实验五-进程间通信实验(二)

合集下载

MPI程序进程间的通信

MPI程序进程间的通信

j ×
a b c . . d
二 进程间通信的程序设计
三 实验原理
a b . d e . . . . h i l
M*N
矩阵乘法
c f k j
×
a b c . . d
N*1
=
z1 z 2 z3 . . zm
一 MPI进程间通信基本概念
• 基础函数 – 通信域包含的进程数
int MPI_Comm_size(MPI_Comm comm, int *size)
comm 进程所在通信域 size 返回通信域内进程数
这一调用返回给定的通信域中所包括的进程的个数,不同的进程 通过这一调用得知在给定的通信域中一共有多少个进程在并行执 行。
– 一类进程的集合,且在该集合内,进程间可以 相互通信; – 任何MPI通信函数均必须在某个通信域内发生; – MPI缺省的通信域MPI_COMM_WORLD,所 有启动的MPI进程通过调用函数MPI_Init(),包 含在该通信域内; – 各进程通过函数MPI_Comm_size()获取通信域 包含的(初始启动)的MPI进程个数;
×
a b c . . d
N*1
=
z1 z 2 z3 . . zm
M*1
二 进程间通信的程序设计
z1
= = =
三 实验原理
a*a+b*b+….+cd
=
a
b . c
×
a b c . . d
a b c . . d

进程控制实验报告

进程控制实验报告

一、实验目的本次实验旨在通过Linux操作系统的实践操作,加深对进程控制概念的理解。

通过学习进程的创建、调度、同步、通信等基本操作,掌握进程控制的基本方法,并了解进程间通信的机制。

二、实验环境1. 硬件环境:Intel(R) Core(TM) i5-3210M CPU2.50GHz,4.00GB内存。

2. 软件环境:64位Linux操作系统。

三、实验内容1. 进程的创建与终止2. 进程的调度与优先级3. 进程同步与互斥4. 进程间通信四、实验步骤1. 进程的创建与终止(1)使用`fork()`函数创建子进程,通过比较返回值判断创建是否成功。

```cpid_t pid = fork();if (pid < 0) {perror("fork failed");exit(1);}```(2)使用`exit()`函数终止进程。

```cexit(0);```2. 进程的调度与优先级(1)使用`nice()`函数调整进程优先级。

```cnice(10); // 降低进程优先级```(2)使用`priority_seta()`函数设置进程优先级。

