信号与系统期末复习试题附答案
信号与系统期末试卷-含答案全

一.填空题(本大题共10空,每空2分,共20分。
) 1.()*(2)k k εδ-= (2)k ε- 。
2.sin()()2td πτδττ-∞+=⎰()u t 。
3. 已知信号的拉普拉斯变换为1s a-,若实数a a >0 或 大于零 ,则信号的傅里叶变换不存在.4. ()()()t h t f t y *=,则()=t y 2 ()()t h t f 222* .5. 根据Parseval 能量守恒定律,计算⎰∞∞-=dt t t 2)sin (π 。
注解: 由于)(sin 2ωπg t t⇔,根据Parseval 能量守恒定律,可得πωππωωππ===⎪⎭⎫⎝⎛⎰⎰⎰-∞∞-∞∞-d d g dt t t 11222221)(21sin6. 若)(t f 最高角频率为m ω,则对)2()4()(tf t f t y =取样,其频谱不混迭的最大间隔是 m T ωπωπ34max max ==注解:信号)(t f 的最高角频率为m ω,根据傅立叶变换的展缩特性可得信号)4/(t f 的最高角 频率为4/m ω,信号)2/(t f 的最高角频率为2/m ω。
根据傅立叶变换的乘积特性,两信号时域相乘,其频谱为该两信号频谱的卷积,故)2/()4/(t f t f 的最高角频率为m mmωωωω4324max =+=根据时域抽样定理可知,对信号)2/()4/(t f t f 取样时,其频谱不混迭的最大抽样间隔m axT 为mT ωπωπ34max max ==7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为:)1()()(t t e t y t--+=-εε;则)2()1()(---=t t t f εε时,输出)(t y f =)1()2()()1()2()1(t t e t t e t t -----+-----εεεε。
8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则∞→t t h )(的值为0 。
信号与系统复习题答案

信号与系统复习题答案1. 信号的分类有哪些?信号可以分为连续时间信号和离散时间信号。
连续时间信号是指在时间上连续变化的信号,而离散时间信号是指在时间上以离散点变化的信号。
2. 什么是线性时不变系统?线性时不变系统是指满足叠加性和时间不变性的系统。
叠加性意味着系统对多个输入信号的响应等于对各个输入信号单独响应的和;时间不变性意味着系统对输入信号的响应不随时间变化。
3. 傅里叶变换的性质有哪些?傅里叶变换的性质包括线性、时移、频移、尺度、对称性、卷积定理等。
线性性质表明,信号的线性组合的傅里叶变换等于各个信号傅里叶变换的线性组合;时移性质表明,信号的时间平移会导致其傅里叶变换的相位变化;频移性质表明,信号的频率平移会导致其傅里叶变换的幅度变化;尺度性质表明,信号的尺度变化会导致其傅里叶变换的频率变化;对称性性质表明,实信号的傅里叶变换是共轭对称的;卷积定理表明,时域的卷积对应于频域的乘积。
4. 拉普拉斯变换与傅里叶变换的关系是什么?拉普拉斯变换是傅里叶变换的推广,它通过引入复频率变量s来扩展傅里叶变换的应用范围。
当s的虚部趋于无穷大时,拉普拉斯变换退化为傅里叶变换。
5. 什么是采样定理?采样定理指出,如果一个连续时间信号的频谱只包含在一定频率范围内,那么可以通过在一定采样率下对该信号进行采样来完全恢复原信号。
采样率必须大于信号最高频率的两倍,即奈奎斯特率。
6. 什么是系统的频率响应?系统的频率响应是指系统对不同频率的输入信号的响应。
它可以通过系统的传递函数在频域内进行分析,反映了系统对不同频率成分的放大或衰减情况。
7. 什么是系统的稳定性?系统的稳定性是指当输入信号为有界信号时,系统输出信号也保持有界的性质。
线性时不变系统可以通过其传递函数的极点位置来判断其稳定性。
8. 什么是系统的因果性?系统的因果性是指系统的输出在任何时刻只取决于当前和过去的输入,而不依赖于未来的输入。
因果系统的传递函数在频域内表现为左半平面的极点。
信号与系统期末考试题及答案(第一套)

信号与系统期末考试题及答案(第⼀套)信号与系统期末考试题及答案(第⼀套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
⼀、填空(共30分,每⼩题3分)1. 已知某系统的输⼊输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、⾮线性)(时变、⾮时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最⾼⾓频率为,则对信号进⾏时域取样,其频谱不混迭的最⼤取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅⽴叶变换=。
不存在8. 已知⼀离散时间系统的系统函数,判断该系统是否稳定。
不稳定9.。
