比较不同调度算法的优劣和特点;3.了解不同调度算法在不同场景下的应用。
二、实验环境和工具本实验使用C语言进行实现,可以选择任何一种编程环境和工具,例如Dev-C++、Visual Studio等。
三、实验过程及方法1.实现一个进程控制块(PCB)的数据结构,用来保存进程的相关信息,包括进程ID、进程状态、优先级等。
2.实现一个进程队列,用来保存就绪队列中的进程。
可以使用数组或链表等数据结构实现。
3. 实现不同调度算法的函数,包括先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)和时间片轮转(Round Robin)等。
4.根据实际需求生成一批进程,设置其信息,并根据不同算法进行调度。
5.对比不同算法的运行结果和性能,分析其优劣。
四、实验结果和分析通过实验,我们可以得到每个算法的平均等待时间、平均周转时间和吞吐量等性能指标。
根据这些指标,我们可以对不同算法进行评价和分析。
1.先来先服务(FCFS)算法FCFS算法是最简单的调度算法,按照进程到达的顺序进行调度。
它的主要优点是实现简单、公平性好。
然而,FCFS算法有明显的缺点,会导致长作业等待时间过长,产生"饥饿"现象。
2.最短作业优先(SJF)算法SJF算法是按照进程的执行时间长短进行调度的算法。
它能够最大限度地减少平均等待时间和周转时间,但是需要提前知道所有进程的执行时间,这在实际中是很难做到的。
实验三模拟进程调度算法

实验三模拟进程调度算法先进先出算法算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便一直执行下去,直到该进程完成或阻塞时,才释放处理机。
最高优先权(FPF)优先调度算法该算法总是把处理机分配给就绪队列中具有最高优先权的进程。
常用以下两种方法来确定进程的优先权:轮转法前几种算法主要用于批处理系统中,不能作为分时系统中的主调度算法,在分时系统中,都采用时间片轮转法。
简单轮转法:系统将所有就绪进程按FIFO规则排队,按一定的时间间隔把处理机分配给队列中的进程。
这样,就绪队列中所有进程均可获得一个时间片的处理机而运行。
多级队列方法:将系统中所有进程分成若干类,每类为一级。
多级反馈队列多级反馈队列方式是在系统中设置多个就绪队列,并赋予各队列以不同的优先权。
实验内容①本程序用两种算法对五个进程进行调度,每个进程可有三个状态,并假设初始状态为就绪状态。
②为了便于处理,程序中的某进程运行时间以时间片为单位计算。
各进程的优先数或轮转时间数以及进程需运行的时间片数的初始值均由用户给定。
③在优先数算法中,优先数可以先取值为98,进程每执行一次,优先数减3, CPU时间片数加1,进程还需要的时间片数减1。
在轮转算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了2个单位),这时, CPU时间片数加2,进程还需要的时间片数减2,并排列到就绪队列的尾上。
④对于遇到优先数一致的情况,采用FIFO策略解决。
实验的示例程序如下:#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#include<iostream.h>#define P_NUM 5#define P_TIME 50#define clrscr()enum state{ready,execute,block,finish};/* 定义进程控制块PCB */ struct pcb{char name[4];int priority;int cputime;int needtime;int count;int round;state process;pcb * next;};pcb * get_process(); pcb * get_process(){pcb *q;pcb *t;pcb *p;int i=0;cout<<"input name and time"<<endl; while (i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb)); cin>>q->name;cin>>q->needtime;q->cputime=0;q->priority=P_TIME-q->needtime;q->process=ready;q->next=NULL;if (i==0){p=q;t=q;}else{t->next=q;t=q;}} //whilereturn p;}/*建立进程显示函数*/void display(pcb *p){cout<<"name"<<" "<<"cputime"<<" "<<"needtime"<<" "<<"priority"<<" "<<"state"<<endl;while(p){cout<<p->name;cout<<" ";cout<<p->cputime;cout<<" ";cout<<p->needtime;cout<<" ";cout<<p->priority;cout<<" ";switch(p->process){case ready:cout<<"ready"<<endl;break; case execute:cout<<"execute"<<endl;break; case block:cout<<"block"<<endl;break; case finish:cout<<"finish"<<endl;break; }p=p->next;}}int process_finish(pcb *q){int bl=1;while(bl&&q){bl=bl&&q->needtime==0;q=q->next;}return bl;}void cpuexe(pcb *q){pcb *t=q;int tp=0;while(q){if (q->process!=finish){q->process=ready;if(q->needtime==0){q->process=finish;}}if(tp<q->priority&&q->process!=finish){ tp=q->priority;t=q;}q=q->next;}if(t->needtime!