```cstruct sched_param param;param.sched_priority = 10;if (sched_setscheduler(pid, SCHED_RR, &param) == -1) { perror("sched_setscheduler failed");exit(1);}```3. 进程同步与互斥(1)使用`semaphore_t`类型的信号量实现进程同步。

```csemaphore_t sem;sem_init(&sem, 0, 1);sem_wait(&sem);// 执行临界区代码sem_post(&sem);sem_destroy(&sem);```(2)使用`mutex_t`类型的互斥锁实现进程互斥。

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

操作系统实验报告

操作系统实验报告

篇一:操作系统实验报告完全版《计算机操作系统》实验报告班级:姓名:学号:实验一进程控制与描述一、实验目的通过对windows 2000编程,进一步熟悉操作系统的基本概念,较好地理解windows 2000的结构。

通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解windows 2000中进程的“一生”。

二、实验环境硬件环境:计算机一台,局域网环境;软件环境:windows 2000 professional、visual c++6.0企业版。

三、实验内容和步骤第一部分:程序1-1windows 2000 的gui 应用程序windows 2000 professional下的gui应用程序,使用visual c++编译器创建一个gui应用程序,代码中包括了winmain()方法,该方法gui类型的应用程序的标准入口点。

:: messagebox( null, “hello, windows 2000” , “greetings”,mb_ok) ;/* hinstance */ , /* hprevinstance */, /* lpcmdline */, /* ncmdshow */ )return(0) ; }在程序1-1的gui应用程序中,首先需要windows.h头文件,以便获得传送给winmain() 和messagebox() api函数的数据类型定义。

接着的pragma指令指示编译器/连接器找到user32.lib库文件并将其与产生的exe文件连接起来。

这样就可以运行简单的命令行命令cl msgbox.cpp来创建这一应用程序,如果没有pragma指令,则messagebox() api函数就成为未定义的了。

这一指令是visual studio c++ 编译器特有的。

接下来是winmain() 方法。

其中有四个由实际的低级入口点传递来的参数。

操作系统实验报告6

操作系统实验报告6

操作系统实验报告6一、实验目的本次操作系统实验的主要目的是深入了解和掌握操作系统中进程管理、内存管理、文件系统等核心概念和相关技术,通过实际操作和观察,增强对操作系统工作原理的理解,并提高解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,实验工具包括 Visual Studio 2019 等。

三、实验内容(一)进程管理实验1、创建多个进程,并观察它们的运行状态和资源占用情况。

通过编写简单的C++程序,使用Windows API 函数创建多个进程。

在程序中,设置不同的进程优先级和执行时间,观察操作系统如何调度这些进程,以及它们对 CPU 使用率和内存的影响。

2、进程间通信实现了进程间的管道通信和消息传递。

通过创建管道,让两个进程能够相互交换数据。

同时,还使用了 Windows 的消息机制,使进程之间能够发送和接收特定的消息。

(二)内存管理实验1、内存分配与释放使用 C++的动态内存分配函数(如`malloc` 和`free`),在程序运行时动态申请和释放内存。

观察内存使用情况,了解内存碎片的产生和处理。

2、虚拟内存管理研究了 Windows 操作系统的虚拟内存机制,通过查看系统的性能监视器,观察虚拟内存的使用情况,包括页面文件的大小和读写次数。

(三)文件系统实验1、文件操作进行了文件的创建、读取、写入、删除等基本操作。

通过编写程序,对不同类型的文件(如文本文件、二进制文件)进行处理,了解文件系统的工作原理。

2、目录操作实现了目录的创建、删除、遍历等功能。

了解了目录结构在文件系统中的组织方式和管理方法。

四、实验步骤(一)进程管理实验步骤1、打开 Visual Studio 2019,创建一个新的 C++控制台项目。

2、在项目中编写代码,使用`CreateProcess` 函数创建多个进程,并设置它们的优先级和执行时间。

3、编译并运行程序,通过任务管理器观察进程的运行状态和资源占用情况。

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。

三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。

2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。

3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。

以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。

(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。

进程通信课程设计

进程通信课程设计

进程通信课程设计一、课程目标知识目标:1. 让学生掌握进程通信的基本概念,了解进程与线程的区别及通信机制。

2. 学会使用至少一种进程通信方法,如管道、消息队列、共享内存、信号量等,并理解其工作原理。

3. 掌握进程同步与互斥的概念,了解常见同步互斥机制。

技能目标:1. 培养学生运用进程通信方法解决实际问题的能力,能编写简单的进程通信程序。

2. 提高学生分析进程通信场景,选择合适通信机制的能力。

情感态度价值观目标:1. 培养学生对计算机操作系统及进程通信的兴趣,激发学生主动探索精神。

2. 培养学生具备团队协作意识,能够与同学共同完成进程通信相关的项目任务。