310. 已知⼀信号频谱可写为是⼀实偶函数,试问有何种对称性)sgn(t )(t δ)(k δ)(t ε)(k ε)0(2)()()(2X dt t df t f t t y +=)(t f ________________?∞-=-+32_________)221()32(dt t t t δ?∞∞-=--_________)24()22(dt t t εε??∞∞-==--1)24()22(21dt dt t t εε},3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε)()(21k f k f *________}12,26,21,9,2{)()(21↓=*k f k f )(t f ),(),()(00为常数t K t t Kf t y f -=)(ωj H ________=)(t h ________0)(t j Ke j H ωω-=)()(0t t K t h -=δ)(t f )(Hz f m )2()()(t f t f t y ==max T ________m ax T )(6121max max s f f T m==)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+?∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f。
信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3)等于。
(A )f 1(k)*f 2(k)(B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分dt t t ⎰∞∞--+)21()2(δ等于。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于。
(A )1-z z(B )-1-z z (C )11-z (D )11--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t)(B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t)(D )3)(t δ+(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性(B )连续性、收敛性 (C )离散性、周期性(D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1(B)∞(C)()1-k u (D)()1-k ku9、单边拉普拉斯变换()se ss s F 2212-+=的愿函数等于 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分)1、 卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66,=kt 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1)()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
信号与系统期末试题及答案(第一套)

信号与系统期末试题及答案(第一套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 矩形脉冲波形(高度为A,宽度为b )的信号能量为_____________。
2. 序列的自相关是一个偶对称函数,它满足关系式_____________。
3. 线性时不变连续稳定的因果系统,其传输函数的极点位于_____全部位于左半开复平面 ______。
4. 某线性时不变系统的单位冲激响应若为,则系统是___五阶________系统。
(几阶系统)5. 的傅立叶反变换为_____________。
6. 已知周期信号的第三次谐波的幅度等于3,则信号的第三次谐波的幅度等于___3__________。
7. 令,,如果,试求其和__8______。
8. 卷积____________。
9. 信号,a>0的傅立叶变换为______;_____。
10. 已知,,则。
二、计算题(共50分,每小题10分)1.某理想低通滤波器,其频率响应为当基波周期为,其傅里叶级数系数为的信号输入到滤波器时,滤波器的输出为,且。
问对于什么样的值,才保证?1、解:信号的基波角频率为:。
信号通过理想低通滤波器后,输出是其本身,这意味着信号所有频率分量均在低通滤波器的通带内。
由于周期)sgn(t )(t δ)(k δ)(t ε)(k εb A E 2=()k x )(k r xx )0()(xx xx r k r ≤)(s H )()2cos()()(t t t t e t h tεε⋅⋅+=-9)5(3)(2++=ωωj j F )(t f )()3sin(5t t e tε⋅-)(t f )2(t f kk x 2)(=)3()(-=k k y δ)()()(k y k x k z ==∑)(k z =-)(*)(t e t t εε)()1(t e tε--ta en x -=)(222ω+a a111)(--=az z X a z >=)(k x )()(k a k x k ε=⎩⎨⎧>≤=100,0100,1)(ωωωj H 6π=T n a )(t f )(t y )()(t f t y =n 0=n a )(t f ==T πω2012s rad /)(t f )(t f信号含有丰富的高次谐波分量,只有当高次谐波分量的幅度非常小时,对的贡献才忽略不计。
