中考数学模拟试卷二(附答题卡).pptx

合集下载

中考数学模拟试题(2)及答案

中考数学模拟试题(2)及答案
∵△CFD~△BAC,∴ ………10分
∴DE=1…………………12分
25.解:设生产 种产品 个,则 种产品为 个,………2分
依题意,得:
,…………6分
解这个不等式组,得: , ………8分
是整数, 可取 ,…………………9分
可设计三种搭配方案:
① 种园艺造型 个 种园艺造型 个
② 种园艺造型 个 种园艺造型 个
_____________________,______________________
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点。
写出顶点B的坐标(用a的代数式表示)___________。
二、选择题:本大题共8小题,共24分.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
11、下列各式正确的是()
A、 B、 C、 D、
12、下面的图形中,是中心对称图形的是( )
13、已知 是方程 的一个解,那么 的值是( )
A、1B、3 C、-3 D、-1
14、为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()
24、解:(1)∵EF∥AC,∴∠FDC=∠BCA……2分
∵AE∥CF,∴∠FCD=∠B
∴△CFD~△BAC.………4分
(2)∵EF∥AC,AE∥CF,∴四边形ACFE是平行四边形.
∴EF=AC…………5分
∵△CFD~△BAC,∴ ………7分
∴y=2- ……………………………8分

中考数学届中考模拟数学试题(二)及答案

中考数学届中考模拟数学试题(二)及答案

中考模拟试题 数学试题卷时量:120分钟;满分:120分;命题者:李望云一、选择题(本题共12题,每题3分,共36分)1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是 ( )A. B. C. D.2.已知两个圆的半径R ,r 圆心距d 可以构成三角形,则这两个圆的位置关系为( )A .内切B .相交C .外切D .外离3.下列轴对称图形中,对称轴条数最多的是 ( )A .等边三角形B .正方形C .正六边形D .圆4. 抛物线y=ax 2+bx+c 的图象向左平移2个单位,再向下平移1个单位,所得抛物线为y=2x 2-4x+3的解析式 ,则原抛物线解析式为 ( )A.y=2x 2+4x+4B.y=2x 2-12x+18C.y=2x 2+4x+2D.y=2x 2-12x+20 5. 函数211+--=x x y 中,自变量x 的取值范围是 ( )A.x ≥1B.x >-2C.x >1且x ≠2D.x ≥1且x ≠2 6.在李咏主持的“幸运52”栏目中,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“笑脸”,若翻到“笑脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是 ( )A.15B.29C.14D.5187. 一元二次方程(m+1)x 2-2mx+m 2-1=0 有两个异号根,则m 取值的取值是 ( )A.m <1B.m<1且m ≠-1C.m>1D.-1<m<1 8.如图,⊙O 内切于△ABC ,切点分别为D,E,F 已知∠B=600,∠C=700,连结OE,OF,DE,DF ,那么∠EOF 等于 ( ) A.750 B.650 C.1300 D.500D E O FAC第8题BBCDE OA9.一个圆锥的高为33,侧面展开图是半圆,则圆锥的全面积是 ( ) A.9π B.18π C.27πD.39π10.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如下图所示,则这个几何体最多可由多少个这样的正方体组成 ( )A. 12个B.13个C.14个D.18个11.如下图BD=CD,AE:DE=1:2,延长BE 交AC 于 F ,且AF=5cm, 则 AC 的长( )A. 30cmB. 25cmC. 15cmD. 10cm12.已知二次函数y=ax 2+bx+c(a ≠0)的图象如上图所示,有下列5个结论:①abc >0②b <a+c ③4a+2b+c >0 ④a+b>m(am+b)(m ≠1)其中正确的结论有 ( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,每小题3分,共18分)13.某市2006年的国民生产总值约为333.9亿元,预计2007年比上一年增长10%,用科学计数法表示2007年该市的国民生产总值应是(结果保留2个有效数字) .14.已知如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D , AC 交⊙O 于点E ,∠BAC =450。

中考数学模拟卷2

中考数学模拟卷2

主视方向FE DCBA 450OD 'C 'B 'DCBA 30021九年级数学模拟卷二班级: 座号: 姓名: 总分:一、选择题:本大题共10小题,每小题4分,共40分.每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分. 1. 3-的绝对值等于( ) A .3-B .3C .3±D .31-2. 下列运算正确的是 ( )A .325()a a =B .325a a a +=C .32()a a a a -÷=D .331a a ÷=3.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的( )A .平均数B .众数C .中位数D .方差4. 如图,五个大小相同的立方体搭成的几何体,则关于它视图面积说法正确的是( )A .主视图面积小于左视图面积B .左视图面积小于俯视图面积C .俯视图面积小于左视图面积D . 俯视图面积小于主视图面积4题图) (第5题图)5.如图,将一块含30°角的直角三角尺放在一个矩形中,三个顶点分别在矩形的三条边上,如果∠1 = 25°,那么∠2的度数是( )A .25°B .35°C .45°D .55°6.如图,在正六边形ABCDEF 中,若ACD ∆的面积为212cm ,则该正六边形的面积为( )A .224cmB .236cmC .248cmD .272cm(第6题图) (第7题图)7.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C B A ''',边C B ''与CD 交于点O ,则四边形OD B A '的周长是( ) A .22B .32C .22+D .32+8.反比例函数xy 2-=,当1->y 时,x 的取值范围是( ) A .0<x 错误!未找到引用源。

模拟测评中考数学二模试题(含答案及解析)

模拟测评中考数学二模试题(含答案及解析)

