目标规划典型例题

合集下载

规划问题的教学例题

规划问题的教学例题

规划问题的教学例题例1 某工厂在计划期内要安排I、II两种产品生产。

生产单位产品所需的设备台时及A,B两种原材料的消耗以及资源的限制如表1-1所示另外,工厂每生产一单位I可以获利50元,每生产一单位II可以获利100元,问工厂应分别生产多少单位产品I和产品II,才能获利最多?例 2 货物托运问题某公司拟用集装箱托运甲、乙两种货物,这两种货物每件的体积、重量,可获利润以及托运限制如表1-2且甲种货物最多托运4件,问两种货物各托运多少件,可获利最大。

例3 投资场所的选择某公司计划在市区的东、南、西、北四个区建立销售门面,拟议中有10个位置Ai(i=1,2, (10)可供选择,考虑到各个地区居民消费水平以及居民的居住密度,规定在东区A1,A2,A3三个点中至少选择两个;在西区A4,A5两个点中至少选择一个;在南区A6,A7两个点中至少选择一个;在北区A8,A9,A10三个点中至少选择2个。

另外,投资总额不能超过720万元,问应该选择哪几家销售点,可使得年利润为最大?例4 固定成本问题高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳动力和机器设备,制造一个容器的各种资源的数量如表1-3所示不考虑固定费用,每种容器出售一只的利润分别为4万元,5万元,6万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月。

例5 路灯照度问题在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。

在漆黑的夜晚,当两只路灯开启时,两只路灯连线路面上最暗的点和最亮的点在哪里?如果3kw路灯的高度可以在3m到9m之间变化,如何使得路面上最暗和最亮的点的位置?如果两只路灯的高度均可以在3m到9m之间变化,结果将如何?例6 某部门有三个生产同一产品的工厂(产地),生产的产品运往四个销售点(销地)出售,各个工厂的生产量、各销地的销量(单位:吨)、从各个工厂到各个销售点的单位运价(元/吨)如下表,研究如何调运才能使得总运费最小。

目标规划习题

目标规划习题

一、某企业生产A 、B 、C 三种产品,装配工作在同一生产线上完成,三种产品装配时的工作消耗分别为6小时、8小时和10小时,生产线每月正常工作时间为200小时,三种产品销售后每件可分别获利500元、650元和800元,每月预计销量为12台、10台和6台,有关经营目标如下:P1:利润指标不少于每月16000元;P2:充分利用生产能力;P3:加班时间不超过24小时;P4:产量以预计销量为标准。

为确定生产计划,试建立该问题的相关模型。

解:设每月生产A 、B 、C 产品分别为x1、x2、x3台,总偏差为Z 。

)(min 6655444332211+-+-+-+--++++++++=d d d d d d P d P d P d P Z⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=≥=-+=-+=-+=-+++=-+++=-++++-+-+-+-+-+-+-6,5,4,3,2,1;0,,,,610122241086200108616000800650500321663552441333212232111321i d d x x x d d x d d x d d x d d x x x d d x x x d d x x x i i二、某工厂生产两种产品录音机和电视机,在甲、乙两车间的单件工时及其它相关资料如下表所示:度目标为:P1:检验和销售费每月不超过4600元;P2:每月售出录音机不少于50台;P3:甲、乙车间的生产工时得到充分利用(重要性权系数按两个车间每小时费用的比例确定);P4:甲车间加班不超过20小时。

问:试确定该厂为达到以上目标的月度计划生产数。

(要求建立相关的运筹学模型,不需求解)解:设每月生产录音机X 1台,电视机X 2台,总偏差为Z+---+++++=544332211)4(min d P d d P d P d P Z⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥=-+=-++=-++=-+=-+++-+-++-+-+-+-5,4,3,2,1;0,,,2015031202504600305021553442133212211121i d d x x d d d d d x x d d x x d d x d d x x i i三、某厂拟生产甲、乙两种产品,每件利润分别为20元、30元。