信号与系统复习题(含答案)

.试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
信号与系统复习题(含答案)

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 .A 。
非周期序列B 。
周期3=N C.周期8/3=N D 。
周期24=N2、一连续时间系统y(t)= x (sint),该系统是 .A.因果时不变 B 。
因果时变 C 。
非因果时不变 D 。
非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 .A 。
因果稳定B 。
因果不稳定 C.非因果稳定 D 。
非因果不稳定4、若周期信号x[n ]是实信号和奇信号,则其傅立叶级数系数a k 是 .A 。
实且偶 B.实且为奇 C.纯虚且偶 D 。
纯虚且奇 5、一信号x (t )的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C 。
t t 44sin D 。
t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 .A 。
∑∞-∞=-k k )52(52πωδπ B 。
∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k )10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n ]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B 。
)}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x (nT )能唯一表示出原信号的最大采样周期为 。
A. 500 B 。
1000 C 。
0。
05 D. 0。
001 9、一信号x (t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 .A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 23 一、单项选择题: 2 / 23
3 / 23 14、已知连续时间信号,)2(100)2(50sin)(tttf则信号ttf410cos·)(所占有的频带宽度为() A.400rad/s B。200 rad/s C。100 rad/s D。50 rad/s 15、已知信号)(tf如下图(a)所示,其反转右移的信号f1(t) 是( ) 4 / 23
16、已知信号)(1tf如下图所示,其表达式是( )
A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3)
17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是( )
A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)
18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )
19。信号)2(4sin3)2(4cos2)(tttf与冲激函数)2(t之积为( ) 5 / 23
A、2 B、2)2(t C、3)2(t D、5)2(t ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI202sssssH A、因果不稳定系统 B、非因果稳定系统 C、因果稳定系统 D、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )
A、常数 B、 实数 C、复数 D、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )
A、阶跃信号 B、正弦信号 C、冲激信号 D、斜升信号 23. 积分dtttf)()(的结果为( ) A)0(f B)(tf C.)()(ttf D.)()0(tf 24. 卷积)()()(ttft的结果为( ) A.)(t B.)2(t C. )(tf D.)2(tf
25. 零输入响应是( ) A.全部自由响应 B.部分自由响应 C.部分零状态响应 D.全响应与强迫响应之差
2
A、1e B、3e C、3e D、1 6 / 23
27.信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为 ( ) A.Re[s]>0 B.Re[s]>2 C.全S平面 D.不存在
28.已知连续系统二阶微分方程的零输入响应)(tyzi的形式为ttBeAe2,则其2个特征根为( ) A。-1,-2 B。-1,2 C。1,-2 D。1,2 29.函数)(t是( ) A.奇函数 B。偶函数 C。非奇非偶函数 D。奇谐函数 30.周期矩形脉冲序列的频谱的谱线包络线为( ) A. 函数 B。Sa 函数 C。 函数 D。无法给出 31.能量信号其( ) A.能量E=0 B。功率P=0 C。能量E= D。功率P= 32.在工程上,从抽样信号恢复原始信号时需要通过的滤波器是( ) A.高通滤波器 B。低通滤波器 C。带通滤波器 D。带阻滤波器 33.设一个矩形脉冲的面积为S,则矩形脉冲的FT(傅氏变换)在原点处的函数值等于( ) A.S/2 B。S/3 C。S/4 D。S