=0){t->priority-=3;t->needtime--;t->process=execute;t->cputime++;}}//计算优先权void priority_cal(){pcb * p;clrscr();p=get_process();int cpu=0;clrscr();while(!process_finish(p)){cpu++;cout<<"cputime:"<<cpu<<endl;cpuexe(p);display(p);sleep(2);clrscr();}printf("All processes have finished,press any key to exit"); getch();}void display_menu(){cout<<"CHOOSE THE ALGORITHM:"<<endl;cout<<"1 PRIORITY"<<endl;cout<<"2 ROUNDROBIN"<<endl;cout<<"3 EXIT"<<endl;}pcb * get_process_round(){pcb *q;pcb *t;pcb *p;int i=0;cout<<"input name and time"<<endl; while (i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb)); cin>>q->name;cin>>q->needtime;q->cputime=0;q->round=0;q->count=0;q->process=ready;q->next=NULL;if (i==0){p=q;t=q;}else{t->next=q;t=q;}i++;} //whilereturn p;}void cpu_round(pcb *q){ q->cputime+=2;q->needtime-=2;if(q->needtime<0) {q->needtime=0;}q->count++;q->round++;q->process=execute;}pcb * get_next(pcb * k,pcb * head){pcb * t;t=k;do{t=t->next;}while (t && t->process==finish);if(t==NULL){t=head;while (t->next!=k && t->process==finish){ t=t->next;}}return t;}//设置进程状态void set_state(pcb *p){while(p){if (p->needtime==0){p->process=finish;}if (p->process==execute){p->process=ready;}p=p->next;}}void display_round(pcb *p){cout<<"NAME"<<" "<<"CPUTIME"<<" "<<"NEEDTIME"<<" "<<"COUNT"<<" "<<"ROUND"<<" "<<"STA TE"<<endl;while(p){cout<<p->name;cout<<" ";cout<<p->cputime;cout<<" ";cout<<p->needtime;cout<<" ";cout<<p->count;cout<<" ";cout<<p->round;cout<<" ";switch(p->process){case ready:cout<<"ready"<<endl;break; case execute:cout<<"execute"<<endl;break; case finish:cout<<"finish"<<endl;break; }p=p->next;}}void round_cal(){pcb * p;pcb * r;clrscr();p=get_process_round();int cpu=0;clrscr();r=p;while(!process_finish(p)){ cpu+=2;cpu_round(r);r=get_next(r,p);cout<<"cpu "<<cpu<<endl; display_round(p);set_state(p);sleep(5);clrscr();}}void main(){display_menu();int k;scanf("%d",&k);switch(k){case 1:priority_cal();break; case 2:round_cal();break; case 3:break;display_menu();scanf("%d",&k);}}。
进程调度算法实验报告

计算机操作系统实验报告实验二进程调度算法一、实验名称:进程调度算法二、实验内容:编程实现如下算法:1.先来先服务算法;2.短进程优先算法;3.时间片轮转调度算法。
三、问题分析与设计:1.先来先服务调度算法先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。
在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。
该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
FCFS算法比较有利于长作业(进程),2.短作业(进程)优先调度算法短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。
它们可以分别用于作业调度和进程调度。
短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。
而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。
SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。
该算法对长作业不利,完全未考虑作业的紧迫程度。
3.时间片轮转算法在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。
当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。
这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。
换言之,系统能在给定的时间内响应所有用户的请求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三:时间片轮转法完成进程调度
一、实验目的:
(1)加深对进程的理解