第八章 运筹学 目标规划 案例

第八章  运筹学 目标规划 案例

第八章目标规划8.1请将下列目标规划问题数学模型的一般形式转换为各优先级的数学模型。

1、min P1(d l-)+P2(d2-)+P2(d2+)+P3(d3-)+P3(d3+)+P4(d4-)约束条件:4 x l ≤6804x2 ≤6002 x l+3x2-d1+ +d1-=12x l-x2-d2++d2-=02 x l+2x2-d3++d3-=12x l+2x2-d4++d4-=8x l,x2,d1+,d1-,d2+,d2-,d3+,d3-,d4+,d4-≥0。

解:这是一个四级目标规划问题:第一级:min d l-S.T. 4 x l ≤6804x2 ≤6002 x l+3x2-d1+ +d1-=12x l,x2,d1+,d1-≥0第二级:min d2-+d2+S.T. 4 x l ≤6804x2 ≤6002 x l+3x2-d1+ +d1-=12x l-x2-d2++d2-=0d1-=第一级的最优结果x l,x2,d1+,d1-,d2+,d2-≥0第三级:min d3-+d3+S.T. 4 x l ≤6804x2 ≤6002 x l+3x2-d1+ +d1-=12x l-x2-d2++d2-=02 x l+2x2-d3++d3-=12d1-=第一级的最优结果d2+,d2-=第二级的最优结果x l,x2,d1+,d1-,d2+,d2-,d3+,d3-≥0第四级:min d4-S.T. 4 x l ≤6804x2 ≤6002 x l+3x2-d1+ +d1-=12x l-x2-d2++d2-=02 x l+2x2-d3++d3-=12x l+2x2-d4++d4-=8d1-=第一级的最优结果d2+,d2-=第二级的最优结果d3+,d3-=第三级的最优结果x l,x2,d1+,d1-,d2+,d2-,d3+,d3-,d4+,d4-≥02、min P1(d l-)+P2(d2-)+P2(d2+)+P3(d3-)约束条件:12 x l+9x2+15x3-d1+ +d1-=1255x l+3x2+4x3-d2+ +d2-=405 x l+7x2+8x3-d3+ +d3-=55x l,x2,x3,d1+,d1-,d2+,d2-,d3+,d3-≥0。

目标规划的图解法共33页

目标规划的图解法共33页

σmn+2m
(二)、单纯形法的计算步骤
1、建立初始单纯形表。
一般假定初始解在原点,即以约束条件中的所有负偏 差变量或松弛变量为初始基变量,按目标优先等级从 左至右分别计算出各列的检验数,填入表的下半部 。
2、检验是否为满意解。判别准则如下: ⑴.首先检查αk (k=1.2…K)是否全部为零?如果全部为 零,则表示目标均已全部达到,获得满意解,停止计 算转到第6步;否则转入⑵。
1×60=60
1×58.3=58.3 < 100 由上可知:若A、B的计划产量为60件和58.3件时,
所需甲资源数量将超过现有库存。在现有条件下,此
解为非可行解。为此,企业必须采取措施降低A、B产
品对甲资源的消耗量,由原来的100%降至78.5%
(140÷178.3=0.785),才能使生产方案(60,
2、考虑产品受市场影响,为避免积压,A、B的生产
量不超过 60 件和 100 件;
3、由于甲资源供应比较紧张,不要超过现有量140。
试建立目标规划模型,并用图解法求解。
解:以产品 A、B 的单件利润比 2.5 :1 为权系数,
模型如下:
min
Z
P1
d
1
P2
(
2
.5
d
3
d
4
)
P3
d
2
30 2
d
2
d
2
)
P3
d
3
d
1

x1 x1
x2
d
1
d
1
0
2 x2
d
2
d
2
10
d
1
8
x

多目标规划及案例

多目标规划及案例

主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
转化为单目标的具体方法介绍:
求解算法之二:
目标规划法
二、多目标优化目标规划法
线性规划通常考虑一个目标函数(问题简单) 目标规划考虑多个目标函数(问题复杂) 。
例 生产安排问题
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的盈利与使用设备的工时及限 制如下表所示。
甲 2 A/(h/件) 4 B/(h/件) 0 C/(h/件) 赢利/(元/件) 200 乙 设备的生产能力/h 2 12 0 16 5 15 300
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解

