七年级数学有理数的乘法与除法
七年级数学有理数的乘除和乘方

____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
(1)若9月30日的游客人数记为1万,10月2 日的游客人数是多少? (2)请判断7天内游客人数最多的是哪天? 最少的是哪天?他们相差多少万人? (3)求这一次黄金周期间游客在该地总人 数.
2.比较下面算式结果的大小(在横线上填“>”、“<”或“=” )
3
32 12
负分数
分数
除法 乘方
相反数
绝对值
比较大小 科学记数法 应用题 近似数
有效数字
练习:1.”十· 一”黄金周期间,嘉兴南湖风 景区在7天假期中每天旅游的人数变化如 下表(正数表示比前一天多的人数,负数表 示比前一天少的人数): (单位:万人)
日期 1日 2日 3日 4日 5日 6日 7日
人数 +1.6 +0.8 +0.4 -0.4 变化 -0.8 +0.2 -1.2
64,
64,
3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
有理数的乘法与除法

有理数的乘法与除法有理数是数学中的一个重要概念,指的是可以用两个整数的比表示的数,包括正整数、负整数和零。
有理数的乘法和除法是数学中的基本运算,本文将对有理数的乘法和除法进行详细讨论。
一、有理数的乘法有理数的乘法遵循以下几个基本原则:1. 正数相乘,结果为正数;负数相乘,结果为负数。
例如,2乘以3的结果是6,而-2乘以-3的结果也是6。
2. 正数与负数相乘,结果为负数。
例如,2乘以-3的结果是-6,而-2乘以3的结果也是-6。
3. 0与任何数相乘,结果为0。
无论是正数、负数还是0,与0相乘的结果都是0。
在进行有理数的乘法运算时,我们可以将分数用分子和分母表示,并将乘法运算转化为分子和分母的乘法运算。
比如,2/3乘以4/5可以转化为2乘以4除以3乘以5,最后得到的结果是8/15。
二、有理数的除法有理数的除法同样遵循一些基本原则:1. 正数除以正数,结果为正数;负数除以负数,结果为正数。
例如,6除以2的结果是3,而-6除以-2的结果也是3。
2. 正数除以负数,结果为负数;负数除以正数,结果为负数。
例如,6除以-2的结果是-3,而-6除以2的结果也是-3。
3. 任何数除以0都是没有定义的。
在数学中,0不能作为除数。
在进行有理数的除法运算时,我们可以将除法转化为乘法的逆运算。
例如,我们要计算2/3除以4/5,可以将其转化为2/3乘以5/4,最终得到的结果是10/12,可以约分为5/6。
三、有理数的乘法与除法综合运算当有理数的乘法和除法同时存在时,我们需要按照运算的优先级进行计算。
一般来说,先进行乘法运算,然后再进行除法运算。
如果存在多个乘法和除法,需要按照从左到右的顺序依次进行计算。
例如,计算2/3乘以4/5再除以6/7,我们可以先计算2/3乘以4/5得到8/15,然后再将8/15除以6/7,最终得到的结果是56/90。
四、有理数的乘法与除法的应用有理数的乘法和除法在实际生活中有着广泛的应用。
例如,在购物中,我们可以使用有理数的乘法来计算折扣和打折后的价格;在分配任务时,我们可以使用有理数的除法来确定每个人的工作量;在计算速度和距离时,我们可以使用有理数的乘法和除法来计算平均速度和总的距离。
苏科版七年级数学有理数的乘法与除法教案

有理数的乘法与除法一. 学习目标:1. 掌握有理数乘法法则。
2. 掌握乘法的运算律。
3. 掌握有理数的除法及乘方运算。
二. 重点、难点:1. 乘除法法则的运用。
2. 混和运算。
三. 教学内容:(一)有理数的乘法:前面我们已经研究过有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算。
先看这样的几个问题:(1)有理数包括哪些数?显然:有理数应包括正整数、正分数、负整数、负分数、零。
(2)小学中学过的乘法运算,属于有理数中哪些数的运算?小学时学过的乘法运算属于正有理数和零的运算。
根据小学时学过的乘法,研究下面几个问题:以上这些题目,都是对正有理数与正有理数、正有理数与零的乘法。
现在,数的X围已经扩大到有理数,出现了负数,又该怎样计算呢?先看这样一个问题:一只小虫沿东西向的跑道,以每分钟3米的速度向东爬行2分钟,那么,它现在的位置位于原来位置的哪个方向?相距几米?分析:这里,如果咱们规定向东为正,向西为负,用小学时的乘法就可以知道为即小虫在原来位置东边6米处。
但是,如果小虫以每分钟3米的速度向西爬行,又该怎样计算呢?我们知道,向西为负,因而小虫每分钟爬行的量应为-3米,而最后在西边6米。
发现:当我们把“3×2=6”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来积“+6”的相反数“-6”,一般地,人们发现:把一个因数换成它的相反数,所得的积是原来积的相反数。
下面咱们来看这样几个例子:(1)将3×2中第二个因数换成它的相反数(-2),得:3×(-2),而其结果应该等于3×2的结果6的相反数-6,即有3×(-2)=-6。
(2)将上式3×(-2)=-6的第一个因数“3”换成它的相反数“-3”,得到(-3)×(-2),而它的结果也应该为“-6”的相反数“6”,即有(-3)×(-2)=6,另外,如果有一个因数是0,所得的积仍然是零。
有理数的乘法与除法(3种题型)-2023年新七年级数学(苏科版)(解析版)

有理数的乘法与除法(3种题型)1.理解有理数的乘法与除法法则;2.能利用有理数的乘法与除法法则进行简单的有理数乘法运算;(重点)3.会利用有理数的乘法与除法解决实际问题.(难点)一.倒数(1)倒数:乘积是1的两数互为倒数.一般地,a• 1 (a≠0),就说a(a≠0)的倒数是.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.注意:0没有倒数.二.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.三.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•(b≠0)(2)方法指引:(1)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(2)有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.一.倒数(共7小题)1.(2023•泗洪县三模)﹣2023的倒数是()A.﹣2023B.2023C.﹣D.【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:﹣2023的倒数是﹣.故选:C.【点评】本题考查倒数,关键是掌握倒数的定义.2.(2021秋•启东市校级期中)若a的相反数等于2,则a的倒数是()A.﹣B.﹣2C.D.2【分析】根据相反数、倒数的定义解答即可.倒数:乘积是1的两数互为倒数;相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:∵a的相反数等于2,∴a=﹣2,∴a的倒数是.故选:A.【点评】本题主要考查的是倒数的定义,掌握相关的定义是解题的关键.3.(2022秋•大丰区期末)若m,n互为倒数,则|mn﹣2|=.【分析】根据乘积为1的两个数互为倒数结合有理数减法以及绝对值进行求解即可.【解答】解:∵m,n互为倒数,∴mn=1,∴|mn﹣2|=|1﹣2|=|﹣1|=1,故答案为:1.【点评】本题考查了倒数的定义,有理数减法运算,求一个数的绝对值,熟练掌握以上知识是解本题的关键.4.(2023春•邗江区月考)2023的____是﹣2023,则横线上可填写的数学概念名词是()A.倒数B.平方C.绝对值D.相反数【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.5.(2023•南京模拟)的相反数是,的倒数是.【分析】乘积是1的两数互为倒数,只有符号不同的两个数互为相反数,由此即可得到答案.【解答】解:﹣相反数是,的倒数是﹣2.故答案为:,﹣2.【点评】本题考查倒数,相反数,关键是掌握倒数、相反数的定义.6.(2022秋•邗江区期末)若a、b是互为倒数,则2ab﹣5=.【分析】互为倒数的两数之积为1,从而代入运算即可.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.【点评】本题考查了倒数的定义,属于基础题,注意互为倒数的两数之积为1.7.(2020秋•射阳县校级月考)|﹣3|的倒数是.【分析】先计算|﹣3|,再求|﹣3|的倒数.【解答】解:∵|﹣3|=3,∴|﹣3|的倒数是.故答案为.【点评】本题是基础题,考查了倒数、绝对值的概念,要熟练掌握.二.有理数的乘法(共15小题)8.(2015•苏州模拟)计算(﹣2)×5的结果是()A.10B.5C.﹣5D.﹣10【分析】根据有理数的乘方运算法则直接求出即可.【解答】解:(﹣2)×5=﹣10.故选:D.【点评】此题主要考查了有理数乘法运算,正确把握运算法则是解题关键.9.(2022秋•邗江区校级月考)计算﹣×=.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣×=﹣,故答案为:﹣.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则.10.(2022秋•泰州月考)计算(﹣2)×(﹣3)的结果等于()A.﹣5B.5C.﹣6D.6【分析】根据有理数乘法法则进行计算即可.【解答】解:根据有理数乘法法则:负负得正,(﹣2)×(﹣3)=6.故选:D.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.11.(2022秋•铜山区校级月考)已知|x|=3,|y|=6.若xy<0,求x+y的值.【分析】先根据绝对值的定义可求出x=±3,y=±6,再根据xy<0进行分类讨论即可求解.【解答】解:∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,①x=3,y=﹣6,x+y=3+(﹣6)=﹣3,②x=﹣3,y=6,x+y=﹣3+6=3,∴x+y=﹣3或3.【点评】本题主要考查了绝对值和有理数的加法,掌握绝对值的定义及有理数的加法法则是解题的关键.12.(2022秋•泰州月考)用简便方法计算:(1);(2)(﹣99)×999.【分析】(1)原式变形后,利用乘法分配律计算即可求出值;(2)先将题目中的式子变形,然后根据乘法分配律可以解答本题.【解答】解:(1)原式=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159;(2)原式=(1﹣100)×999=999﹣100×999=999﹣99900=﹣98901.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.13.(2023春•无锡月考)在明代的《算法统宗》一书中将用格子的方法计算两个数相乘称作“铺地锦”,如图1,计算82×34,将乘数82记入上行,乘数34记入右行,然后用乘数82的每位数字乘以乘数34的每位数字,将结果记入相应的格子中,最后按斜行加起来,既得2788.