(2)理解进程控制块的结构
(3)理解进程运行的并发性
(4)掌握时间片轮转法进程调度算法
实验内容:
(1)建立进程控制块
(2)设计三个链队列,分别表示运行队列、就绪队列和完成队列
(3)用户输入进程标识符以及进程所需的时间,申请空间存放进程PCB言息。
(4)每一个时间片结束输出各进程的进程号,CPU时间(即已经占用的CPU时间),所需时间(即还需要的CPU时间),以及状态(即用W表示等待,R表示运行,F表示完成)
实验程序:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node
{
char name[10];/* 进程标识符*/ int prio;/* 进程优先数*/
int round;/* 进程时间轮转时间片*/
int cputime; /*进程占用CPU时间*/
int needtime; /* 进程到完成还要的时间*/
int count;/* 计数器*/
char state; /* 进程的状态*/
struct node *next; /* 链指针*/
}PCB;
PCB *finish,*ready,*tail,*run; // 队列指针
int N,t; // 进程数,时间片的大小
void firstin()
{
run二ready;//就绪队列头指针赋值给运行头指针
run->state='R'; //进程状态变为运行态
ready=ready->next; //就绪队列头指针后移到下一进程
}
void prt1(char a)// 输出标题函数
{
if(toupper(a)=='P')// 优先级法
\n");} printf("进程名占用CPU时间到完成还要的时间轮转时间片状态
void prt2(char a,PCB *q)〃进程PCB输出
if(toupper(a)=='P')// 优先级法的输出
printf("%4s %8d %12d %14d %8c\n",q->name,q->cputime,q->needtime,q->roun d,q->state);
}
void prt(char algo)// 输出函数二、
{
PCB *p;
prt1(algo);// 输出标题
if(run!=NULL)// 如果运行指针不空prt2(algo,run);// 输出当前正在运行的PCB p=ready;// 输出就绪队列PCB while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
p=finish;// 输出完成队列的PCB while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
getchar(); // 按住任意键继续
}
void insert(PCB *q)// 时间片轮转的插入算法
{
PCB *p1,*s,*r;
s=q;〃待插入的PCB指针
p仁ready;//就绪队列头指针
r=p1;//*r做pl的前驱指针
while(p1!=NULL)
if(p1->round<=s->round)
{
r=p1;
p1=p1->next;
}
if(r!=p1)
{
r->next=s;
s->next=p1;
else
{
s->next=p1;// 否则插入在就绪队列的头
ready=s;
}
}
void create(char alg)// 时间片轮转法创建链表进程PCB {
PCB *p;
int i,time;
char na[10];
ready=NULL;
finish=NULL;
run=NULL;
printf(" 输入进程名及其需要运行的时间(中间以空格隔开):\n");
for(i=1;i<=N;i++)
{
p=new PCB;
scanf("%s %d",&na,&time); strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->state='W';// 进程的状态
p->round=0;
if(ready!=NULL)
insert(p);
else
{ p->next=ready; ready=p;
}
}
printf("************* 时间片轮转法进程调度过程*************\n");
prt(alg);
run=ready;
ready=ready->next;
run->state='R';
}
void timeslicecycle(char alg)〃时间片轮转法
{
while(run!=NULL)
{
run->cputime=run->cputime+t;// 处理时间加t run->needtime=run->needtime-t;// 完成需要时间减t run->round=run->round+t;// 运行完将其变为完成态,插入完成队列
if(run->needtime<=0)// 当进程完成时
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready匸NULL)//就绪队列不空,将第一个进程投入进行
firstin();
}
else
{
run->state='W';// 将进程插入到就绪队列中等待轮转
insert(run);// 将就绪队列的第一个进程投入运行
firstin();
}
prt(alg);
}
void main()// 主函数
{
char algo='P';// 算法标记
printf(" 输入进程的个数:");
scanf("%d",&N);// 输入进程数
printf(" 定义时间片大小:");
scanf("%d",&t);// 输入时间片大小
create(algo);// 创建进程
timeslicecycle(algo);// 时间片轮转法调度
}//main()
四、实验结果:
五、实验小结:
时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法。
时间片轮转调度中关键的一点是时间片的长度的选取。
本实验可以自己设置时间片大小t,在试验过程中基本满足了实验要求。
通过本次实验,我更加了解了时间片轮转调度算法,通过翻看课本,对其的理解更加的深刻了,在以后的学习中,我会更加努力地学习操作系统的相关课程。
当然,实验中也遇到了问题,但都不是理论上的问题,而是编程的问题,根本原因还是编程基础不牢,以后会在编程方面加倍努力。