中考数学二模试题考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式72x -+1<322x -的负整数解有( )A .1个B .2个C .3个D .4个2、在下列选项的四个几何体中,与其他类型不同的是( ) A . B . C . D .3、如图,在数轴上有三个点A 、B 、C ,分别表示数5-, 3.5-,5,现在点C 不动,点A 以每秒2个单位长度向点C 运动,同时点B 以每秒1.5个单位长度向点C 运动,则先到达点C 的点为( )A .点AB .点BC .同时到达D .无法确定4、已知∠A 与∠B 的和是90°,∠C 与∠B 互为补角,则∠C 比∠A 大( ) ·线○封○密○外A .180°B .135°C .90°D .45°5、关于x ,y 的方程组225x y mx m+=⎧⎨+=⎩的解满足x +y <6,则m 的最小整数值是( )A .-1B .0C .1D .26、已知455'1A ∠=︒,451'''218B ∠=︒,45.15C ∠=︒,则( ) A .A B C >>∠∠∠ B .B A C ∠>∠>∠ C .A C B ∠>∠>∠D .C A B ∠>∠>∠7、日历表中竖列上相邻三个数的和一定是( ). A .3的倍数B .4的倍数C .7的倍数D .不一定8、下列命题与它的逆命题都为真命题的是( ) A .已知非零实数x ,如果30x为分式,那么它的倒数也是分式. B .如果x 的相反数为7,那么x 为-7.C .如果一个数能被8整除,那么这个数也能被4整除.D .如果两个数的和是偶数,那么它们都是偶数. 9、下列运算中,正确的是( ) A .()326x x =B .326x x x ⋅=C .22456x x x +=D .()33xy xy =10、如图,反比例函数3(0)y x x=->图象经过矩形OABC 边AB 的中点E ,交边BC 于F 点,连接EF 、OE 、OF ,则OEF 的面积是( )A .32B .94C .73D .52第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、已知1530A '∠=︒,那么它的余角是________,它的补角是________. 2、双曲线()251m y m x -=-,当0x >时,y 随x 的增大而减小,则m =________.3、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.4、比较大小(填“>”或“<”): 32- __________43-.5、以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号) 三、解答题(5小题,每小题10分,共计50分) 1、如图1,在平面直角坐标系中,抛物线2y x x =+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求A 、C 两点的坐标; (2)连接AC ,点P 为直线AC 上方抛物线上(不与A 、C 重合)的一动点,过点P 作PD AC ⊥交AC 于点D ,PE x ⊥轴交AC 于点E ,求PD DE +的最大值及此时点P 的坐标; ·线○封○密○外(3)如图2,将原抛物线沿射线CB 方向平移y ',点M 为新抛物线y '对称轴上一点,在新抛物线y '上是否存在一点N ,使以点C 、A 、M 、N 为顶点的四边形为平行四边形,若存在,请直接写出点M 的坐标,并选择一个你喜欢的点写出求解过程;若不存在,请说明理由. 2、如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B 两点.点P 是直线BC 上方抛物线上一动点,过点P 作PE x ⊥轴于点E ,交直线BC 于点D .设点P 的横坐标为m .(1)求抛物线的解析式;(2)求PCB 的最大面积及点P 的坐标; 3、已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.4、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购.2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱.(1)求小张的“熟客"们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的45,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?5、已知关于x 的方程6332x m mxx +-=-的解是非正整数,则符合条件的所有整数m 的和是( ) A .8- B .2- C .2 D .4-参考答案-一、单选题 1、A 【分析】先求出不等式组的解集,再求不等式组的整数解. 【详解】去分母得:x ﹣7+2<3x ﹣2,移项得:﹣2x <3,解得:x 32->. 故负整数解是﹣1,共1个. 故选A . 【点睛】本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式,再根据解集求其特殊值. 2、B 【分析】根据立体图形的特点进行判定即可得到答案. 【详解】解:A 、C 、D 是柱体,B 是锥体,所以,四个几何体中,与其他类型不同的是B . 故选B . ·线○封○密·○外【点睛】本题主要考查了立体图形的识别,解题的关键在于能够准确找到立体图形的特点 3、A 【分析】先分别计算出点A 与点C 之间的距离为10,点B 与点C 之间的距离为8.5,再分别计算出所用的时间. 【详解】解:点A 与点C 之间的距离为:5(5)5510--=+=, 点B 与点C 之间的距离为:5( 3.5)5 3.58.5--=+=,点A 以每秒2个单位长度向点C 运动,所用时间为5210=÷(秒); 同时点B 以每秒1.5个单位长度向点C 运动,所用时间为1728.5 1.5533÷==(秒); 故先到达点C 的点为点A , 故选:A . 【点睛】本题考查了数轴,解决本题的关键是计算出点A 与点C ,点B 与点C 之间的距离. 4、C 【分析】根据补角的定义进行分析即可. 【详解】解:∵∠A +∠B =90°,∠B +∠C =180°, ∴∠C ﹣∠A =90°, 即∠C 比∠A 大90°,故选C . 【点睛】考核知识点:补角.理解补角的数量关系是关键. 5、B 【解析】 【分析】先解方程组,得出x ,y 的值,再把它代入x +y <6即可得出m 的范围.由此即可得出结论. 【详解】 解方程组225x y m x m +=⎧⎨+=⎩,得:5249x m y m =-⎧⎨=-⎩. ∵x +y <6,∴5m ﹣2+(4﹣9m )<6,解得:m >﹣1,∴m 的最小整数值是0. 故选B . 【点睛】本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组. 6、A【分析】 先把∠C =45.15°化成15°9′的形式,再比较出其大小即可. 【详解】解:∵455'1A ∠=︒,451'''218B ∠=︒,45.15C ∠=︒, ∴45.15450.1560459''C ∠=︒=︒+⨯=︒,∴4515451218''459'''︒>︒>︒,即A B C >>∠∠∠. 故选:A ·线○封○密·○外【点睛】本题考查的是角的大小比较,熟知度、分、秒的换算是解答此题的关键7、A【分析】设中间的数字为x,表示出前一个与后一个数字,求出和即可做出判断.【详解】解:设日历中竖列上相邻三个数的中间的数字为x,则其他两个为x-7,x+7,则三个数之和为x-7+x+x+7=3x,即三数之和为3的倍数.故选:A.【点睛】本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.8、B【分析】先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假. 【详解】解:A. 30x的倒数是30x,不是分式,原命题是假命题,不符合题意;B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、A 【分析】 根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项. 【详解】 A 选项,幂的乘方,底数不变,指数相乘,()326x x =,所以A 选项正确.B 选项,同底数幂相乘,底数不变,指数相加,325x xx ,所以B 选项错误.C 选项,合并同类项,字母和字母指数不变,系数相加,22256x x x +=,所以C 选项错误. D 选项,积的乘方,积中每一个因式分别乘方,()333xy x y =,所以D 选项错误. 故选A 【点睛】整式计算基础题型,掌握运算法则,熟练运用. 10、B 【分析】连接OB .首先根据反比例函数的比例系数k 的几何意义,得出S △AOE =S △COF =1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F 是BC 的中点,则S △BEF =12S △OCF =0.75,最后由S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF ,得出结果. 【详解】连接OB . ∵E 、F 是反比例函数y =﹣3x (x >0)图象上的点,EA ⊥x 轴于A ,FC ⊥y 轴于C ,∴S △AOE =S △COF=1.5. ∵矩形OABC 边AB 的中点是E ,∴S △BOE =S △AOE =1.5,S △BOC =S △AOB =3,∴S △BOF =S △BOC ﹣S △COF =3﹣1.5=1.5,∴F·线○封○密○外是BC 的中点,∴S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF =6﹣1.5﹣1.5﹣0.5×1.5=94. 故选B .【点睛】本题主要考查了反比例函数的比例系数k 与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S =12|k |.得出点F 为BC 的中点是解决本题的关键. 二、填空题1、7430'︒ 16430'︒ 【分析】根据余角、补角的性质即可求解. 【详解】解:901530896015307430''''︒-︒=︒-︒=︒, 180153017960153016430''''︒-︒=︒-︒=︒故答案为7430'︒,16430'︒. 