如图,用“铺地锦”的方法表示两个两位数相乘,则的a值是3.【分析】认真仔细理解题意,根据题意可得出10(a﹣2)+(﹣a+5)=4a,计算出a值.【解答】解:根据题意可得,如图所示,且设方格相应的位置为x,y,则有0+a+x=2a﹣2,y+0+1=﹣a+6,那么x=a﹣2,y=﹣a+5,再将其都代入中,得到10(a﹣2)+(﹣a+5)=4a,解得:a=3.故答案为:3.【点评】本题主要考查一元一次方程的应用,以及新概念的快速理解运用能力,解答的关键是根据题意列出相应的方程.14.(2022秋•宿豫区期中)用简便方法计算:.【分析】先把所求的算式变形为,再利用乘法分配律计算即可.【解答】解:=====.【点评】本题考查了有理数的混合运算,掌握有理数混合运算顺序和运算法则是关键.15.(2022秋•姜堰区期中)小明说:“请你任意想一个数,把这个数乘3后加12,然后除以6,再减去你原来所想的那个数的,我都可以知道你计算的结果.”请根据小明的说法进行探索.(1)如果你想的那个数是﹣2,请列式并计算结果;(2)你觉得小明说的话可信吗?请说明你的理由.【分析】(1)根据给定的运算规则可得(﹣2×3+12)÷6﹣,求解即可;(2)设这个数是x,根据题意,得,进一步化简即可.【解答】解:(1)根据题意,得(﹣2×3+12)÷6﹣=6÷6+1=1+1=2;(2)小明说的话可信,理由如下:设这个数是x,根据题意,得==2,∴结果和x无关,是个定值,∴小明说的话可信.【点评】本题考查了有理数的乘法,列代数式求值,能根据题意列出代数式是解题的关键.16.(2022秋•徐州月考)已知|x|=,|b|=7.若xy<0,求x﹣y的值.【分析】根据条件,分别求出符合条件的x,y的值,再进行计算.【解答】解:∵|x|=3,|b|=7,∴x=±3,b=±7,∵xy<0,∴x与y异号,①当x=3时,y=﹣7,x﹣y=3﹣(﹣7)=10;②当x=﹣3,y=7,x﹣y=﹣3﹣7=﹣10.综上所述,x﹣y的值为10或﹣10.【点评】本题考查了有理数的减法运算以及绝对值知识点,综合性较强,难度适中.17.(2022秋•江宁区校级月考)分类讨论思想是数学的重要思想,在学习有理数的过程中,也深有感受!(1)当ab<0时,若b>0,|a|<|b|,则a+b0;(2)当abc<0时,若ab>0,则c0;(3)当a与b都是整数,且|a|+|b|=1,求a+b的值.(写出分类讨论的过程)【分析】(1)根据有理数的乘法法则和加法法则即可确定;(2)根据有理数的乘法法则即可确定;(3)a与b都是整数,且|a|+|b|=1,分情况讨论:①a=1,b=0,②a=0,b=1,③a=﹣1,b=0,④a=0,b=﹣1,分别计算a+b的值即可.【解答】解:(1)∵ab<0,b>0,∴a<0,∵|a|<|b|,∴a+b>0,故答案为:>;(2)∵abc<0,ab>0,∴c<0,故答案为:<;(3)∵a与b都是整数,且|a|+|b|=1,分情况讨论:①a=1,b=0,此时a+b=1;②a=0,b=1,此时a+b=1;③a=﹣1,b=0,此时a+b=﹣1;④a=0,b=﹣1,此时a+b=﹣1,∴a+b的值为±1.【点评】本题考查了有理数的乘法和有理数的加法,熟练掌握有理数的乘法法则和加法法则是解题的关键,注意分情况讨论.18.(2022秋•靖江市校级月考)已知:|a|=2,|b|=5.(1)若ab<0,求a﹣b的值;(2)若|a﹣b|=a﹣b,求ab的值.【分析】根据绝对值的定义可得a=±2,b=±5;(1)根据ab<0,分情况讨论:①a=2,b=﹣5,②a=﹣2,b=5,分别求解即可;(2)根据|a﹣b|=a﹣b,可得a﹣b≥0,分两种情况:①a=2,b=﹣5,②a=﹣2,b=﹣5,分别求解即可.【解答】解:∵|a|=2,|b|=5,∴a=±2,b=±5,(1)∵ab<0,①a=2,b=﹣5,此时a﹣b=7,②a=﹣2,b=5,此时a﹣b=﹣7,∴a﹣b的值为±7;(2)∵|a﹣b|=a﹣b,∴a﹣b≥0,①a=2,b=﹣5,此时ab=﹣10,②a=﹣2,b=﹣5,此时ab=10,∴ab的值为±10.【点评】本题考查了有理数的乘法,有理数的除法,绝对值等,熟练掌握这些知识是解题的关键.19.(2022秋•港闸区校级月考)如果a,b,c是非零有理数,求式子的所有可能的值.【分析】根据绝对值的性质和有理数的乘法法则分情况讨论即可.【解答】解:根据题意,当a>0,b>0,c>0时,=2+2+2﹣1=5;当a>0,b>0,c<0时,=2+2﹣2+1=3;当a>0,b<0,c>0时,=2﹣2+2+1=3;当a<0,b>0,c>0时,=﹣2+2+2+1=3;当a<0,b<0,c>0时,=﹣2﹣2+2﹣1=﹣3;当a>0,b<0,c<0时,=2﹣2﹣2﹣1=﹣3;当a<0,b>0,c<0时,=﹣2+2﹣2﹣1=﹣3;当a<0,b<0,c<0时,=﹣2﹣2﹣2+1=﹣5;综上所述,式子的所有可能的值为±3或±5.【点评】本题考查了有理数的乘法和绝对值,熟练掌握绝对值的性质以及有理数的乘法法则是解题的关键.20.(2022秋•鼓楼区期末)在数轴上有一点A,将点A向左移动2个单位得到点B,点B向左移动4个单位得到点C,点A、B、C分别表示有理数a、b、c.若a、b、c三个数的乘积为负数且这三个数的和与其中的一个数相等,则a的值为.【分析】设a的值为x,则b的值为x﹣2,c的值为x﹣6,根据这三个数的和与其中的一个数相等分情况讨论即可得出答案.【解答】解:设a的值为x,则b的值为x﹣2,c的值为x﹣6,①当x+x﹣2+x﹣6=x时,解得:x=4,∴a=4,b=2,c=﹣2,∴abc<0,符合题意;故a的值为:4.②当x+x﹣2+x﹣6=x﹣2时,解得:x=3,∴a=3,b=1,c=﹣3,∴abc<0,符合题意;故a的值为:3.③当x+x﹣2+x﹣6=x﹣6时,解得:x=1,∴a=1,b=﹣1,c=﹣5;∴abc>0,不符合题意;综上所述:a的值为4或3.故答案为:4或3.【点评】本题考查了数轴,有理数的乘法,考查分类讨论的数学思想,根据这三个数的和与其中的一个数相等分情况讨论是解题的关键.21.(2022秋•崇川区校级月考)已知:|a|=2,|b|=5,若|a﹣b|=a﹣b,则ab=【分析】根据绝对值的意义先确定a、b的值,再计算a与b的积.【解答】解:∵|a|=2,|b|=5,∴a=±2,b=±5.∵|a﹣b|≥0,∴a﹣b≥0,∴a=±2,b=﹣5.∴ab=±2×(﹣5)=±10.故答案为:±10.【点评】本题主要考查了绝对值的意义,理解绝对值的意义是解决本题的关键.22.(2022秋•启东市校级月考)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【分析】分别根据运算“*”的运算方法列式,然后进行计算即可得解.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.【点评】本题考查了有理数的乘法,是基础题,理解新运算的运算方法是解题的关键.三.有理数的除法(共6小题)23.(2023•如东县一模)计算(﹣6)÷3=()A.2B.﹣2C.D.﹣【分析】根据有理数除法运算法则“同号得正,异号得负,并把绝对值相除”计算即可.【解答】解:原式=﹣(6÷3)=﹣2,故选:B.【点评】本题考查有理数除法法则的运用,熟悉有理数除法法则是解题的关键.24.(2023•姑苏区三模)计算(﹣12)÷3的结果等于()A.﹣4B.4C.﹣9D.9【分析】利用有理数的除法法则解答即可.【解答】解:原式=﹣12÷3=﹣4.故选:A.【点评】本题主要考查了有理数的除法,熟练掌握有理数的除法法则是解题的关键.25.(2023•苏州一模)化简的结果是()A.2B.﹣2C.D.【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,由此即可计算.【解答】解:=1×(﹣2)=﹣2.故选:B.【点评】本题考查有理数的除法,关键是掌握有理数除法法则.26.(2022秋•亭湖区期中)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,如何抽取能使这2张卡片上的数字乘积最大,并说明理由;(2)从中取出2张卡片,如何抽取能使这2张卡片上的数字相除的商最小,并说明理由.【分析】(1)根据两数相乘,同号得正,异号得负,并把绝对值相乘,取绝对值最大且同号的2张卡片;(2)根据两数相除,同号得正,异号得负,从中取出2张卡片,使这2张卡片上的数字相除的商最小,则取绝对值相差越大且异号的两数相除即可得到答案.【解答】解:(1)从中取出2张卡片,使这2张卡片上的数字乘积最大,可抽取﹣7和﹣3,﹣7×(﹣3)=21;(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,可抽取﹣7和1,﹣7÷1=﹣7.【点评】本题考查有理数的乘、除法运算,同时考查数学运算素质,熟练掌握相关运算法则,是解题的关键.27.(2022秋•玄武区期中)下列说法:①若|a|=|b|,则a=b;②若a、b互为倒数,则=1;③若|a|=a,则a>0;④若a+b=0,则a、b互为相反数.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】分别利用有理数的加法、相反数的定义,倒数的定义、有理数乘法运算,绝对值的性质分别分析得出答案.【解答】解:①若|a|=|b|,则a=b或a=﹣b,故①不符合题意;②若a、b互为倒数,则ab=1,故②不符合题意;③若|a|=a,则a一定为正数或0,故③不符合题意;④若a+b=0,则a、b互为相反数,故④符合题意.故选:A.【点评】此题主要考查了相反数、倒数的定义、有理数的加法,绝对值的性质等知识,正确掌握相关性质是解题关键.28.(2022秋•盐都区期中)计算:(1);(2);(3).【分析】(1(2)从左到右依次计算即可;(3)从左到右依次计算即可.【解答】解:(1)原式=+(×)=;(2)原式=(﹣8)×=﹣2;(3)原式=(﹣12)×(﹣)=10.【点评】本题考查的是有理数的乘法与除法,熟知有理数的乘除法则是解题的关键.一、单选题 1.(2022秋·江苏连云港·七年级统考期中)下列四个算式中运算结果为2022的是( )A .()20221−⨯−B .()20221−−C .()20221+−D .()20221÷- 【答案】A【分析】根据有理数运算的法则逐项判断即可.【详解】解:()202212022−⨯−=,故A 符号题意,()20221202212023−−=+=,故B 不符合题意; ()20221202212021+−=−=,故C 不符合题意; ()202212022÷=−-,故D 不符合题意;故选:A . 【点睛】本题考查有理数的运算,正确计算是解题的关键.【答案】A【分析】根据乘积是1的两个数互为倒数,即可得解.【详解】解:12的倒数是2;故选A .【点睛】本题主要考查了倒数的定义,熟练掌握乘积是1的两个数互为倒数,是解题的关键.3.(2022秋·江苏南通·七年级校联考期末)要使算式()52−□的运算结果最小,则“W ”内应填入的运算符号为( )A .+B .−C .⨯D .÷ 【答案】C【分析】根据有理数加减乘除和有理数大小比较的性质计算,即可得到答案.