多目标规划应用实例

多目标规划应用实例

和总产值
f2 (X )

分别提出一个期望目标值
f 1* = 6 10 0 000(kg)
f 2* = 6 60 0 000 (元)
并将两个目标视为相同的优先级。
如果 d 1+ 、d1 分别表示对应第1个目标期
+ 望值的正、负偏差变量, d 2 、d 2 分别表示对
应于第2个目标期望值的正、负偏差变量,而 且将每一个目标的正、负偏差变量同等看待 (即可将它们的权系数都赋为1),那么,该 目标规划问题的目标函数为

这样,就将多目标规划转化为单目标 线性规划。
用单纯形方法对该问题求解,可以得到 一个满意解(非劣解)方案,结果见表 6.4.1。 此方案是:III等耕地全部种植水稻,I 等耕地全部种植玉米,II等耕地种植大豆 19.117 6 hm2、种植玉米280.882 4 hm2。在 此方案下,线性加权目标函数的最大取值 为6 445 600。
min f1 ( x1 , x2 ) = 2 100 x1 + 4 800 x2
max f 2 ( x1 , x2 ) = 3 600 x1 + 6 500 x2
而且满足
x1 ≤ 5 x ≤ 8 2 x1 + x 2 ≥ 9 x1 , x 2 ≥ 0
对于上述多目标规划问题,如果决策者 提出的期望目标是:(1)每个月的总投资 不超30 000元;(2)每个月的总利润达到 或超过45 000元;(3)两个目标同等重要。 那么,借助Matlab软件系统中的优化计算工 具进行求解,可以得到一个非劣解方案为
+ min Z = d1 + d1+ + d 2 + d 2
对应的两个目标约束为

lingo求解多目标规划--例题

lingo求解多目标规划--例题

实验二:目标规划一、实验目得目标规划就是由线性规划发展演变而来得,线性规划考虑得就是只有一个目标函数得问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有得还相互矛盾。

这些问题用线性规划求解就比较困难,因而提出了目标规划。

熟悉目标规划模型得建立,求解过程及结果分析。

二、目标规划得一般模型设)...2,1(n j x j =就是目标规划得决策变量,共有m 个约束就是国内刚性约束,可能就是等式约束,也可能就是不等式约束。

设有l 个柔性目标约束,其目标规划约束得偏差就是),...,2,1(,l i d d i i =-+。

设有q 个优先级别,分别为q p p p ,...,21。

在同一个优先级k p 中,有不同得权重,分别记为),...,2,1(,l j w w kj kj =-+。

因此目标规划模型得一般数学表达式为: min ∑∑=++--=+=l j j kj j kj q k kd w d w p z 11);(s 、t 、,,...2,1,),(1m i b x a n j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x ci i j i n j i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。

四、实验内容及步骤1、打开LINGO ,并利用系统菜单与向导在E 盘创建一个项目。

目录与项目名推荐使用学生自己得学号。

2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序得可读性。

例2、1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。

企业得经营目标不仅仅就是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品得产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。

规划求解的例子和练习

规划求解的例子和练习

规划问题求解三、规划求解及应用1、线性规划问题线性规划的一般形式,线性规划可以找到全局的最优解。

例4:某公司生产和销售两种产品,两种产品各生产一个单位需要工时3小时和7小时,用电量4千瓦和5千瓦,需要原材料9公斤和4公斤。

公司可提供的工时为300小时,可提供的用电量为250千瓦,可提供的原材料为420公斤。

两种产品的单位利润分别为200元和210元。

该公司怎样安排两种产品的生产量,所获得的利润最大。

操作步骤:(1)建立数学模型(2)在EXCEL中输入模型,注意:用颜色区分不同功能的单元格,可以不做这样的修饰。

输入模型的参考原则:围绕数据建立模型;约束的左侧表达式和右侧表达式,最好同行和同列;行和列的总和应该靠近行和列;左向右,从上往下输入模型;可以使用颜色、影印等来区别参数和模型中的变量。