3. 引导学生认识到进程通信在计算机系统中的重要性,增强学生的专业认同感。

课程性质分析:本课程为计算机科学与技术专业课程,旨在让学生深入了解操作系统中进程通信的相关知识。

学生特点分析:学生已具备一定的编程基础和操作系统知识,具有较强的学习能力和动手能力。

教学要求:1. 注重理论与实践相结合,通过实例分析,让学生更好地理解和掌握进程通信技术。

2. 鼓励学生参与课堂讨论,培养学生主动思考和解决问题的能力。

3. 强化实践环节,让学生在实际操作中掌握进程通信技术,提高编程技能。

二、教学内容1. 进程通信基本概念:进程与线程的对比,进程间通信的必要性及常见通信方式。

教材章节:第二章 进程管理,第三节 进程同步与通信2. 进程通信机制:管道、消息队列、共享内存、信号量、信号等。

教材章节:第二章 进程管理,第四节 进程通信机制3. 进程同步与互斥:互斥锁、条件变量、读写锁等同步互斥机制。

教材章节:第二章 进程管理,第五节 进程同步与互斥4. 进程通信实例分析:分析具体场景,选择合适的通信机制,进行实例讲解。

教材章节:第二章 进程管理,第六节 进程通信实例5. 实践环节:编写简单的进程通信程序,加深对进程通信机制的理解。

教材章节:实验教程,实验五 进程通信编程教学进度安排:1. 基本概念与通信机制(2课时)2. 同步互斥机制(2课时)3. 实例分析(2课时)4. 实践环节(4课时)教学内容确保科学性和系统性,结合教材章节,从理论到实践,使学生全面掌握进程通信的相关知识。

进程管理实验报告分析(3篇)

进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。

为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。

二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。

2. 进一步认识并发执行的实质。

3. 分析进程争用资源的现象,学习解决进程互斥的方法。

4. 了解Linux系统中进程通信的基本原理。

三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。

2. 修改程序,使每个进程循环显示一句话。

3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。

4. 分析利用软中断通信实现进程同步的机理。

四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。

在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。

实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。

2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。

实验结果显示,父进程和子进程的打印顺序仍然是随机的。

这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。

3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。

实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。

这表明signal()和kill()在进程控制方面具有重要作用。

4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五-进程间通信实验(二)实验五进程间通信实验(二)实验目的:1.通过基础实验,基本掌握无名管道、有名管道的程序设计。

2.通过编写程序,使读者掌握信号处理程序设计方法。

实验内容:1.无名管道程序设计:在父进程中创建一个无名管道,并创建子进程;在父进程中写该管道,并用子进程将内容读出。

2.有名管道程序设计:创建两个进程,在A进程中创建一个有名管道,并向其写入数据,通过B进程从有名管道中读出数据。

3.信号处理程序设计:在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号来触发信号处理函数。

实验过程:(一)无名管道程序设计实验代码:/* pipe.c */#include <unistd.h>#include <sys/types.h>#include <errno.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#define MAX_DATA_LEN 256#define DELAY_TIME 1int main(){pid_t pid;int pipe_fd[2];char buf[MAX_DATA_LEN];const char data[] = "Pipe Test Program"; int real_read, real_write;memset((void*)buf, 0, sizeof(buf));/* 创建管道*/if (pipe(pipe_fd) < 0){printf("pipe create error\n");exit(1);}/* 创建一子进程*/if ((pid = fork()) == 0){/* 子进程关闭写描述符,并通过使子进程暂停1秒等待父进程已关闭相应的读描述符*/ close(pipe_fd[1]);sleep(DELAY_TIME * 3);/* 子进程读取管道内容*/if ((real_read = read(pipe_fd[0], buf, MAX_DATA_LEN)) > 0){printf("%d bytes read from the pipe is '%s'\n", real_read, buf);}/* 关闭子进程读描述符*/close(pipe_fd[0]);exit(0);}else if (pid > 0){/* 父进程关闭读描述符,并通过使父进程暂停1秒等待子进程已关闭相应的写描述符*/close(pipe_fd[0]);sleep(DELAY_TIME);/* 父进程向管道中写入字符串*/ if((real_write = write(pipe_fd[1], data, strlen((const char*)data))) != -1){printf("Parent wrote %d bytes : '%s'\n", real_write, data);}/*关闭父进程写描述符*/close(pipe_fd[1]);/*收集子进程退出信息*/waitpid(pid, NULL, 0);exit(0);}}将该程序编译,运行。