【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键. 2、2- 【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍. 【详解】根据题意得:25110m m ⎧-=-⎨-⎩>,解得:m =﹣2.故答案为﹣2. 【点睛】本题考查了反比例函数的性质.对于反比例函数y =kx ,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大. 3、70 【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可. 【详解】解:依题意:2a +2b =14,ab =10, 则a +b =7∴a 2b +ab 2=ab (a+b )=70;故答案为:70 【点睛】此题主要考查了提取公因式法分解因式,正确得出a +b 和ab 的值是解题关键. 4、<. 【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】 ·线○封○密·○外解:∵339226-== ,448336-== ,9866> , ∴ 32-<43-. 故答案为:<. 【点睛】本题考查有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小. 5、① 【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案. 【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误. 故答案为:①. 【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键. 三、解答题 1、(1)(3,0)A -,C ;(23(2P -(3)(2,或(2, 【分析】(1)分别令0x =和0y =即可求出函数图象与坐标轴相应的交点坐标;(2)运用待定系数法求出直线AC的解析式,设2(,30)3P m m m -+-<<,求出2PE =,证明△~PDE AOC ∆可求出2)PD =,2)DE,得23)2PD DE m +=+ 根据二次函数的性质可得结论;(3)在射线CB 上取一点Q,使CQ =Q 作QG y ⊥轴于点G ,证明△QGC BOC ∆∽得3,QG CG ==(1)在2y =中, 令0x =,y =C ∴, 令0y =,即2x 解得,13x =-,21x =,A B x x <,(3,0)A ∴- (2)设直线AC 的解析式为(0)y kx b k =+≠把(3,0),A C -两点的坐标分别代入(0)y kx b k =+≠中,得,·线○封○密·○外30k b b -+=⎧⎪⎨=⎪⎩解得,k b ⎧=⎪⎨⎪=⎩∴直线AC的解析式为:y x =∵点P 为直线AC 上方抛物线上(不与A 、C 重合)的一动点,∴设2(,30)P m m -<< ∵PE x ⊥轴∴(E m ,PE //y 轴 ∴∠PED ACO =∠,2PE =2= ∵PD AC ⊥ ∴∠90PDE ︒=∵(3,0),A C -∴3OA =,OC =∵∠90AOC ︒=∴AC ==90PDE AOC PED ACO ︒∠=∠==∠∠,∴△~PDE AOC ∆∴PD DE PEAO OC AC==即23PD ==∴2)113PD m =-,2)DE =∴2(3)113⎛+=⋅-+ ⎝⎭PD DE m m23()33244m =-++∵0<当32m =-时,PD DE +有最大值,PD DE +当32m =-时,233()()22--∴此时,3(2P -(3)在射线CB 上取一点Q,使CQ =Q 作QG y ⊥轴于点G ,则∠90QGC ︒=,如图,·线○封·○密○外(1,0),B C∴1OB =,OC =∵∠90BOC ︒=∴BC =∵∠90QGC BOC ︒=∠=,∠QCG BCO =∠ ∴△QGC BOC ∆∽ ∴QG CG CQBO CO CB==即1QG =∴3,QG CG ==∵221)y x x ==+将抛物线2y =CB 方向平移y '∴相当于抛物线y=21)x +3个单位,再向下平移∴213)y x '=+-22)x =- ∴新抛物线的对称轴为x =2,∵点M 为新抛物线y '对称轴上一点 ∴点M 的横坐标为2 当四边形ACMN 为平行四边形时,如图,根据平行四边形的性质可知,AC //NM ,AC =NM 由图可知,将点C 先向右平移2个单位,再向下平移若干个单位得到点M ,∴将点(3,0)A -先向右平移2个单位,再向下平移若干个单位得到点N , ∴点N 的横坐标为:321-+=- 当1x =-时,212)y '=--=·线○封○密○外此时,点N 的坐标为(1,-将点(3,0)A -先向右平移2个单位得到点(1,N -,将点C 先向右平移2M ,∴此时点M 的坐标为(2, 当四边形ACNM 为平行四边形时,如图根据平行四边形的性质可知,AC //MN ,AC =MN由嵊可知,将点(3,0)A -先向右平移5个单位,再向下平移若干个单位得到点M ,∴将点C 先向右平移5个单位,再向下平移若干个单位得到点N , ∴点N 的横坐标为055+=当5x =时,22)y '=-∴此时点N 的坐标为(5,∴将点(3,0)A -先向右平移5(2,M , ∴此时点M的坐标为(2,综上所述,点M的坐标为:(2,或(2, 【点睛】本题主要考查了二次函数与坐标轴的交点,二次函数的平移和对称轴、一次函数的解析式等知识点.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2、(1)2y x 2x 3=-++;(2)32m =时,PCB S △最大278=,此时315,24P ⎛⎫⎪⎝⎭【分析】(1)待定系数法直接将函数图象上已知坐标点代入函数表达式解方程即可; (2)先求出直线BC 的解析式,根据题意用含m 的表达式分别表示出P ,D 的坐标,再用含m 的表达式表示出PCB 的面积,根据二次函数求最值知识求解即可. 【详解】解:(1)将点A 、B 坐标代入抛物线解析式,得10930b c b c --+=⎧⎨-++=⎩, 解得23b c =⎧⎨=⎩,∴抛物线的解析式为2y x 2x 3=-++.(2)当0x =时,3y =, ∴()0,3C ,·线○封○密○外设直线BC 的解析式为()0y kx b k =+≠, ∵直线BC 经过点B 、点C ,∴将点B 、C 坐标代入直线BC 解析式得:330b k b =⎧⎨+=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+. ∵点P 的横坐标为()03m m <<,PE x ⊥,∴点D 的横坐标也为()03m m <<, 将P ,D 分别代入抛物线和直线BC 解析式,∴()2,23P m m m -++,(),3D m m -+,∴()()222333PD m m m m m =-++--+=-+,∴()2233392222B CPCB m m PD x x S m m ⨯-+⋅-===-+△, ∴2239332727m 222288PCBSm m ⎛⎫=-+=--+≤⎪⎝⎭, ∴当32m =时,PCB S △最大278=, ∴此时315,24P ⎛⎫⎪⎝⎭. 【点睛】此题考查一次函数求解析式和二次函数求解析式及二次函数图像,求最值等,此题还涉及到结合图像列出三角形面积公式,有一定难度. 3、 (1)见解析 (2)122,1m m =-= 【分析】 (1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值 (1) 令0y =,则有2220x mx m --= 222890m m m ∆=+=≥ 即,对于任意实数方程2220x mx m --=总有两个实数根, ∴对任意实数m ,抛物线与x 轴总有交点. (2) 解:∵抛物线222y x mx m =--与x 轴交于1,0A , ∴202m m =-- 解得122,1m m =-= 【点睛】 本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键. 4、 (1)20% ·线○封○密○外(2)小张在今年年底能获得的最大利润是143000元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为,x 则可得方程2500017200,x 再解方程即可得到答案;(2)先求解今年的总的销量为9000箱,设今年总利润为w 元,价格下调x 元,则可建立二次函数为1590001000w x x ,再利用二次函数的性质求解最大值即可. (1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为,x 则2500017200,x 整理得:2361,25x 解得:121120%,5x x (负根不合题意舍去) 答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为20%. (2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的45,2020年小张年总销量为:47200=90005(箱), 设今年总利润为w 元,价格下调x 元,则1590001000w x x令0,w 则1215,9,x x所以抛物线的对称轴为:1593,2x10000,a所以函数有最大值, 45,x当4x =时,1113000143000w 最大值(元), 所以小张在今年年底能获得的最大利润是143000元. 【点睛】 本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键. 5、A 【分析】 将m 看作一个常数,先求关于x 的一元一次方程的解,再根据方程的解是非正整数求出符合条件的所有整数m 的值,最后求和即可. 【详解】 解:6332x m mx x +-=- 两边同乘以3,得3(2)6x x m mx -+=-去括号,得326x x m mx --=-移项合并同类项,得()16m x m +=+因为方程有解,所以10m +≠, 所以65151111m m x m m m +++===++++ 要使方程的解是非正整数,则整数m 满足: 511m ≥-+且51m +为整数 所以51m+的值为:-1或-5 解得:m =-6或-2 ·线○封○密·○外则符合条件的所有整数m的和是:-6+(-2)=-8故选:A【点睛】本题考查了一元一次方程的解法、以及解的应用,正确求解方程是解题关键.。