(3)在E3中输入公式:=SUMPRODUCT(C3:D3,$C$7:$D$7),复制到e5;e6 在C8中输入公式:=SUMPRODUCT(C6:D6*C7:D7)说明:SUMPRODUCT(C3:D3,$C$7:$D$7)等价于c3*c7+d3*d7(4)选择“工具”菜单的规划求解:①设置目标单元格②设置可变单元格;③设置约束条件;④设置非负数条件。

(5)单击“求解”,单击“确定”。

(6)拓展训练:为了了解利润随着产量的变化,可以制作模拟运算表:使用序列填充产生数据B13:B23;C12:M12①在B12中输入公式:=C8②选中B12:M23区域,选择“数据”菜单的模拟运算表,在“输入引用行的单元格”中输入$C$7,在“输入引用列的单元格”中输入$D$7,单击“确定”。

③利用数据产生三维曲面图形。

操作技巧见课堂操作。

2、非线性规划问题例5:某公司生产和销售两种产品,两种产品各生产一个单位需要工时3小时和7小时,用电量4千瓦和5千瓦,需要原材料9公斤和4公斤。

公司可提供的工时为300,可提供的用电量为250千瓦,可提供的原材料为420公斤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 主要解题方法和典型例题分析
题型I 目标规划数学模型的建立
当线性规划问题有多个目标需要满足时,就可以通过建立目标规划数学模型来描述。

目标规划数学模型的建立步骤为:第一步,确定决策变量;第二步,确定各目标的优先因子;第三步,写出硬约束和软约束;第四步,确定目标函数。

例6-1 某公司生产甲、乙两种产品,分别经由I 、II 两个车间生产。

已知除外购外,生产一件甲产品需要I 车间加工4小时,II 车间装配2小时,生产一件乙产品需I 车间加工1小时,II 车间装配3小时,这两种产品生产出来以后均需经过检验、销售等环节。

已知每件甲产品的检验销售费用需40元,每件乙产品的检验销售费用需50元。

I 车间每月可利用的工时为150小时,每小时的费用为80元;II 车间每月可利用的工时为200小时,每小时的费用为20元,估计下一年度平均每月可销售甲产品100台,乙产品80台。

公司根据这些实际情况定出月度计划的目标如下:
P 1:检验和销售费用每月不超过6000元; P 2:每月售出甲产品不少于100件;
P 3:I 、II 两车间的生产工时应该得到充分利用; P 4:I 车间加班时间不超过30小时; P 5:每月乙产品的销售不少于80件。

试确定该公司为完成上述目标应制定的月度生产计划,建立其目标规划模型。

解:先建立目标规划的数学模型。

设x 1为每月计划生产的甲产品件数,x 2为每月生产的乙产品的件数。

根据题目中给出的优先等级条件,有以下目标及约束:
(1) 检验及销售费用目标及约束11211
min()
40506000d x x d d +-+
⎧⎨++-=⎩; (2) 每月甲产品的销售目标及约束2122min()
100
d x d d --+
⎧⎨+-=⎩; (3) I 、II 两车间工时利用情况目标及约束
I 车间312
33min()4150d x x d d --+⎧⎨++-=⎩,II 车间41244min()3200d x x d d -
-+
⎧⎨++-=⎩ (4) I 车间加班时间目标及约束5355min()
30d d d d ++-+
⎧⎨+-=⎩ (5) 每月乙产品销售目标及约束62
66min()
80d x d d --+
⎧⎨+-=⎩。

相关文档
最新文档