34.,3,2,1,0,3sin)(kkkf… 是 ( ) A.周期信号 B。非周期信号 C。不能表示信号 D。以上都不对 35.线性系统具有( ) A.分解特性 B。零状态线性 C。零输入线性 D。ABC
36.设系统零状态响应与激励的关系是:)()(tftyzs ,则以下表述不对的是( ) A.系统是线性的 B。系统是时不变的 C。系统是因果的 D。系统是稳定的 37.对于信号ttf2sin)(的最小取样频率是 ( ) A.1 Hz B。2 Hz C。4 Hz D。8Hz 38.理想低通滤波器是( ) A.因果系统 B。物理可实现系统 C。非因果系统 D。响应不超前于激励发生的系统
39.j1 具有( ) A.微分特性 B。积分特性 C。延时特性 D。因果特性 40.)1()2(sintt等于( )
A.)2(sint B。)1(t C。1 D。0 41.功率信号其 ( ) A.能量E=0 B。功率P=0 C。能量E= D。功率P=
42.信号,3,2,1,0,6sin)(kkkf其周期是( ) A.2 B。12 C。6 D。不存在 43.对于信号tttf33104sin102sin)(的最小取样频率是 ( ) A.8kHz B。4kHz C。2kHz D。1kHz 7 / 23
44.设系统的零状态响应tzsdfty0,)()( 则该系统是 ( ) A.稳定的 B。不稳定的 C。非因果的 D。非线性的 45.)4()]4([ttSa等于 ( )
A.)4(t B。)4(sint C。1 D。0 46.连续周期信号的频谱有( ) A.连续性、周期性 B。连续性、收敛性 C。离散性、周期性 D。离散性、收敛性
47.某信号的频谱密度函数为,)]2()2([)(3jejF则)(tf( )
A.)]3(2[tSa B。2)]3(2[tSa C.)2(tSa D。2)2(tSa 48.理想低通滤波器一定是( ) A.稳定的物理可实现系统 B。稳定的物理不可实现系统 C.不稳定的物理可实现系统 D。不稳定的物理不可实现系统
49.单边拉氏变换3)()3(sesFs的原函数)(tf( )
A.)1()1(3tet B。)3()3(3tet C.)1(3tet D。)3(3tet 50.当输入信号的复频率等于系统函数的零点时,系统的强迫响应分量为( ) A.无穷大 B。不为零的常数 C。0 D。随输入信号而定 51.欲使信号通过系统后只产生相位变化,则该系统一定是( ) A.高通滤波网络 B。带通滤波网络 C。全通网络 D。最小相移网络
52.已知信号)(tf的傅氏变换为),(jF则)23(tf的傅氏变换为( )
A.3)2(2jejF B。3)2(2jejF C.6)2(2jejF D。6)2(2jejF 53.信号的时宽与信号的频宽之间呈( ) A.正比关系 B。反比关系 C。平方关系 D。没有关系 54.时域是实偶函数,其傅氏变换一定是( ) A.实偶函数 B。纯虚函数 C。任意复函数 D。任意实函数 55.幅度调制的本质是( ) A.改变信号的频率 B。改变信号的相位 C.改变信号频谱的位置 D。改变信号频谱的结构
56.若),()()(tythtf则)3()3(thtf( )
A.)3(ty B。3)3(ty C。)3(31ty D。)3(ty 8 / 23
57.假设信号)(1tf的奈奎斯特取样频率为1 ,)(2tf的奈奎斯特取样频率为,2且 1>,2则信号)2()1()(21tftftf的奈奎斯特取样频率为( )
A.1 B。2 C。1+2 D。12 58.某信号的频谱是周期的离散谱,则对应的时域信号为( ) A.连续的周期信号 B。连续的非周期信号 C.离散的非周期信号 D。离散的周期信号
59.若线性时不变因果系统的频率响应特性),(jH可由系统函数)(sH将其中的s换成j来求取,
则要求该系统函数)(sH的收敛域应为( ) A.]Re[s>某一正数 B。]Re[s>某一负数 C.]Re[s<某一正数 D。]Re[s<某一负数 60.对于某连续因果系统,系统函数22)(sssH,下面说法不对的是( ) A.这是一个一阶系统 B。这是一个稳定系统 C.这是一个最小相位系统 D。这是一个全通系统
61.下列信号分类法中错误的是 ( ) A.确定信号与随机信号 B.周期信号与非周期信号 C.能量信号与功率信号 D.一维信号与二维信号 62.下列各式中正确的是 ( )
A.)()2(tt; ; B.)(2)2(tt;
C.)(21)2(tt D.)2(21)(2tt 63.下列关于傅氏变换的描述的不正确的是 ( ) A ..时域周期离散,则频域也是周期离散的; B 时域周期连续,则频域也是周期连续的;C. 时域非周期连续,则频域也是非周期连续的; D.时域非周期离散,则频域是周期连续的。
64.若对)(tf进行理想取样,其奈奎斯特取样频率为sf,对)231(tf进行取样,其奈奎斯特取样频率为 ( ) A.3sf B。sf31 C。3(sf-2) D。)2(31sf
65.)3()5(21tftf等于 ( ) A.)()(21tftf B。)8()(21tftf C.)8()(21tftf D。)1()3(21tftf 66.积分55)2()3(dttt等于( )