数学中考试题江南中学模拟考试(二)答题卡

数学中考试题江南中学模拟考试(二)答题卡

2019-2019学年度 江南中学中考模拟考试(二)数 学 答 卷一、选择题(本大题共10小题,每小题3分,共30分,请用2B 铅笔把答题卡上相应的选项标号涂黑). 1 2 3 4 5 6 7 8 9 10 [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [B] [B] [B] [B] [B] [B] [B] [B] [B] [B] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [D] [D] [D] [D] [D] [D] [D] [D] [D] [D] 二、填空题(本大题共8小题,每小题2分,共16分).11.____________ 12.____________ 13.___________ 14. ___________ 15.____________ 16.___________ 17.____________ 18. 三、解答题(本大题共10小题,共84分) . 19.(本题满分8分)计算:(1)2―1―(―0.5)0―4; (2)(x ―2)2―x (x ―3).20.(本题满分8分)(1)解方程:x 2+3x ―10=0; (2)解不等式组:⎩⎪⎨⎪⎧x ―3(x ―2)≤8,x ―1≤x +13.(2016.5)_________校区 初三( )班 姓名_____________ 准考证号______________ 第______考场 座位号_______密封 线21.(本题满分8分)22.(本题满分8分)23.(本题满分6分)(1)小明被分配到“迷你马拉松”项目组的概率为;(2)24.(本题满分8分)DE FAB C25.(本题满分8分)FE DABCO26.(本题满分10分)(1)直接写出A 、B 两点的坐标,分别为 和 ;(可用含m 的代数式表示) (2)27.(本题满分10分)密 封 线位号_______BE FA DC GM O(图1)B ADC(图2(备用图))28.(本题满分10分)O xyABEF。

模拟测评中考数学二模试题(含答案及解析)

模拟测评中考数学二模试题(含答案及解析)