【详解】解:()523−+=−,()527−−=−,()5210−⨯=−,()5522−÷=−∵510732−<−<−<−∴要使算式()52−□的运算结果最小,则“W ”内应填入的运算符号为:⨯, 故选:C .【点睛】本题主要考查了有理数的四则运算,有理数比较大小,熟知相关计算法则是解题的关键. 4.(2022秋·江苏连云港·七年级统考期末)如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则b 与a 的( )A .和为正数B .差为正数C .积为正数D .商为正数 【答案】B【分析】根据点在数轴上的位置,判断出数的大小,进而判断出式子的符号即可.【详解】解:由图可知:0a b <<,a b >,A 、b 与a 的和为负数,选项错误,不符合题意;B 、b 与a 的差为正数,选项正确,符合题意;C 、b 与a 的积为负数,选项错误,不符合题意;D 、b 与a 的商为负数,选项错误,不符合题意;故选B .【点睛】本题考查利用数轴判断式子的符号.熟练掌握数轴上的点表示的数从左到右依次增大,是解题的关键. 5.(2022秋·江苏南京·七年级统考期末)如图,数轴上点A B C D 、、、所表示的数分别是a b c d 、、、,若0abcd <,ab cd >,则原点的位置在( )A .A 的左边B .线段AB 上C .线段BC 上D .线段CD 上【答案】D【分析】根据数轴上点A B C D 、、、的位置得出a b c d <<<,结合0abcd <,得出0,0a b c d <>、、或,,0,0a b c d <>,再结合ab cd >可得出原点的位置在线段CD 上.【详解】因为0abcd <,a b c d <<<,所以要么0,0a b c d <>、、,要么,,0,0a b c d <>,又因为ab cd >,所以,,0,0a b c d <>,所以原点的位置在线段CD 上.故选∶D .【点睛】本题考查数轴,掌握数轴上点的特点及有理数的乘法法则是解题的关键. 6.(2023秋·江苏镇江·七年级统考期末)如图,数轴上的点A ,B ,C 分别表示有理数a ,b ,c ,则下列结论错误的是( )A .0ac <B .0a b +<C .||b c b c −=−D .a c b c +<+【答案】C【分析】根据数轴上点的位置得出三个数的大小关系、正负情况、绝对值大小情况,再依据有理数的乘法法则、加法法则、去绝对值法则、除法法则判断即可求解.【详解】解:根据数轴上点的位置得:0a b c <<<,||||||<<b a c ,0ac ∴<,0a b +<,0b c −<,a c b c +<+,||b c c b ∴−=−, C ∴选项错误,不符合题意.故选:C .【点睛】此题考查了数轴,以及有理数运算法则,弄清数轴上点表示数的特征是解本题的关键. 7.(2023春·江苏南京·七年级南师附中新城初中校联考期中)如图为乘法表的一部分,每一个空格填入该格最上方与最左方的两数之积,则16个阴影空格中填入的数之和是( )A.87 464 B.87 500 C.87 536 D.87 572【答案】B【分析】根据题意,列式计算即可.【详解】解:∵每一个空格填入该格最上方与最左方的两数之积,∴16个阴影空格中填入的数之和是:()()()() 6186878889628687888963868788896486878889⨯++++⨯++++⨯++++⨯+++ ()()6162636486878889=+++⨯+++250350=⨯87500=;故选B.【点睛】本题考查有理数的混合运算.正确的理解题意,列出算式,是解题的关键.【答案】D【分析】根据有理数的乘、除、加、减运算法则逐一计算即可.【详解】解:A.39344−⨯=−,不符合题意;B.3433443−÷=−⨯=−,不符合题意;C.313244−+=−,不符合题意;D.333344−−=−,符合题意;故选:D.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.【答案】B【分析】分别利用有理数的加法、相反数的定义,倒数的定义、有理数乘法运算,绝对值的性质分别分析得出答案.【详解】解:①若0a b +=,则a 、b 互为相反数,是正确的;②若a 、b 互为倒数,则1ab =,是正确的;③若0ab >,则a 、b 均大于0或均小于0,题干的说法是错误的;④若||a a =,则a 一定为正数或0,题干的说法是错误的.故选:B .【点睛】此题主要考查了相反数、倒数的定义、有理数的加法,乘法运算,绝对值的性质等知识,正确掌握相关性质是解题关键.二、填空题【答案】8【分析】根据新定义代入计算,即可求解.【详解】解:根据题意得:()()232238⊗−=−⨯−=,故答案为:8. 【点睛】本题主要考查了有理数的混合运算,理解新定义是解题的关键.11.(2022秋·江苏苏州·七年级校考期中)在数5−、1、3−、5、2−中任取两个数相乘,其中最大的积是______,最小的积是______;任取三个数相乘,其中最大的积是______,最小的积是______.【答案】 15 25− 75 30−【分析】根据乘法法则,当偶数个负数相乘时积为正,当奇数个负数相乘时积为负,即可解决最大积和最小积的问题.【详解】解:任取两个数相乘,其中最大的积是()5315−⨯−=,最小的积是5525−⨯=−, 任取三个数相乘,其中最大的积是()53575−⨯−⨯=,最小的积是()()53230−⨯−⨯−=−,故答案为:15,25−,75,30−. 【点睛】本题考查了有理数的大小比较、有理数的乘法,解题关键要掌握有理数的大小比较、有理数的乘法法则.【答案】2− 23 【分析】①先计算32−的值,再根据相反数的定义求解即可.②先计算32−的值,再根据倒数的定义求解即可.【详解】①∵3322−=,32的相反数是32− ∴32−的相反数是32−.故答案为:32− ②∵3322−=,32的倒数是23 ∴32−的倒数是23故答案为:23【点睛】本题主要考查了绝对值、相反数和倒数,掌握绝对值、相反数和倒数的定义是解题的关键. 13.(2020秋·江苏扬州·七年级校考期中)从数6−,1,3.5,2−任取两个数相乘,所得的结果最小的是______.【答案】21− 【分析】根据异号两数相乘得负,取6−与3.5相乘可得结果最小的是21−.【详解】解:∵66−=,22−=,12 3.56<<<,∴任取两个数相乘,所得的结果最小的是()6 3.521−⨯=−.故答案为:21−. 【点睛】此题考查了有理数的乘法,以及有理数的大小比较,熟练掌握运算法则是解本题的关键. 14.(2022秋·江苏宿迁·七年级校考期中)今年国庆长假期间,我市新区“诚信专业修脚店”推出酬宾优惠:充500元送100元,顾客可获得价值600元的贵宾卡一张,进店消费时凭借此卡还可以享受标价7.5折的优惠,这样两次优惠相加,持此贵宾卡的顾客消费时的实际支付款只相当于标价的__________折.【答案】6.25【分析】直接用500除以600再乘以7.5折即可得到答案.【详解】解:5006007.5 6.25÷⨯=折,故答案为:6.25.【点睛】本题主要考查了有理数乘除混合计算的实际应用,正确理解题意是解题的关键. “”(2a b a =+()114−=________【答案】14【分析】把相应的值代入,利用有理数的相应的法则进行运算即可.【详解】解:1(1)4− 11(21)(21)(1)44=⨯−⨯⨯+−−11(1)(1)122=−⨯++13122=−⨯+314=−+ 14=.故答案为:14.【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.16.(2022秋·江苏淮安·七年级校考期末)新亚商场在2023年“元旦”期间举行促销活动,根据顾客按商品标价的一次性购物总额,规定相应的优惠方法如下:①如果不超过600元,则不予优惠;②如果超过600元,但不超过900元,则按购物总额给予8折优惠;③如果超过900元,则其中900元给予8折优惠,超过900元的部分给予6折优惠,促销期间,小王和妈妈分别看中一件商品,若各自单独付款,则应分别付款560元和640元;若合并付款,则她们总共只需付款___________元. 【答案】996或1080/1080或996【分析】根据题意可知付款560元时,其实际标价为为560或700元,付款640元,实际标价为800元,分两种情况分别计算求出一次购买标价1360元或1500元的商品应付款即可.【详解】解:由题意知付款560元,实际标价为560或560×108=700(元),付款640元,实际标价为106408008⨯=(元),如果一次购买标价5608001360+=(元)的商品应付款:()9000.813609000.6996⨯+−⨯=(元);如果一次购买标价7008001500+=(元)的商品应付款:()9000.815009000.61080⨯+−⨯=(元).故答案是:996或1080.【点睛】本题主要考查了有理数混合运算的应用,注意顾客付款560元时,要分两种情况考虑:有可能原价就是560元,也有可能符合优惠②,此时的结论也会有差别,另外注意计算的准确性.三、解答题【答案】2【分析】根据乘法分配律进行计算即可求解. 【详解】解:()131122412⎛⎫−+⨯− ⎪⎝⎭()()()1311212122412=⨯−−⨯−+⨯−691=−+−2=【点睛】本题考查了有理数的乘法运算,熟练掌握分配律是解题的关键.(2)()()32435−÷⨯−−. 【答案】(1)4 (2)64【分析】(1)用乘法分配律计算; (2)先算括号内的,再算括号外的.【详解】(1)解:原式125121212236=⨯+⨯−⨯6810=+−4=; (2)解:原式()()88=−⨯−64=.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的运算律和相关运算法则.【答案】(1)3(2)2− (3)10【分析】(1)根据有理数乘法法则:同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;据此计算即可;(2)根据有理数的乘除混合运算法则,先将除法转化成乘法,再算乘法,进行计算即可; (3)先将除法转化成乘法,然后根据有理数乘法运算法则进行计算即可.【详解】(1)解:1223⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭1223=⨯13=;(2)解:1(32)44−÷⨯11(32)44=−⨯⨯113244=−⨯⨯2=−;(3)解:124(2)15⎛⎫÷−÷− ⎪⎝⎭152426⎛⎫⎛⎫=⨯−⨯− ⎪ ⎪⎝⎭⎝⎭152426=⨯⨯10=. 【点睛】此题考查有理数的乘除混合运算,熟练掌握有理数的乘除法运算法则是解答此题的关键.【答案】(1)8(2)1 5−【分析】(1)根据乘法分配律可以解答本题;(2)根据题目中的例子的解题方法,可以求出所求式子的值.【详解】(1)原式1111212362=⨯−⨯+⨯426=−+8=;(2)原式的倒数是:354284147⎛⎫−−⨯⎪⎝⎭3542828284147=⨯−⨯−⨯211016=−−=5−,故原式15=−.【点睛】本题考查有理数的混合运算以及乘法运算律,解答本题的关键是明确有理数混合运算法则.