#./pipe……(二)有名管道程序设计1.编写一个应用程序,包含两个程序,一个用于读管道,一个用于写管道。

其中在读管道的程序里创建管道,并且作为main()函数里的参数由用户输入要写入的内容。

读管道的程序会读出用户写入到管道的内容,这两个程序采用的是阻塞式读写管道模式。

实验代码:(1)写管道的程序/* fifo_write.c */#include <sys/types.h>#include <sys/stat.h>#include <errno.h>#include <fcntl.h>#include <stdio.h>#include <stdlib.h>#include <limits.h>#define MYFIFO "/tmp/myfifo" /* 有名管道文件名*/#define MAX_BUFFER_SIZE PIPE_BUF /*定义在于limits.h中*/int main(int argc, char * argv[]) /*参数为即将写入的字符串*/{int fd;char buff[MAX_BUFFER_SIZE];int nwrite;if(argc <= 1){printf("Usage: ./fifo_write string\n");exit(1);}sscanf(argv[1], "%s", buff);/* 以只写阻塞方式打开FIFO管道*/fd = open(MYFIFO, O_WRONLY);if (fd == -1){printf("Open fifo file error\n");exit(1);}/*向管道中写入字符串*/if ((nwrite = write(fd, buff, MAX_BUFFER_SIZE)) > 0){printf("Write '%s' to FIFO\n", buff);}close(fd);exit(0);}(2)读管道的程序/* fifo_read.c */#include <sys/types.h>#include <sys/stat.h>#include <errno.h>#include <fcntl.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#define MYFIFO "/tmp/myfifo"#define MAX_BUFFER_SIZE PIPE_BUF /*定义在于limits.h中*/int main(){char buff[MAX_BUFFER_SIZE];int fd;int nread;/* 判断有名管道是否已存在,若尚未创建,则以相应的权限创建*/if (access(MYFIFO, F_OK) == -1){if ((mkfifo(MYFIFO, 0666) < 0) && (errno != EEXIST)){printf("Cannot create fifo file\n");exit(1);}}/* 以只读阻塞方式打开有名管道*/fd = open(MYFIFO, O_RDONLY);if (fd == -1){printf("Open fifo file error\n");exit(1);}while (1){memset(buff, 0, sizeof(buff));if ((nread = read(fd, buff, MAX_BUFFER_SIZE)) > 0){printf("Read '%s' from FIFO\n", buff);}}close(fd);exit(0);}为了能够较好地观察运行结果,需要把这两个程序分别在两个终端里运行,首先启动读管道程序。

读管道进程在建立管道之后就开始循环地从管道里读出内容,如果没有数据可读,则一直阻塞到写管道进程向管道写入数据。

在启动了写管道程序后,读进程能够从管道里读出用户的输入内容。

# ./fifo_read……终端二#./fifo_write FIFO……#./fifo_write Test……#./fifo_write Program……(三)信号处理程序设计实验要求:编写一个应用程序,用signal 注册信号处理函数,并用kill发送相应信号触发信号处理。

❝信号概念。

信号是一种进程间的通信机制,它为应用程序提供一种异步的软件中断,使应用程序有机会接收其它程序或终端发送的命令(即信号)。

应用程序收到信号后,有三种处理方式:忽略、默认和捕捉。

进程收到一个信号后,会检查对该信号的处理机制。

如果是SIG_IGN,就忽略该信号;如果SIG_DFT,则采用系统默认的处理动作,通常是终止进程或忽略该信号;如果为该信号指定了一个处理函数(捕捉),则会中断当前进程正在执行的任务,转而去执行该信号的处理函数,返回后再继续执行被中断的任务。

❝常用信号说明:通过kill –l命令可以查看到Linux支持的信号列表。

实验代码及步骤:功能描述:在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号来触发信号处理函数。

/*sig_bus.c*/#include<signal.h>#include<stdio.h>#include<stdlib.h>/*自定义的信号处理函数*/void my_func(int sign_no){if(sign_no==SIGBUS){printf("I have get SIGBUS\n");}}int main(){printf("Waiting for signal SIGBUS\n");/*注册信号处理函数*/signal(SIGBUS,my_func);pause(); //将进程挂起,直到捕捉到信号为止exit(0);}1)对程序进行编辑和编译2)在一个终端中运行sig_bus,会看到进程挂起,等待信号。

3)在另一个终端,查找到运行sig_bus的进程号,通过kill命令发送SIGBUS信号给这个进程。

4)信号触发了处理函数。

这时可以看到前面挂起的进程在接收到这个信号后的处理,用自定义的信号处理函数my_func里处理,因此打印出“I have get SIGBUS”。

相关文档
最新文档