中考数学二模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面的图形中,是轴对称图形但不是中心对称图形的是( ) A . B . C . D .2、已知5a b +=,3ab =,则b a a b +的值为( ) A .6 B .193 C .223 D .83、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --=C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ 4、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中·线○封○密○外任意摸出一个球,是白球的概率为( ).A .16 B .13 C .12 D .235、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+6、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A .B .C .D .7、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=-8、如图,AD ,BE ,CF 是△ABC 的三条中线,则下列结论正确的是( )A .2BC AD =B .2AB AF =C .AD CD = D .BE CF = 9、下列各式中,不是代数式的是( ) A .5ab 2 B .2x +1=7 C .0 D .4a ﹣b 10、下列图形中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知14S =,28S =,39S =,425S =,则S =_______.2、如图,直角三角形AOB 的直角边OA 在数轴上,AB 与数轴垂直,点O 与数轴原点重合,点A 表示的实数是2,BA =2,以点O 为圆心,OB 的长为半径画弧,与数轴交于点C ,则点C 对应的数是_____. ·线○封○密○外3、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x 的代数式表示该“中”字的面积__________.4、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.5、写出n 的一个有理化因式:_______.三、解答题(5小题,每小题10分,共计50分)1、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=. ①若OB 平分EOD ∠,求α; ②若4AOC BOD ∠=∠,求α. 2、如图,在平面直角坐标系中,ABC 在第二象限,且(52)A -,,(24)B -,,(11)C -,.(1)作出ABC 关于y 轴对称的111A B C △,并写出1B ,1C 的坐标; (2)在x 轴上求作一点P ,使得AP BP +最小,并求出AP BP +最小值及P 点坐标. 3、如图所示的正方形网格中,每个小正方形的边长都为1,ABC △的顶点都在网格线的交点上,点B 坐标为()2,0-,点C 的坐标为()1,2-. ·线○封○密○外(1)根据上述条件,在网格中画出平面直角坐标系xOy ;(2)画出ABC 关于x 轴对称图形111A B C △;(3)点A 绕点B 顺时针旋转90°,点A 对应点的坐标为______.4、如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,且a 、c 满足()22100a c ++-=.若点A 与点B 之间的距离表示为AB a b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A 、C 之间,且满足2BC AB =.(1)=a ___________,b = ___________,c =___________.(2)动点M 从B 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,同时动点N 从A 点出发,沿数轴以每秒2个单位的速度向C 点运动,设运动时间为t 秒.问:当t 为何值时,M 、N 两点之间的距离为3个单位?5、已知△ABC 与△DEF ,现给出四个条件:①AC =DF ;②AB =DE ;③AC 边上中线与DF 边上中线相等;④△ABC 的面积与△DEF 的面积相等.(1)请你以其中的三个条件作为命题的已知条件,以“△ABC ≌△DEF ”作为命题的结论,将一个真命题写在横线上 .(2)请你以其中的三个条件(其中一个必须是条件④,另两个自选)作为命题的已知条件,以“△ABC ≌△DEF ”作为命题的结论,将一个假命题写在横线上 并举一反例说明. -参考答案-一、单选题 1、D 【解析】 【分析】 根据轴对称图形与中心对称图形的概念求解. 【详解】 解:A 、是轴对称图形,是中心对称图形,故此选项不符合题意; B 、不是轴对称图形,是中心对称图形,故此选项不符合题意; C 、不是轴对称图形,是中心对称图形,故此选项不符合题意; D 、是轴对称图形,不是中心对称图形,故此选项符合题意; 故选:D . 【点睛】 此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2、B 【解析】 【分析】 将原式同分,再将分子变形为2()2a b ab ab +-后代入数值计算即可. 【详解】·线○封○密·○外解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.3、D【解析】【分析】根据等式的性质解答.【详解】解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意;B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意;故选:D .【点睛】此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.4、C【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有6个小球,其中白球有3个, ∴摸出一个球是白球的概率是3162=. 故选:C . 【点睛】 本题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 5、A 【解析】 【分析】 整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可. 【详解】 ∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+;∴()()2222424a b ab a ab b ab a b -+=-++=+. 故选:A . 【点睛】 此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键. 6、A ·线○封○密·○外【解析】【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.【详解】解:B 是俯视图,C 是左视图,D 是主视图,故四个平面图形中A 不是这个几何体的三视图.故选:A .【点睛】本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键. 8、B 【解析】 【分析】 根据三角形的中线的定义判断即可. 【详解】 解:∵AD 、BE 、CF 是△ABC 的三条中线, ∴AE =EC =12AC ,AB =2BF =2AF ,BC =2BD =2DC , 故A 、C 、D 都不一定正确;B 正确. 故选:B . 【点睛】 本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 9、B 【解析】 【分析】根据代数式的定义即可判定.【详解】A. 5ab 2是代数式;B. 2x +1=7是方程,故错误;C. 0是代数式;D. 4a ﹣b 是代数式; ·线○封○密·○外故选B.【点睛】此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.10、C【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,也是轴对称图形,故此选项正确;D、不是中心对称图形,是轴对称图形,故此选项错误;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、46【解析】【分析】利用勾股定理分别求出AB 2,AC 2,继而再用勾股定理解题.【详解】 解:由图可知,AB 2=32412++=9+25=344+8=12=S S AC S S =, 222123446AB AC BC +=+==∴ 246BC S ==∴ 故答案为:46. 【点睛】 本题考查正方形的性质、勾股定理等知识,是基础考点,掌握相关知识是解题关键. 2、【解析】 【分析】先利用勾股定理求出OB =OC OB ==可得. 【详解】 解:由题意得:2,2,OA BA BA OA ==⊥,OB ∴=,由作图过程可知,OC OB == 由数轴的性质可知,点C 对应的数大于0, 则在数轴上,点C对应的数是故答案为: 【点睛】 本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.·线○封○密○外3、27x-27##-27+27x【解析】【分析】用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.【详解】解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,故答案为:27x-27【点睛】此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.4、4m+12##12+4m【解析】【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3),长方形的周长是2[(2m+3)+3]=4m+12.故答案为:4m+12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.5、n【解析】 【分析】 根据平方差公式即可得出答案. 【详解】 解:n 的有理化因式n , 故答案为n . 【点睛】 此题考查了有理化因式的定义:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式,及平方差计算公式,熟记有理化因式的定义是解题的关键. 三、解答题 1、 (1)75°; (2)①15°;②40°. 【解析】 【分析】 (1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可; (2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠EEE =12×120°=60°,再根据两角差E =∠EEE −∠EEE =15°即可; ②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠EEE =35°,求出∠EEE =4∠EEE =4×35°=140°,再求补角即可. (1) 解:∵45AOB ∠=︒,60COD ∠=︒, ·线○封○密○外∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠EEE =12×120°=60°,∵45AOB ∠=︒,∴E =∠EEE −∠EEE =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠EEE =4∠EEE ,解得:∠EEE =35°,∴∠EEE =4∠EEE =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°.【点睛】本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方程,本题难度不大,是角中计算的典型题.2、 (1)见解析,E 1(2,4),E 1(1,1)(2)见解析,3√5,E (−4,0)【解析】【分析】(1)由题意依据作轴对称图形的方法作出ABC 关于y 轴对称的111A B C △,进而即可得出1B ,1C 的坐标; (2)根据题意作A 关于x 轴的对称点E ′,连接两点与x 轴的交点即为点P ,进而设直线E ′E 的解析式为y kx b =+并结合勾股定理进行求解. (1) 解:如图所示,即为所求.E 1(2,4),E 1(1,1)(2) 解:如图点P 即为所求.A 点关于x 轴对称点E ′(−5,−2). 设直线E ′E 的解析式为y kx b =+. 将E ′(−5,−2),E (−2,4)代入得 {−5E +E =−2−2E +E =4,∴{E =2E =8, ∴直线E ′E :E =2E +8 当0y =时,2E +8=0.E =−4,∴E (−4,0), ·线○封○密○外∵EE +EE 最小=E ′E +EE =E ′E .∴E ′E =√(−5+2)2+(−2−4)2=√45=3√5【点睛】本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.3、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B 坐标为()2,0-,点C 的坐标为()1,2-确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2) 解:如图所示,111A B C △就是所求作三角形;·线○封○密○外(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为A ,坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.4、 (1)-2,2,10;(2)1或7【解析】【分析】(1)根据非负性,得到a+2=0,c-10=0,将线段长转化为绝对值即|b-c|=2||a-b,化简绝对值;(2)先用t分别表示M,N代表的数,根据MN=3,转化为绝对值问题求解.(1)∵|E +2|+(E −10)2=0,∴a = -2,c =10,∵点B 在点A 、C 之间,且满足2BC AB ,∴10-b =2(b +2),解得b =2,故答案为:-2,2,10; (2) 设运动时间为t 秒,则点N 表示的数为2t -2;点M 表示的数为t +2, 根据题意,得|t +2-(2t -2)|=3, ∴-t +4=3或-t +4= -3, 解得t =1或t =7, 故t 为1或7时,M 、N 两点之间的距离为3个单位. 【点睛】 本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键. 5、真命题为如果AC =DF ,AB =DE ,AC 边上中线与DF 边上中线相等,那么△ABC ≌△DEF ,证明见详解;(2) 【解析】 【分析】 (1)真命题为如果AC =DF ,AB =DE ,AC 边上中线与DF 边上中线相等,那么△ABC ≌△DEF ;可先证明△ABM ≌△DEN ,得到∠A =∠D ,即可求解; (2)假命题为如果AB =DE ,AC 边上中线与DF 边上中线相等,△ABC 的面积与△DEF 的面积相等,那么△ABC ≌△DEF ;例如,如图,若AC =DF =4,中线BP =EQ =4,△ABC 的面积与△DEF 的面积为6,且∠A =90°,则AB =3,DF 边上的高EG 为3,则DE >EG ,所以DE >AB ,即△ABC 不与△DEF 全等,即可·线○封○密○外求解.【详解】解:(1)真命题为如果AC=DF,AB=DE,AC边上中线与DF边上中线相等,那么△ABC≌△DEF,证明:如图,根据题意得:BM=EN,∵BM、EN分别为AC、DF的中点,∴EE=12EE,EE=12EE,∵AC=DF,∴AM=DN,在△ABM和△DEN中,∵AB=DE,AM=DN,BM=EN,∴△ABM≌△DEN,∴∠A=∠D,在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF;(2)假命题为如果AB=DE,AC边上中线与DF边上中线相等,△ABC的面积与△DEF的面积相等,那么△ABC≌△DEF,例如,如图,若AC =DF =4,中线BP =EQ =4,△ABC 的面积与△DEF 的面积为6,且∠A =90°,则AB =3,DF 边上的高EG 为3,则DE >EG ,所以DE >AB ,即△ABC 不与△DEF 全等. 【点睛】 本题主要考查了全等三角形的判定和性质,命题的真假判断,熟练掌握全等三角形的判定和性质,用举反例法证明假命题是解题的关键. ·线○封○密○外。