【答案】(1)14,2 (2)4 (3)8【分析】(1)根据数轴上两点距离公式36x −=表示的是数x 到3的距离为6,则x 表示的数为9或3−,同理可得y 表示的数为5−或1,由此求解即可; (2)直接去绝对值即可得到答案;(3)先讨论去绝对值得到当21x −≤≤,12x x −++取得最小值为3,当43y −≤≤时,34y y −++取值最小值为7,再由123410x x y y −+++−++=得到123347x x y y −++=−++=,,则21x −≤≤,43y −≤≤,由此根据有理数乘法计算法则求解即可.【详解】(1)解:∵数轴上表示x 和3的两点之间的距离表示为3x −,∴36x −=表示的是数x 到3的距离为6,∴x 表示的数为9或3−, 同理可得y 表示的数为5−或1,∵数x 、y 在数轴上表示的数分别是点A 、点B , ∴A 、B 两点间的最大距离是()9514−−=,最小距离是()352−−−=,故答案为:14,2;(2)解:∵x 表示一个有理数,且31x −<<, ∴13314x x x x −++=++−=,故答案为:4;(3)解:当21x −≤≤时,12213x x x x −++=++−=, 当<2x −时,1221213x x x x x −++=−−+−=−−>,当1x >时,1221213x x x x x −++=++−=+>,∴当21x −≤≤,12x x −++取得最小值为3,同理可得:当43y −≤≤时,34y y −++取值最小值为7, ∵123410x x y y −+++−++=,123x x −++≥,347y y −++≥,∴123347x x y y −++=−++=,,∴21x −≤≤,43y −≤≤,∴当24x y =−=−,时,xy 有最大值,最大值为()248−⨯−=,故答案为:8.【点睛】本题主要考查了数轴上两点距离公式,绝对值的几何意义,去绝对值,有理数的乘法计算等等,灵活运用所学知识是解题的关键.一、单选题1.下列各组的两个数中,互为倒数的是( ) A .3和﹣3 B .﹣3和13−C .﹣3和13D .13和13−【答案】B【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3−=-9,不是互为倒数; B 、1(3)()13−⨯−=,是互为倒数;C 、1313−⨯=−,不是互为倒数;D 、11()3319⨯−=−,不是互为倒数;故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).2.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( ) A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数【答案】D【分析】设这两个数分别为a ,b ,根据题意可得b aa b=,从而可得22a b =,从而判断出a 和b 的关系. 【详解】设这两个数分别为a ,b 依题意可得:b a a b= 化简得:22a b = ∴a=b 或a=-b 故答案选择:D.【点睛】本题考查的是有理数的除法:除以一个数等于乘以这个数的倒数.3.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了( ) A .80元 B .120元C .160元D .200元【答案】C【分析】八折是指售价是标价的80%,把标价看成单位“1”,实际少付的钱数就是标价的(1-80%),它对应的数量是40元,根据分数除法的意义,用40除以(1-80%)即可求出标价,再减去40元,就是实际花的钱数.【详解】解:40÷(1-80%) =40÷20% =200(元) 200-40=160(元)答:他购买这件商品花了160元. 故选:C .【点睛】解决本题关键是理解打折的含义,找出单位“1”,再根据分数除法的意义求出标价,从而解决问题.4.在1,2−,3−,4这四个数中,任取两个数相乘,所得积最大的是( ) A .12− B .2−C .4D .6【答案】D【分析】根据有理数的乘法以及有理数的大小比较,列出乘积最大的算式计算即可得解. 【详解】解:所得的积最大的是:()()236−⨯−=. 故选D .。
七年级数学上册数学 2.6.1 有理数的乘法与除法-有理数的乘法(四大题型)(解析版)

2.6.1有理数的乘法与除法——有理数的乘法分层练习考察题型一乘法相关的符号判断1.一个有理数与它的相反数的积()A.一定不小于0B.符号一定为正C.一定不大于0D.符号一定为负【详解】解:若有理数是0,则0的相反数是0,000⨯=;若有理数不是0,它们的积是负数;综上,一个有理数与它的相反数的积一定不大于0.故本题选:C.2.下列说法中:①a-一定是负数;②一个有理数的绝对值是它的相反数,则这个数是非正数;③几个有理数相乘,当负因数有奇数个时,积为负;④几个有理数相乘,当积为负时,负因数有奇数个.其中正确的个数有()A.1个B.2个C.3个D.4个【详解】解:①a-不一定是负数,错误;②一个有理数的绝对值是它的相反数,则这个数是非正数,正确;③几个有理数相乘,当负因数有奇数个时,不一定积为负,可能为0,错误;④几个有理数相乘,当积为负时,负因数有奇数个,正确.故本题选:B.3.a、b是两个有理数,若0a b+>,则下列结论正确的是()ab<,且0A.0b>a>,0B.a、b两数异号,且正数的绝对值大C.0b<a<,0D.a、b两数异号,且负数的绝对值大【详解】解:0ab < ,a ∴、b 异号,又0a b +> ,∴正数的绝对值较大.故本题选:B .4.三个数相乘,积为正数,则其中正因数的个数为()A .1B .2C .3D .1或3【详解】解: 三个数相乘,积为正数,∴其中正因数的个数有1个或3个.故本题选:D .5.如果有理数a 、b 、c 满足,0a b c ++=,0abc >,那么a 、b 、c 中负数的个数是()A .0B .1C .2D .3【详解】解:0abc > ,a ∴、b 、c 中有2个负数或没有一个负数,若没有一个负数,则0a b c ++>,不符合0a b c ++=的要求,故a 、b 、c 中必有2个负数.故本题选:C .6.若0ab <,0ac >,0a c +>,||||||a c b <<,则||||||a b a c c b ++--+=.【详解】解:0ac > ,0a c +>,0a ∴>,0c >,0ab < ,0b ∴<,||||||a c b << ,||||||22a b a c c b a b a c c b a c ∴++--+=---+++=-+.故本题答案为:22a c -+.考察题型二有理数的乘法运算1.规定:水位上升为正,水位下降为负:几天后为正,几天前为负.若水位每天下降3cm ,今天的水位记为0cm ,那么2天前的水位用算式表示正确的是()A .(3)(2)+⨯+B .(3)(2)+⨯-C .(3)(2)-⨯+D .(3)(2)-⨯-【详解】解:由题意可得:2天前的水位用算式表示是:(3)(2)-⨯-.故本题选:D .2.在下列各数:(3)--,1(2)(4-⨯-,|3|--,||1a -+中,恒为负数的个数为()A .1个B .2个C .3个D .4个3.若有理数m 、n 满足|6||4|0m n ++-=,则mn =.【详解】解:由题意可知:60m +=,40n -=,6m ∴=-,4n =,6424mn ∴=-⨯=-.故本题答案为:24-.4.算式3(344-⨯可以化为()A .33444-⨯-⨯B .33444-⨯+⨯C .333-⨯-D .3344--⨯5.绝对值不大于3的所有整数的积是.【详解】解:绝对值不大于3的所有整数是:3±,2±,1±,0,它们的积是:(1)(2)(3)12300-⨯-⨯-⨯⨯⨯⨯=.故本题答案为:0.6.在5-,3-,1-,0,2,4,6中取出三个数,把三个数相乘,所得到的最大乘积是.【详解】解:(5)(3)615690-⨯-⨯=⨯=,∴三个数相乘,最大乘积是90.故本题答案为:90.7.已知四个互不相等的整数a 、b 、c 、d 的乘积等于14,则它们的和等于()A .5-B .5C .9D .5或5-【详解】解: 四个互不相等的整数a 、b 、c 、d 的乘积等于14,∴这四个数为1-,1,2,7-,或1-,1,2-,7,∴它们的和等于5-或5.故本题选:D .8.已知:||2a =,||5b =.(1)若0ab <,求a b -的值;(2)若||a b a b -=-,求ab 的值.【详解】解:||2a = ,||5b =,2a ∴=±,5b =±,(1)0ab < ,①2a =,5b =-,此时7a b -=,②2a =-,5b =,此时7a b -=-,a b ∴-的值为7±;(2)||a b a b -=- ,0a b ∴-,①2a =,5b =-,此时10ab =-,②2a =-,5b =-,此时10ab =,ab ∴的值为10±.9.某同学把7(⨯□3)-错抄为7⨯□3-,抄错后算得答案为y ,若正确答案为x ,则x y -=.【详解】解:根据题意得:7(⨯□3)x -=①,7⨯□3y -=②,①-②得:7(x y -=⨯□3)7--⨯□37+=⨯□217--⨯□318+=-.故本题答案为:18-.10.有理数a 、b 、c 在数轴上的位置如图:(1)a b-0;ab0;(2)化简||2||3||b c a b c a -++--.【详解】解:(1)由数轴知:0a b c <<<,||||||b a c <<,0a b ∴-<,0ab <,故本题答案为:<;<;(2)||2||3||b c a b c a -++--2()3()b c a b c a =-++----2233b c a b c a =-+---+32a b c =--.11.若“!”是一种数学运算符号,并且1!1=,2!212=⨯=,3!3216=⨯⨯=,4!4321=⨯⨯⨯,⋯,则20232022!!的值为()A .2023B .2022C .2023!D .2022!12.按如图程序计算,如果输入的数是2-,那么输出的数是.【详解】解:2(3)6-⨯-=,6(3)18⨯-=-,18(3)54-⨯-=,54(3)162⨯-=-.故本题答案为:162-.13.若定义一种新的运算“*”,规定有理数*4a b ab =,如2*342324=⨯⨯=.(1)求3*(4)-的值;(2)求(2)*(6*3)-的值.【详解】解:(1)3*(4)-43(4)=⨯⨯-48=-;(2)(2)*(6*3)-(2)*(463)=-⨯⨯(2)*(72)=-4(2)(72)=⨯-⨯576=-.14.计算:(1)4(8.99)(2.5)⨯-⨯-=;(2)()()()820230.125-⨯-⨯-=;(3)()()()()()1223344520232024-⨯-⨯-⨯-⨯⨯-= .【详解】解:(1)4(8.99)( 2.5)4 2.58.9989.9⨯-⨯-=+⨯⨯=;(2)()()()()()()()820230.12580.1252023120232023-⨯-⨯-=-⨯-⨯-=⨯-=-;(3)()()()()()1223344520232024-⨯-⨯-⨯-⨯⨯- (1)(1)(1)(1)(1)=-⨯-⨯-⨯-⨯⋯⨯-(共2023个1-相乘)1=-.15.计算:(1)7 (12)()4-⨯-;(2)(8) 1.25-⨯;(3)73() 1014⨯-;(4)38 ((169-⨯-;(5)1(0.12)(100)12-⨯⨯-;(6)529()0( 3192⨯-⨯⨯-.16.求值:(1)141(16)((1) 454⨯-⨯-⨯-;(2)5813 ()()(2( 111354-⨯-⨯-⨯-.17.小明说:“请你任意想一个数,把这个数乘3后加12,然后除以6,再减去你原来所想的那个数的12,我都可以知道你计算的结果.”请根据小明的说法进行探索.(1)如果你想的那个数是2-,请列式并计算结果;(2)你觉得小明说的话可信吗?请说明你的理由.考察题型三简便运算1.在简便运算时,把4724(99)48⨯-变形成最合适的形式是()A .124(10048⨯-+B .124(10048⨯--C .4724(99)48⨯--D .4724(99)48⨯-+2.用简便方法计算:(1)1519(8)16⨯-;(2)(99)999-⨯.3.学习有理数的乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下:小明:原式12491249452492555 =-⨯=-=-;小军:原式24244 (49)(5)49(5)(5)24925255 =+⨯-=⨯-+⨯-=-;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1519(8) 16⨯-4.简便计算(1)15 (48)0.12548(48)84 -⨯+⨯+-⨯(2)531 ((36) 9418-+⨯-5 (48)4 =-⨯60=-;(2)原式531(36)(36)(36) 9418=⨯--⨯-+⨯-20272=-+-5=.5.简便方法计算:①212()(27) 9327--⨯-;②888 (9)31(8)(31)(16)31292929 -⨯--⨯---⨯.【详解】解:①原式212(27)(27)(27) 9327=⨯--⨯--⨯-692 =-++ 5=;②原式831(9816)29=⨯--+831(1)29=⨯-83129=-.6.如图为乘法表的一部分,每一个空格填入该格最上方与最左方的两数之积,则16个阴影空格中填入的数之和是()A.87464B.87500C.87536D.87572【详解】解: 每一个空格填入该格最上方与最左方的两数之积,16∴个阴影空格中填入的数之和是:61(86878889)62(86878889)63(86878889)64(86878889)⨯++++⨯++++⨯++++⨯+++(61626364)(86878889)=+++⨯+++250350=⨯87500=.故本题选B .考察题型四数字规律1.已知111⨯=;1111121⨯=;11111112321⨯=;111111111234321⨯=,则111111111111⨯=.【详解】解:111⨯= ;1111121⨯=;11111112321⨯=;111111111234321⨯=,11111111111112345654321∴⨯=.故本题答案为:12345654321.2.观察:等式(1)212=⨯等式(2)24236+=⨯=等式(3)2463412++=⨯=等式(4)24684520+++=⨯=(1)仿此:请写出等式(5),⋯,等式()n .(2)按此规律计算:①24634+++⋯+=;②求283050++⋯+的值.【详解】解:(1)等式(5)为2468105630++++=⨯=,等式()n 为24682(1)n n n ++++⋯+=+,故本题答案为:2468105630++++=⨯=,24682(1)n n n ++++⋯+=+;(2)①原式1718306=⨯=,故本题答案为:306;②原式(246850)(24626)25261314468=++++⋯+-+++⋯+=⨯-⨯=.3.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;②6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:①3211⨯=,②7811⨯=;(2)若某个两位数十位数字是a ,个位数字是(10)b a b +<,将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a 、b 的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.【详解】解:(1)①325+= ,3211352∴⨯=,②7815+= ,7811858∴⨯=,故本题答案为352,858;(2)两位数十位数字是a ,个位数字是b ,这个两位数乘11,∴三位数百位数字是a ,十位数字是a b +,个位数字是b ,故本题答案为:a ,a b +,b ;(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a ,个位数为b ,则11(10)a b +10(10)(10)a b a b =+++1001010a b a b =+++10010()a a b b =+++,根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.1.任何一个正整数n 都可以进行这样的分解:(n s t s =⨯、t 是正整数,且)s t ,如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p F n q =.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有31(18)62F ==.给出下列关于()F n 的说法:①F (2)12=;②1(48)3F =;③2()1n F n n n +=+;④若n 非0整数,则2()1F n =,其中正确说法的是(将正确答案的序号填写在横线上).【详解】解:212=⨯ ,2.阅读:一个正整数n 可以分解为两个正整数p 、q 的积,即n p q =⨯(规定)p q ,在n 的所有这种分解中,如果两因数p 、q 之差的绝对值最小,则称p q ⨯是n 的最优分解,称p q 为n 的最优分解比.尝试:(1)24可以分解成124⨯、212⨯、38⨯、46⨯,其中46⨯是24的最优分解,最优分解比为;(2)2n n -的最优分解是(1)n n -⨯,2n n -的最优分解比为;(3)请写出一个在20到40范围之间正整数:,使它的最优分解比为1;探索:(4)n 是一个正整数(110)n ,已知229n n -+的最优分解比为2129n n -+,求229n n -+的最小值,写出简要过程.3.(1)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的和都等于0;(2)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的积都等于1.【详解】解:(1)如图1所示:;(2)如图2所示:.。
有理数的乘除

有理数的乘除有理数是数学中的一类数,包括整数、分数和整数倍的乘法和除法运算。
在数学中,有理数的乘除运算是非常重要的基础知识。
本文将介绍有理数的乘法和除法,并且探讨一些与有理数乘除相关的性质。
一、有理数的乘法有理数的乘法是指两个有理数相乘的运算。
两个有理数相乘的结果仍然是一个有理数。
1.1 有理数的乘法规则有理数的乘法遵循以下规则:- 两个正数相乘,结果为正数;- 两个负数相乘,结果为正数;- 一个正数和一个负数相乘,结果为负数。
例如,2乘以3等于6,负3乘以负2等于6,负4乘以5等于负20。
1.2 有理数的乘法性质有理数的乘法具有以下性质:- 乘法交换律:a乘以b等于b乘以a,即ab=ba。
- 乘法结合律:a乘以(b乘以c)等于(a乘以b)乘以c,即a(bc)=(ab)c。
- 乘法分配律:a乘以(b加上c)等于ab加上ac,即a(b+c)=ab+ac。
这些性质使得有理数的乘法运算更加简单和灵活。
二、有理数的除法有理数的除法是指一个有理数除以另一个有理数的运算。
两个有理数的除法结果也是一个有理数,除非除数为0,此时除法运算无意义。
2.1 有理数的除法规则有理数的除法遵循以下规则:- 两个正数相除,结果为正数;- 两个负数相除,结果为正数;- 一个正数除以一个负数,结果为负数。
例如,8除以4等于2,负12除以负3等于4,6除以负2等于负3。
2.2 有理数的除法性质有理数的除法具有以下性质:- 除法结合律:a除以(b除以c)等于(a乘以c)除以b,即a/(b/c)=(a*c)/b。
- 除法分配律:a除以(b加上c)等于a除以b加上a除以c,即a/(b+c)=a/b+a/c。
这些性质使得有理数的除法运算更加简便和灵活。
三、有理数乘除的习题为了更好地理解有理数的乘除运算,接下来我们解决一些习题。
3.1 习题一计算下列乘法:- 2乘以(-3)等于多少?- 4乘以(-2/3)等于多少?- (-5/6)乘以(-2/3)等于多少?3.2 习题二计算下列除法:- 8除以(-4)等于多少?- (-15)除以(-3)等于多少?- (-9/10)除以(3/5)等于多少?解答这些习题有助于加深理解有理数的乘除运算规则和性质。
七年级初一数学2.6有理数的乘法与除法知识点解读有理数的除法

知识点解读:有理数的除法一、关于有理数的除法知识点一:有理数的除法法则(掌握)有理数的除法法则:(1)法则1:除以一个数等于乘以这个数的倒数.用字母表示为:a ÷b =a × 1b(b ≠0). (2)法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不等于0的数都得0 . 温馨提示:对于除法的两个法则,在计算时可根据具体情况选用,一般在不能整除的情况下选用第二法则较简便;而在能整除的情况下则通常选用第一法则.例1 计算:(1)()()644-÷-; (2)37521446⎛⎫⎛⎫⎛⎫÷-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 析解:两个数的除法运算,应先确定商的符号,然后把被除数和除数的绝对值相除;多个有理数的除法运算,应先转化为乘法运算.解:(1)原式=()644+÷=16;(2)原式=14462375⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14462375⎛⎫-⨯⨯⨯ ⎪⎝⎭=325-.知识点二:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数.一般的,当0a ≠时,a 与1a互为倒数. 对倒数的概念的理解还应注意以下几点:(1)零没有倒数;(2)正数的倒数仍是正数,负数的倒数仍是负数;(3)倒数等于本身的数是1和-1;(4)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可,求一个小数的倒数,要先把小数转化为分数后再求其倒数,求一个带分数的倒数,要先把带分数化为假分数再求.知识点三:有理数的混合运算(拓展)二、关于有理数的混合运算对于乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算,若有括号的应先做括号里面的.