九年级中考数学模拟(二)考试试卷及答案

九年级中考数学模拟(二)考试试卷及答案

学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆九年级中考模拟(二)考试试卷数 学命题人:吴声乐考生注意:本试卷共三道大题,(满分100分,时间90分钟)1.2008年元月我国南方遭受暴雪冰冻灾害,国家给予某地区821万元救灾,这个数用科学记数法表示为( ◆◆)元.A.28.2110⨯B.582.110⨯C.58.2110⨯D.68.2110⨯ 2. 下列轴对称图形中(如图),只有两条对称轴的图形是(◆◆ )3.若x 2+2(m -3)x +16是完全平方式,则m 的值等于( ◆◆ )A .1或5B .5C .7D .7或-14.在正方形网格中,ABC △的位置如图,则cos B ∠的值为(◆◆ ) A .12B C D 5.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是(◆◆ )A .12a b =⎧⎨=⎩B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11ab=⎧⎨=⎩6.已知A ∠、B ∠互余,A ∠比B ∠大30.设A ∠、B ∠的度数分别为x 、y ,下列方程组中符合题意的是(◆◆)A .180,30x y x y +=⎧⎨=-⎩B . 180,30x y x y +=⎧⎨=+⎩C .90,30x y x y +=⎧⎨=+⎩D .90,30x y x y +=⎧⎨=-⎩ 一、选择题(每题3分,共30分)每小题给出4个选项,其中只有一个是正确的)请将正确选项的字母代号填写在“答题表一”内,否则不给分)A .B .C .D .7.如图1:将一个矩形纸片ABCD ,沿着BE 折叠,使C 、D 点分别落在点11,C D 处. 若150C BA ∠=,则ABE ∠的度数为( ◆◆)A .15 B. 20 C. 25 D. 308.如图2是一条高速公路隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面 宽AB =10米,高CD =7米,则此圆的半径OA =( ◆◆) A.5B.7C.537 D.737 9.如图3,在△ABC 中,AB =AC =5,BC =6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于(◆) A.65 B. 95 C. 125 D. 165图1 图2 图3 10.在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路 程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图4所示,则△ABC 的面积是( ◆◆ ) A 、10 B 、16 C 、18 D 、20图411.-5的倒数是 ◆◆◆◆◆ 。