例2 计算(-81)÷214×49÷(-15).分析:将除法先统一成乘法,再利用约分来简化计算.解:(-81)÷214×49÷(-15)=81×49×49×115=1115.说明:有理数的乘除混合运算必须按从左到右的顺序依次进行计算,像(-81)÷214×49=-81÷94×49=-81,这样计算是错误的.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<b cC.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>0 【答案】A【解析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A、若ac2<bc2,则a<b,正确;B、若ab<c,则a<bc,错误;C、若a﹣b>a,则b<0,故错误;D、若ab>0,则a>0,b>0或a<0,b<0,故错误,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.5cm,5cm,11cm D.13cm,12cm,20cm【答案】D【解析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)【答案】B【解析】∵点M(a+3,a+1)在直角坐标系的x轴上,∴a+1=0,解得a=−1,所以,a+3=−1+3=2,点M的坐标为(2,0).故选B.4.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.25【答案】C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.5.港珠澳大桥2018年10月24日正式通车,整个大桥造价超过720亿元人民币,720亿用科学记数法表示为()A.72×109B.7.2×109C.7.2×1010D.0.72×1011【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:720亿用科学记数法表示为7.2×1010故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27, 第2次,12×27=9, 第3次,12×9=3, 第4次,12×3=1, 第5次,1+2=3,第6次,12×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.7.已知方程组35223x y k x y k +=+⎧⎨+=⎩的解满足x + y = 2 ,则k 的值为( ) A .4B .- 4C .2D .- 2 【答案】A【解析】方程组中两方程相减消去k 得到关于x 与y 的方程,与x+y=2联立求出解,即可确定出k 的值.【详解】35223x y k x y k ++⎧⎨+⎩=①=②, ①-②得:x+2y=2,222x y x y +⎧⎨+⎩== , 解得20x y ⎧⎨⎩==, 则k=2x+3y=4,故选A .【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.下列调查活动中适合使用全面调查的是( )A .某种品牌手机的使用寿命B .全国植树节中栽植树苗的成活率C .了解某班同学课外阅读经典情况D .调查“厉害了,我的国”大型电视记录片的收视率【答案】C【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行一一判断解答.【详解】A. 某种品牌手机的使用寿命,适合抽样调查,故A 选项错误;B.全国植树节中栽植树苗的成活率,适合抽样调查,故B 选项错误;C.了解某班同学的课外阅读经典情况,适合使用全面调查,故C 选项正确;D.调查“厉害了,我的国”大型记录电影在线收视率,适于抽样调查,故D 选项错误.故选C .【点睛】本题考查抽样调查和全面调查的区别,难度不大 9.若关于x 的不等式组030x a x -≥⎧⎨-<⎩有3个整数解,则a 的值可以是( ) A .-2B .-1C .0D .1【答案】C 【解析】试题解析:解不等式组030x a x -≥⎧⎨-<⎩, 得 3x a x ≥⎧⎨<⎩,所以解集为3a x ≤<; 又因为不等式组030x a x -≥⎧⎨-<⎩,有3个整数解,则只能是2,1,0, 故a 的值是0.故选C.10.如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A .体育场离张强家3.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1.5千米D .张强从早餐店回家的平均速度是3千米/小时【答案】C 【解析】试题分析:A 、由函数图象可知,体育场离张强家2.5千米,故A 选项正确;B 、由图象可得出张强在体育场锻炼30-15=15(分钟),故B 选项正确;C 、体育场离张强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故C 选项错误;D 、∵张强从早餐店回家所用时间为95-65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D 选项正确.故选C .考点:函数的图象.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.现有2张大正方形纸片A ,2张小正方形纸片B ,5张小长方形纸片C ,这9张纸片恰好拼成如图所示的大长方形,已知大长方形的周长为42,面积为107,则1张小长方形纸片C 的面积为____________.【答案】9【解析】设小长方形纸片C 的的长为x ,宽为y ,根据大长方形的周长为42,面积为107列方程组求解即可.【详解】设小长方形纸片C 的的长为x ,宽为y ,有题意得()()()2224222107x y x y x y x y ⎧+++=⎪⎨++=⎪⎩, 解之得79x y xy +=⎧⎨=⎩, 故答案为:9.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.13.观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为_____.【答案】(x+m )(x+n )=x 2+(m+n )x+mn【解析】根据规律乘积中的一次项系数是两因式中常数项的和,乘积中的常数项是常数项的积,即可得出答案,【详解】观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为(x+m )(x+n )=x 2+(m+n )x+mn ,故答案为:(x+m )(x+n )=x 2+(m+n )x+mn【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.14.已知435x y -=,用x 表示y ,得y _____________. 【答案】453x y -= 【解析】把x 看做已知数求出y 即可. 【详解】 435x y -=453x y -∴= 故答案为453x y -=【点睛】本题考查解一元二次方程,熟练掌握计算法则是解题关键.15.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________. 【答案】78m <≤【解析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①②解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为:78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键. 16.如图所示,把ABC △的三边BA 、CB 和AC 分别向外延长一倍,将得到的点A '、B '、C '顺次连接成A B C ''',若ABC △的面积是5,则A B C '''的面积是________.【答案】1【解析】连接AB '、BC '、CA ',由题意得:AB AA =',BC BB =',AC CC =',由三角形的中线性质得出△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积AAC =∆的面积=△BB C '的面积=△A C C ''的面积5=,即可得出△A B C '''的面积.【详解】解:连接AB '、BC '、CA ',如图所示:由题意得:AB AA =',BC BB =',AC CC =',∴△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积=△AA C '的面积=△BB C ''的面积=△A C C ''的面积5=,∴△A B C '''的面积5735=⨯=;故答案为:1.【点睛】本题考查了三角形的中线性质、三角形的面积;熟记三角形的中线把三角形的面积分成相等的两部分是解题的关键.17.若216x mx ++是一个完全平方式,则m=________【答案】±1 【解析】利用完全平方公式的结构特征可确定出m 的值.【详解】解:∵多项式222164x mx x mx ++=++是一个完全平方式,∴m =±2×1×4,即m =±1, 故答案为:±1. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题18.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h 以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九年级(1)班有________名学生.(2)补全频数分布直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少人.【答案】 (1)50;(2)见解析;(3)见解析;(3)246人.【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165人,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(人).19.进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种乙品种进价(元/千克) 1.6 1.4售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?【答案】(1)300千克,200千克;(2)1.1元/千克.【解析】(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:1.6 1.4760(2.4 1.6)(2 1.4)360x yx y+=⎧⎨-+-=⎩,解得:300200 xy=⎧⎨=⎩.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.【答案】(1)详见解析;(2)详见解析.【解析】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【详解】(1)点D 及四边形ABCD 的另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点睛】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移. 21.如图,已知四边形ABCD ,//AD BC ,点P 在直线CD 上运动(点P 和点C ,D 不重合,点P ,A ,B 不在同一条直线上),若记DAP ∠,APB ∠,PBC ∠分别为α∠,β∠,γ∠.图1 图2 图3(1)如图1,当点P 在线段CD 上运动时,写出α∠,β∠,γ∠之间的关系,并说出理由;(2)如图2,如果点P 在线段CD 的延长线上运动,探究α∠,β∠,γ∠之间的关系,并说明理由.(3)如图3,BI 平分PBC ∠,AI 交BI 于点I ,交BP 于点K ,且:5:1PAI DAI ∠∠=,20APB ︒∠=,30I ︒∠=,求PAI ∠的度数.【答案】(1)βαγ∠=∠+∠;(2)见解析;(3)50°.【解析】(1)过点P 作//PE AD ,根据平行线的性质即可求解;(2)根据题意分当点P 运动到直线AB 左侧时和当点P 运动到直线AB 右侧时,根据平行线的性质及外角定理即可求解;(3)根据BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,由//AD BC ,得到2DHP CBP x ∠=∠=,又BKI AKP ∠=∠,得到3020PAI x ︒︒∠=+-10x ︒=+,再根据:5:1PAI DAI ∠∠=,得到11255DAI PAI x ︒∠=∠=+,由DHF ∠是APH ∆的外角,可得DHP PAH APB ∠=∠+∠,即12210205x x x ︒︒︒=++++,故可求出x 即可求解.【详解】(1) βαγ∠=∠+∠.图1理由如下:过点P 作//PE AD ,如图1 ,//PE AD ,APE α∴∠=∠,//AD BC ,//PE BC ∴,BPE γ∴∠=∠,APE BPE βαγ∴∠=∠+∠=∠+∠;(2)当点P 运动到直线AB 右侧时,//AD BC ,1PBC ∴∠=∠,而1PAD APB ∠=∠+∠,APB PBC PAD ∴∠=∠-∠,即βγα∠=∠-∠.当点P 运动到直线AB 左侧时,//AD BC ,2PBC ∴∠=∠,而2PAD APB ∠=∠+∠,APB PAD PBC ∴∠=∠-∠,即βαγ∠=∠-∠.(3)如图,点P 在50PAI ∠=. BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,//AD BC ,2DHP CBP x ∴∠=∠=,20APB ︒∠=,30I ︒∠=,BKI AKP ∠=∠,3020PAI x ︒︒∴∠=+-10x ︒=+,又:5:1PAI DAI ∠∠=, 11255DAI PAI x ︒∴∠=∠=+,DHF ∠是APH ∆的外角,DHP PAH APB ∴∠=∠+∠,即12210205x x x ︒︒︒=++++,解得40x =,401050PAI ︒︒︒∴∠=+=.【点睛】此题主要考查平行线的性质与三角形的角度求解,解题的关键是熟知平行线的性质及三角形的外角定理与内角和定理.22.如图,在ABC ∆中,CD 垂直AB ,垂足为D ,ABC ∠的平分线BP 交CD 于点P .(1)若20BCD ∠=︒,求PBC ∠的度数;(2)若BCD α∠=,求BPD ∠的度数.【答案】(1)35PBC ∠=︒;(2)1452BPD α∠=︒+. 【解析】(1)由CD 垂直AB ,可得直角,由BP 平分ABC ∠,可得PBC PBD ∠∠=,依据三角形内角和定理可求ABC ∠,进而求出PBC ∠;(2)方法同(1),只是角度用α表示,最后由三角形的外角等于与它不相邻的两个内角的和,表示BPD ∠即可.【详解】解:(1)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD 20∠=︒,ABC 902070∠∴=︒-︒=︒,又BP 平分ABC ∠,1PBC PBD ABC 352∠∠∠∴===︒, 答:PBC 35∠=︒;(2)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD α∠=,ABC 90α∠∴=︒-,又BP 平分ABC ∠,()11PBC PBD ABC 90α22∠∠∠∴===︒-, ()11BPD PBC PCB 90αα45α22∠∠∠∴=+=︒-+=︒+,答:1BPD 45α2∠=︒+.【点睛】考查三角形内角和定理、角平分线意义、垂直的意义等知识,三角形的内角和定理的推论,即三角形的任何一个外角等于与它不相邻的两个内角的和,在解决问题时也经常用到,注意掌握.23.某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天和30天;(2)甲工程队至少单独施工36天.【解析】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天,根据题意即可列出分式方程进行求解;(2)设甲单独施工y 天,根据题意列出不等式进行求解. 【详解】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天, 根据题意得301110()3030x x x =⋅+++, 解得x=30,经检验,x=30是原方程的解,故甲、乙两工程队单独完成此项工程各需要60天和30天;(2)设甲单独施工y 天,根据题意得6011603011 3.564y y -⨯+⨯≤+ 解得y ≥36,故甲工程队至少单独施工36天.【点睛】此题主要考查分式方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系进行求解.24.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩①②并写出它的解集在数轴上表示出来.【答案】-3<x≤2,图见解析【解析】根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集,最后把它的解集在数轴上表示出来即可.【详解】解:解不等式①,得:x>-3,解不等式②,得:x≤2,所以不等式组的解集是-3<x≤2,则不等式组的解集如图所示:【点睛】此题考查的是解一元一次不等式组,掌握一元一次不等式组的解法和公共解集的取法是解决此题的关键.25.已知23x y-=,222413x xy y-+=.求下列各式的值:(1)xy.(2)222x y xy-.【答案】(1)2 (2)6【解析】(1)首先将23x y-=两边平方,即可得22449x y xy+-=,再减去222413x xy y-+=可得xy的值.(2)首先将222x y xy-因式分解,提取xy,则可得(2)xy x y-在进行计算即可.【详解】(1)23x y-=∴22449x y xy+-=22224492413x y xyx xy y⎧+-=∴⎨-+=⎩两式相减可得:2xy =(2)222x y xy -=(2)xy x y -=236⨯=【点睛】本题主要考查因式分解,关键在于凑的思想应用.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【答案】D【解析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【详解】如图:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选D.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.2.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各x y=()列及对角线上的三个数之和都相等,则2A .2B .4C .6D .8【答案】B 【解析】根据题意得出方程组,求出方程组的解,代入2x y 计算即可.【详解】由题意得 26022002y y y x y y -++=++⎧⎨-+=++⎩, 解之得82x y =⎧⎨=⎩, ∴x-2y=8-4=4.故选B.【点睛】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键. 3.如图,在矩形ABCD 中放入6个全等的小矩形,所标尺寸如图所示,设小矩形的长为a ,宽为b ,则可得方程组( )A .3164a b a b +=⎧⎨-=⎩B .31624a b a b +=⎧⎨-=⎩C .2164a b a b +=⎧⎨-=⎩D .21624a b a b +=⎧⎨-=⎩【答案】A 【解析】设小矩形的长为a ,宽为b ,根据矩形的性质列出方程组即可.【详解】解:设小矩形的长为a ,宽为b ,则可得方程组3164a b a b +=⎧⎨-=⎩故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据x轴上的坐标特点求出n,再判断点B所在象限.【详解】∵点A(-2,n)在x轴上,∴n=0,∴B(-1,1),在第二象限,故选B.【点睛】此题主要考查直角坐标系中点的坐标特点,解题的关键是熟知坐标轴上的点的坐标特点.6.若多边形的内角和大于900°,则该多边形的边数最小为()A.9 B.8 C.7 D.6【答案】B【解析】根据多边形的内角和公式(n﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得(n﹣2)×120°>900°,解得n>1.该多边形的边数最小为2.故选:B.【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.7.如果a>b,那么下列结论一定正确的是()A.ac>bc B.5﹣a<5﹣b C.a﹣5<b﹣5 D.a2>b2【答案】B【解析】根据不等式的性质求解即可.【详解】解:A、当c<0时,ac<bc,故A不符合题意;B、两边都乘﹣1,不等号的方向改变,﹣a<﹣b,两边都加5,不等号的方向不变,5﹣a<5﹣b,故B符合题意;C、两边都减5,不等号的方向不变,故C不符合题意;D、当﹣1>a>b时,a2<b2,故D错误,故选:B.【点睛】本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.下列调查中,最适合采用全面调查(普查)方式的是()A.对华为某型号手机电池待机时间的调查B.对全国中学生观看电影《流浪地球》情况的调查C.对中央电视台2019年春节联欢晚会满意度的调查D.对“长征五号B”运载火箭零部件安全性的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对华为某型号手机电池待机时间的调查,适合抽样调查;B.对全国中学生观看电影《流浪地球》情况的调查,适合抽样调查;C.对中央电视台2019年春节联欢晚会满意度的调查,适合抽样调查;D.