中考数学第二次模拟考试卷-附带答案

中考数学第二次模拟考试卷-附带答案

中考数学第二次模拟考试卷-附带答案学校:___________班级:___________姓名:___________考号:___________第I 卷(选择题 共40分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一.选择题(本大题共 10 个小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.6的算术平方根是( ) A.6 B.−6 C.√6 D.±62.已知水星的半径约为24400000米,用科学记数法表示为( )米. A.0.244×108 B.2.44×106 C.2.44×107 D.24.4×1063.如图,将一副三角板按不同位置摆放,其中∠α和∠β不一定相等的是( )A. B. C. D.4.将正方形纸片按如图所示方式连续对折两次,并在中心点处打孔,则展开后的图形是( )A.B. C. D.5.手机锁屏密码是6位数,若密码前5位数字已经知道,则一次解锁该手机密码的概率是( )A.12B.110C.1100D.110006.若关于x 的分式方程xx+4-1x+4=mx+4有增根,则m 的值为( )A.1B.﹣4C.﹣5D.﹣3 7.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( ) A.3cm 2 B.4cm 2 C.4.5cm 2 D.5cm 2(第7题图) (第8题图) (第9题图)8.如图,在平面直角坐标系中,点P在反比例函数y=kx(x≠0)的图象上,点A,B在x轴上,且PA⊥PB,PA交y轴于点C,AO=BO=BP.若△ABP的面积是4,则k的值是()A.1B.2C.√3D.329.如图,菱形ABCD的周长为20,对角线BD长为8,则AD边上的高CF为()A.4B.5C.245D.48510.对于二次函数y=ax2+bx+c,定义函数y={ax2+bx+c(x≥0)﹣ax2﹣bx﹣c(x<0)是它的相关函数.若y=x+1与二次函数y=x2-4x+c的相关函数的图象恰好有两个公共点,则c可能是()A.﹣1B.0C.12D.2第Ⅰ卷(非选择题共110分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题:(本大题共6个小题,每小题4分,共24分)11.一元二次方程x2-2x=0的根是.12.“学史明智”,历史是最好的教科书,也是最好的清醒剂和营养剂.在如图所示的四张无差别卡片上分别写有不同的历史事件,将卡片置于暗箱摇匀后随机抽取两张,则所抽取事件都发生于新中国成立以后的概率为.13.已知一个正多边形的每个外角为45°,则这个多边形的边数是.14.如果不等式组{x<7x>m无解,那么m的取值范围是.15.如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,三角形MNR的面积为y,如果y随x变化的图象如图2所示,则三角形MNR的最大的面积是.(第15题图)(第16题图)16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFPⅠ△BPH;③PD=DH;④DP2=PH·PB;其中正确的是.三、解答题:(本大题共10 个小题,共86 分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题6分)计算:(12)﹣1+2cos30°-|﹣√12|+(2024-π)0.18.(本小题6分)解不等式组{3x+2<2(x+2)①x-12≤2x-13②,并把解集在数轴上表示出来.19.(本小题6分)如图,四边形ABCD是平行四边形,F是AD中点,延长BF交CD延长线于点E.证明:AB=DE.20.(本小题8分)小伟站在一个深为3米的泳池边,他看到泳池内有一块鹅卵石,据此他提出问题:鹅卵石的像到水面的距离是多少米?小伟利用光学知识和仪器测量数据解决问题,具体研究方案如下:问题:鹅卵石的像到水面的距离工具:纸、笔、计算器、测角仪等图形:请你根据上述信息解决以下问题:(1)求∠CBN的大小;(2)求鹅卵石的像G到水面的距离GH.(结果精确到0.1m)(参考数据:sin41.7°≈0.665,cos41.7°≈0.747,tan41.7°≈0.891,√3≈1.73)21.(本小题8分)青少年体重指数(BMI)是评价青少年营养状况、肥胖的一种衡量方式.其,其中G表示体重(kg),h表示身高(m).《国家学生体质中体重指数BMI计算公式:BMI=Gh2健康标准》将学生体重指数(BMI)分成四个等级(如表),为了解学校学生体重指数分布情况,【数据整理】调查小组根据收集的数据,绘制了两组不完整的统计图.【问题解决】根据以上信息,解决下列问题:(1)若一位男生的身高为1.6m,体重为51.2kg,则他的体重指数(BMI)属于等级;(填“A”,“B”,“C”,“D”)(2)则本次调查的总人数是人,并补全条形统计图;(3)则扇形统计图中表示体重指数(BMI)“A”等级的扇形的圆心角是度;(4)若该校共有2000名学生,估计全校体重指数为“肥胖”的学生约为多少人?22.(本小题8分)如图,AB是⨀O的直径,C是⨀O外的一点,且AB=BC,AC与⨀O相交于点D,过点D作⨀O的切线交BC于点E.(1)求证:DE⊥BC;(2)当BE=1,DE=2时,求⨀O的半径.23.(本小题10分)某物流公司有360箱货物需要运送,现有甲、乙、丙三种车型供运输选辆,丙型车辆;(2)若全部货物仅用甲、乙两种车型一次性运完,需运费5100元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为11辆,恰好装满且一次性运完所有货物,请设计出所有的运送方案,并写出最少运费.24.(本小题10分)综合与探究如图,一次函数y=﹣x+1与反比例函数y=k(x<0)的图象交于点A(1,m),与y轴交于点B.x(1)求这个反比例函数的表达式;(2)点P是x轴上的一个动点,连接AP,BP,当线段AP与BP之和最小时,求点P的坐标;(3)过点B作直线l∥x轴,交反比例函数y=k(x<0)的图象于点C,若点M是直线AB上的x一个动点,点N是平面直角系内的一个动点,试判断是否存在这样的点N,使得以点B,C,M,N为顶点的四边形是菱形.若存在,请直接写出点N的坐标;若不存在,请说明理由.25.(本小题12分)如图1,△ABC是等腰直角三角形,AB=BC,∠ABC=90°,线段BD可绕点B在平面内旋转,BD=4.(1)若AB=8,在线段BD旋转过程中,当点B,C,D三点在同一直线上时,直接写出CD 的长.(2)如图2,若将线段BD绕点B按顺时针方向旋转90°,得到线段BE,连接AE,CE.①当点D的位置由△ABC外的点D转到其内的E处,且∠AEB=135°,AE=2√5时,求CE的长;②如图3,若AB=8,连接DE,将△BDE绕点B在平面内旋转,分别取DE,AE,AC的中点M、P、N,连接MP、PN、NM,请直接写出△MPN面积S的取值范围.26.(本小题12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+√3(a≠0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,连接AC、BC.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作PM∥x轴交BC于点M,过点P作PN ∥AC交BC于点N,求PM+PN的最大值及此时点P的坐标;(3)把原抛物线y=ax2+bx+√3(a≠0)沿射线AC方向平移8个单位,点E为平移后新抛物线对称轴上的一点,连接BE、CE,将△BCE沿直线BC翻折,使得点E的对应点点Q落在坐标轴上,写出所有符合条件的点E的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四 、 解 答 题 (17、18 题 各 8 分 ;19.20 题 各 1 0 分 , 共 36分) 17.我市某乡镇学校教学楼后面靠近一座山坡,坡
面 上是一块平地,如图2 -7所示.BC//AD,斜坡 48=40米,坡角Z.&W=60。,为防夏季因瀑雨 引 发山体滑坡,保障安全,学校决定对山坡进行 改 造,经地质人员勘测,当坡角不超过45。时,可 确保山体不滑坡,改造时保持坡脚/I不动,从坡 顶B沿削进到8处,问BE至少是多少米? (结果保 留根号).
根.当m = _____时,四边形ABCD是菱形. 23.如图2 -10,4点的初始位置位于数轴上的原点,
现对•点做如下移动:第1次从原点向右移动1 个 单位长度至B点,第2次从B点向左移动3 个单位 长度至C点,第3次从C点向右移动6 个单位长度 至D点,第4次从D点向左移动9 个单位长度至E 点,…,依此类推,这样至少移 动____次后该 点到原点的距离不小于41.
所示,有下列四个结论:①方~7 41
<0;(2)c >0;③ A2-4S>0;
I
④af +c<0,其中正确的 图2-4
个数有
()
A. 1个 B.2个 C.3个 D.4个
二、填空题(每小题4分,共16分)
11. 因式分解:27x2-3y2=______. 12. 如图2 -5,将三角尺的直角顶点放在直尺上,
匕 1 =30。,乙2=70。,则乙 3=_____度.
13.如果 %=2是方程}% + a =-1的根,那么a的
值是_____• 14. (2015 -成都)如图2-6,IE六边形ABCDEF内
接于圆。,半径为4,则这个正六边形的弧BC的 长为_____.
三、解答题(第15题每小题6分,第16题6分,共18 分) 15.(1)计算:
(2)解方程组: x + 2y = 5 3x -2y = -1
______
_16_、_ :日沥2-(a-牛,其中a = 2 +日=2-扼 a + 2ab + b
b
1
17 (8 分) 18 (8 分) 19 (10 分)
2
20 (10 分)
B卷(50分)
一、填空(20分)
21、 _________.22、 _________. _________.25、 _________.
小丽 4
小明 6
小颖 3
小华
4
小乐
5
4.不等式组
一的整数解共有 ,x-2<l
A.3个 B.4个 C.5个 D.6个 5.今年1月中旬以来的低温、雨雪、冰冻天气,造成
全国多个地区发生不同程度的灾害,直接经济损 失
已达到了 5. 379 x IO】。元,将此数据用亿元表示

A. 0. 5379 亿
B. 5. 379 亿元
交 BC 于点 E,AD=6 cm,则 OE 的长为 A. 6 cm B. 4 cm C. 3 cm
B E C 图2-3 D. 2 cm
9.班主任为了解学生星期六、日在家的学习情况,
家 访了班内的六名同学,了解到他们在家的学习
时 间如下表所示.那么,这六名同学学习时间的
众数 与中位数分别是
()
姓名. 学习时间 (小时)
元 C. 53. 79 亿
D. 537. 9 亿元
6.将元抛物线y = x2向左平移2个单位长度,再向下 平
移3个单位长度,得到的抛物线的函数表达式 为
() A. y = (%+2) 2 3 B. y = (%+2) 2+3 C.y = (x-2)2 +3 D.y = (x-2)2 -3
7・a、b在数轴上的位置如图~b 0~^ '
23、 _________. 24、
26 (8 分)
3
4
2017年中考数学模拟试卷(二)(总分:150分) A卷(共100分)
一、选择题(每小题3分,共30分)
1・土的相反数是
2.下列运算正确的是 A. பைடு நூலகம்3 • x2 -X5
3.如图2 - 1是由相同小正方体组成的立体图形,其 主视图为
8.如图2 -3,菱形初徴中,对角线 4C与位)相交于点O.OE//DC
2017中考数学模拟试卷二
答题卡
一、选择题(30分)
题号 1
2
3
4
5
6
7
8
9
10
答案
二.填空题(16分,)
得分
11, _________.12, _________ 13、 _______.14、 _______. 三.解答题(每小题6分,共18分)
15、(1)计算:
+
V12 3
-(2
-
V3)°+
tan300
⑵解方程组仏
16.先化简,再求值:工-(a - b) -r a + 2ab + b a J,其中 a =2 、b =2
19.如图2-8,直线ll:y=x与双曲线y = y相交于 点 4(a,2),将直线Z.向上平移3个单位长度得 到, 2,直线A与双曲线相交于8,。两点(点B在 第一象 限),交y轴于点O.
图2 -8
20.如图2 -9,在ZUBC中,AB =AC,以AC为直径 的。。 交BC于点D,交曲于点E,过点。作QF •MB,垂足为 F,连接OE. (1) 求证:直线OF与。。相切; (2) 若 AE=] ,BC=6,求 4C 的长.
• 210 •
B卷(共50分)
一、填空题(每小题4分,共20分) 21.比较大小丄
修)'+ !--乎|-(2—屈'+tan30。.
18. 将 四 张 分 别 写 有 数 字 1 , 2 , 3 , 4 的 红 色 卡 片 放 在 一个不透明的盒中,三张分别写有数字1,2,3的 蓝色卡片放在另一个不透明的盒中,卡片除颜色 和数字外完全相同.现从两个盒内各任意抽取一 张卡片,以红色卡片上的数字作为十位数字,蓝 色卡片上的数字作为个位数字组成一个两位数. (1) 求组成的两位数是偶数的概率; (2) 求组成的两位数大于22的概率.
(填" >”、"<”或
二、解答题(共30分)
26. (8分)一家蔬菜公司收购到某种绿色蔬菜140
吨,准备加工后进行销售,销售后获利情况如表
所示:
销售方式 每吨获利(元)
粗加工后销售 1000
精加工后销售 2000
22.已知,平行四边形ABCD的两边AB,AD的长是
关于*的方程一-站+岩-十=。的两个实数
2-2所示,则下列式子正 图2-2 确的是
() A. a + 6 >0
B.a+b>a~b
C. lai > 161
D. ab <0
A. 4小时和4.5小时 B.4. 5小时和4小时
C. 4小时和3. 5小时 D. 3.5小时和4小时
10.已知二次函数y = ax2 +bx
+ c(a尹0)的图象如图2-4
相关文档
最新文档