对“长征五号B”运载火箭零部件安全性的调查,需要进行全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或1【答案】C【解析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1, 所以或1,故D 选项正确,不符合题意,故选C.【点睛】 本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.10.小亮解方程组2317x y x y +=⎧⎨-=⎩●的解为5*x y =⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为( )A .4和6-B .6和4C .2-和8D .8和2-【答案】D【解析】将5x =代入方程组第二个方程求出y 的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+ 210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=55°,图中∠2=_____【答案】70°【解析】由两直线平行判断同位角相等和同旁内角互补,由角平分线的定义和对顶角相等,得到结论.【详解】∵AB∥CD,∴∠ABC=∠1=55°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=110°,∴∠BDC=180°-∠ABD=70°,∴∠2=∠BDC=70°.故答案是:70°.【点睛】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数.13.中午12点15分时,钟表上的时针和分针所成的角的度数为_____________【答案】82.5°【解析】根据时钟12时15分时,时针在12与1之间,分针在3上,可以得出分针与时针相隔234个大格,每一大格之间的夹角为30°,可得出结果.【详解】∵钟表上从1到12一共有12格,每个大格30°,∴时钟12时15分时,时针在12与1之间,分针在3上,∴分针与时针的夹角是234×30°=82.5°.故答案为:82.5°.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.14.平面直角坐标系内x轴上有两点A(-3,0),B(2,0),点C在y轴上,如果△ABC的面积为15,则点C的坐标是_______.。
有理数乘法和除法

有理数乘法和除法有理数是数学中的基本概念之一,它由整数和分数组成,包括正数、负数和零。
而有理数的乘法和除法是数学中的基本运算之一,它们在实际生活中有着广泛的应用。
本文将从理论和实际应用两方面来探讨有理数的乘法和除法。
一、有理数的乘法有理数的乘法是指两个有理数相乘的运算。
在有理数的乘法中,正数乘以正数仍为正数,而负数乘以负数也为正数;正数乘以负数和负数乘以正数则为负数。
具体来说,如果两个有理数的符号相同,则它们的乘积为正;如果两个有理数的符号不同,则它们的乘积为负。
有理数的乘法还满足交换律和结合律。
交换律指的是两个有理数相乘的顺序不影响乘积的结果,即a乘以b等于b乘以a;结合律指的是三个有理数相乘的结果与先乘后乘的结果相同,即(a乘以b)乘以c等于a乘以(b乘以c)。
有理数的乘法在实际生活中有着广泛的应用。
例如,在购物中,我们常常需要计算商品的价格和数量,这就涉及到有理数的乘法运算。
又如,在工程中,我们需要计算长度、面积和体积等,也需要用到有理数的乘法。
因此,熟练掌握有理数的乘法运算对我们解决实际问题具有重要的意义。
二、有理数的除法有理数的除法是指将一个有理数除以另一个有理数的运算。
在有理数的除法中,被除数除以除数得到的商可以为正、负或零。
具体来说,如果被除数和除数的符号相同,则它们的商为正;如果被除数和除数的符号不同,则它们的商为负;如果被除数为零,则商为零。
有理数的除法也满足交换律和结合律。
交换律指的是两个有理数相除的顺序不影响商的结果,即a除以b等于b除以a;结合律指的是三个有理数相除的结果与先除后除的结果相同,即(a除以b)除以c等于a除以(b除以c)。
有理数的除法在实际生活中同样有着广泛的应用。
例如,在分配任务时,需要根据工作量和时间来计算每个人的工作效率,这就涉及到有理数的除法运算。
又如,在比赛中,需要计算每个选手的成绩和平均分,也需要用到有理数的除法。
因此,熟练掌握有理数的除法运算对我们解决实际问题同样具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
k7哪个信誉好
[单选]物业服务企业在社区组织重大活动时。应及时知会(),相互协调,避免发生意外事件。A.本区域政府部门B.本辖区民政主管部门C.本区域物业管理主管部门D.辖区公安派出所和社区居委会 [单选,A1型题]膀胱肿瘤最常见的临床表现是()A.尿频、尿急、尿痛B.疼痛+血尿C.镜下血尿D.排尿困难E.全程肉眼血尿 [单选]下列各项中,不会引起事业结余发生增减变动的是()。A.从事经营活动取得的收入B.附属单位按规定缴纳的款项C.开展专业业务活动取得的收入D.外单位捐赠未限定用途的财物 [单选]表明建筑红线、工程的总体布置及其周围的原地形情况的施工图是(),它是新建建筑物确定位置、确定高程及施工场地布置的基本依据。A.基础平面图B.建筑平面图C.总平面图D.建筑施工图 [单选]论文的主题、对象应主要来源于()A、实际B、书本C、个人想象 [单选]黄体由两种细胞组成()A.颗粒黄体细胞和卵泡颗粒层B.颗粒黄体细胞和卵泡膜黄体细胞C.膜黄体细胞和门细胞D.颗粒黄体细胞和门细胞E.膜黄体细胞和卵泡膜细胞 [单选]进出第一肝门内的管道有()A.门静脉、肝静脉、肝胆管B.肝动脉、门静脉、肝胆管C.肝动脉、肝静脉、门静脉D.肝总动脉、肝总管、门静脉E.肝动脉、肝胆管、肝静脉 [单选]产后恢复排卵时间为()A.不哺乳产妇恢复排卵时间平均为产后12周B.哺乳产妇恢复排卵时间平均为产后8周C.哺乳产妇恢复排卵时间平均为产后6~8个月D.哺乳产妇恢复排卵时间平均为产后2~4个月E.以上都不是 [单选,案例分析题]某新建电厂装有2×300MW机组,选用一组200V动力用铅酸蓄电池容量2000Ah,二组控制用铅酸蓄电池容量600Ah,蓄电池布置在汽机房层,直流屏布置在汽机房,电缆长28m。直流系统按功能分为控制和动力负荷,说明下列哪项属于控制负荷()?A.电气和热工的控制、信号B. [单选]下列哪项不是产时保健的内容()。A.防滞产B.防出血C.防胎膜早破D.防感染E.防新生儿窒息 [单选,A2型题,A1/A2型题]患者,女,30岁。神志不宁,虚烦不得眠,并见五心烦热,盗汗,舌红,脉细数。其病机是()A.心气不足B.心血不足C.心阴不足D.心血瘀阻E.心神不足 [名词解释]原始铅 [单选]治疗上消化道出血脾不统血证,应首选方剂是()A.归脾汤B.独参汤C.泻心汤D.十灰散E.四味回阳饮 [填空题]真实压力比大气压高出的数值通常用下列那一项表示()。 [单选,A2型题,A1/A2型题]鼻中隔偏曲的嵴处反复出血,经用油纱填塞前鼻孔无效时,最适宜的治疗是()。A.后鼻孔填塞B.硝酸银局部烧灼C.鼻中隔黏膜划痕D.鼻中隔黏膜下矫正术E.颈外动脉结扎术 [单选]下列不是物业服务费核算要点及方法的是()。A.物业的大修、更新、改造费用的核算B.确定服务费成本构成的注意事项C.收集原始数据D.物业服务费的测算 [多选]单层壳体结构的球罐最为常见,多用于()A.常温常压场合B.常温高压场合C.高温中压场合D.高温高压场合 [判断题]活期储蓄存款不论何时存入,在存入期间如遇利率调整,应分段计息。A.正确B.错误 [单选]尿毒症患者发生手足抽搐的情况是()。A.静脉点滴肾衰氨基酸时B.输血时C.静脉点滴碱性药物纠正酸中毒时D.口服碳酸氢钠时E.静脉滴入青霉素时 [多选]下列属于行政事业单位负债的是()。A.应交税金B.应收及预付款项C.借入款项D.对外投资E.应缴款项 [单选,A1型题]利用激光照射治疗肿瘤及脉络膜新生血管时,可以利用激光的()A.强电场效应B.弱刺激效应C.光化学效应D.压强效应E.免疫效应 [判断题]一般焦炉煤气混合煤气冷凝液送焦化脱酚设施集中处理,其它煤气的冷凝液经释放后即可排放。()A.正确B.错误 [单选]高热的体温范围为()A.38.1~38.5℃B.38.5~39℃C.39.1~41℃D.41.1~41.5℃E.41.5℃以上 [单选]男性,58岁,反复咳嗽、咳痰15年3年。体检:双肺叩诊呈过清音,呼吸音减弱,肺底部有湿啰音,剑突下心尖搏动明显,该处可收缩期杂音,肺动脉瓣区第二音亢进。该例最可能的诊断为()A.慢性支气管炎(慢支)B.慢支+肺气肿C.慢支+肺气肿+肺心病D.慢支+风湿性心瓣膜病E.慢支+冠 [问答题,简答题]经水传播有哪些特征? [单选]下列有关规章的说法哪项是正确的?()A.地方政府规章均应由政府全体会议决定B.规章送审稿是否与有关规章衔接是法制机构审查送审稿的内容之一C.部门联合规章使用国务院法制办确定的统一命令序号公布D.规章的解释效力低于规章本身 [问答题,简答题]重排水运后,系统的吹扫和干燥有何要求? [单选,A1型题]维生素D缺乏性佝偻病骨的骨骼改变,因胸骨及相邻肋骨向前突出所导致的体征是()A.方颅B.鸡胸C.肋骨串珠D.手镯征E.脚镯征 [多选]下列关于通货膨胀对于业绩评价的影响的表述中,不正确的有()。A、只有通货膨胀水平较高时,才考虑通货膨胀对于业绩评价的影响B、只有通货膨胀水平较高时,才会对财务报表造成影响C、在通货膨胀时期,为了在不同时期业绩指标之间建立可比性,可以用非货币资产的个别价格(现行 [单选,A型题]主要用于片剂的粘合剂是()A、羧甲基淀粉钠B、羧甲基纤维素钠C、干淀粉D、低取代羟丙基纤维素E、交联聚维酮 [问答题,简答题]埃尔托霍乱先后何时传人我国,流行情况如何? [单选]痹证所以有风寒湿痹与热痹,大多数医家认为取决于()A.感邪性质的不同B.病变部位的不同C.感邪季节的不同D.地理、气候、环境的不同E.人体素质的阳气盛衰不同 [单选,A2型题,A1/A2型题]破伤风患者采用人工冬眠,主要目的是()A.控制炎症扩散B.防止合并症发生C.便于护理D.降低体温E.减少抽搐 [单选,A1型题]下肢静脉曲张晚期的临床表现中最主要的是()A.皮肤厚硬B.色素沉着C.小腿水肿D.局部瘙痒E.小腿下1/3内侧溃疡 [单选,A1型题]对于病毒性脑膜脑炎引起的头痛,下列哪项治疗是不合适的()A.高渗脱水剂:如20%甘露醇B.血容量扩张剂:如低分子右旋糖酐C.激素:如地塞米松D.镇痛剂:如对乙酰氨基酚E.降温退热:如冰枕 [单选,A1型题]高压氧可用于治疗()。A.新生儿颅骨骨髓炎B.放射性锁骨坏死C.口底蜂窝织炎D.唇痈E.结核 [单选]成品油管道输送方式按输油设备的连接关系可分为通过油罐式、()和从泵到泵式。A.密闭输送式B.旁接油罐式C.敞开输送式D.顺序输送式 [单选]伪造、擅自制造他人注册商标标识,情节特别严重的,应判处()。A.3年以下有期徒刑B.3年以上5年以下尤其徒刑C.3年以上7年以下有期徒刑D.5年以上8年以下尤其徒刑 [问答题,简答题]采循环油样的操作 [单选]选择ERP软件产品时,以下哪种因素不在我们的考虑范围?()A.供应商的实力、信誉B.实施队伍、服务C.产品的已有客户群D.企业和产品的宣传