八年级数学期末考试试卷三
最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。
2022-2023学年八年级(上)期末数学模拟试卷(三)

2022-2023学年八年级(上)期末数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB 的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+1 6.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD 于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x2+2xy+y2=49B.x2﹣2xy+y2=4C.x2+y2=25D.x2﹣y2=1412.(3分)如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB =2,BC=3,则BD的长是()A.5B.7C.8D.9二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)当x=时,分式的值为0.14.(4分)已知点P(4,2a﹣3)关于x轴对称的点在第一象限,则a的取值范围是.15.(4分)已知a=+2021,b=+2022,c=+2023,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值为.16.(4分)如图,△ABC中,BF是高,延长CB至点D,使BD=BA,连接AD,过点D作DE⊥AB交AB的延长线于点E,当AF=BE,∠CAD=96°时,∠C=.三、解答题(本大题共9小题,共98分。
【解析版】初中数学八年级下期末经典复习题(课后培优)(3)

一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.18.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.729.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.8210.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.的自变量取值范围是( )11.(0分)[ID:10175]函数y=√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.313.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .614.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.19.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.20.(0分)[ID :10295]一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.21.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22.(0分)[ID :10260]在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.25.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.三、解答题26.(0分)[ID :10421]如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.27.(0分)[ID:10412]如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC 的中点,若DE=3,求B C的长.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF=.求证:四边形AECF是菱形.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.C5.A6.B7.C8.D9.B10.C11.B12.D13.C14.D15.B二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7225.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.8.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.13.C解析:C【解析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.三、解答题26.(1)证明见解析;(2)2165. 【解析】【分析】(1)由DE ∥AC ,CE ∥BD 可得四边形OCED 为平行四边形,又AC ⊥BD 从而得四边形OCED 为矩形;(2)过点O 作OH ⊥BC ,垂足为H ,由已知可得三角形OBC 、OCD 的面积,BC 的长,由面积法可得OH 的长,从而可得三角形OCF 的面积,三角形OCD 与三角形OCF 的和即为所求.【详解】(1)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.又∵四边形ABCD 是菱形,∴AC ⊥BD .∴∠DOC=90°.∴四边形OCED 为矩形.(2)∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =12BD =6,OA =OC =12AC =8,∴CF=CO=8,S △BOC =S △DOC =12OD OC ⋅=24,在Rt △OBC 中,BC =10,.作OH ⊥BC 于点H ,则有12BC·OH=24,∴OH=245,∴S △COF =12CF·OH=965.∴S 四边形OFCD =S △DOC +S △OCF =2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH 的长度是解题关键.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.30.(1)见解析,223x-<<;(2)21b--【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101112y x =+ 121 12 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2), ∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。
八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
【新课标】八年级数学第二学期期末模拟试卷(三)及答案

(第6题)第二学期八年级下数学期末模拟试卷及答案(三)一、精心选一选,你会快乐!(每小题3分,共30分) 1.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ②对角线相等且互相平分的四边形是矩形; ③对角线垂直且互相平分的四边形是菱形;④顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形。
其中你认为正确的个数有( )A 、1个B 、2个C 、3个D 、4个2.如图,梯形ABCD 中,AD ∥BC ,E 是BC 上一点,且∠EAD =∠C ,AD = 5,△ABE 的周长是18,则梯形ABCD 的周长为( )A .23B .26C .28D .29CB ADE3.我国南宋数学家杨辉曾提出这样一个问题:"直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步."如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是 ( )A . (12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-= 4.下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是( ) A .这些工人日加工零件数的众数是9,中位数是6 B .这些工人日加工零件数的众数是6,中位数是6 C .这些工人日加工零件数的众数是9,中位数是5. 5 D .这些工人日加工零件数的众数是6,中位数是5. 55.如图,在四边形ABCD 中,∠DAB =∠BCD = 90°,分别以四边形的四条边为边向外作四个正方形,若S 1 + S 4 = 100,S 3 = 36,则S 2 =( )A .136B .64C .50D .816.如图,四边形ABCD 是矩形,F 是AD 上一点,E 是CB 延长线C BAD S 4S 1S 3S 2上一点,且四边形AECF 是等腰梯形.下列结论中不一定...正确的是( ). (A )AE =FC (B )AD =BC (C )∠AEB =∠CFD (D )BE =AF7.已知:如图,梯形ABCD 是等腰梯形,AB∥CD,AD=BC ,AC⊥BC,BE⊥AB 交AC 的延长线于E ,EF⊥AD 交AD 的延长线于F ,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF; ④AC=CE+EF. 其中正确的结论有( )A .1个B .2个C .3个D .4个8.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43 C .143≤<m D .43≤m ≤1 9.如图,观察下列用纸折叠成的图案.其中,轴对称图形和中心对称图形的个数分别为( ) A.4,1B.3,1C.2,2D.1,310.已知样本数据1,2,4,3,5,下列说法不正确...的是( ) A .平均数是3 B .中位数是4 C .极差是4 D .方差是2二、认真填一填,你会轻松!(每小题3分,共24分)1.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 2.为庆祝十一国庆节,八年级(1)班同学要在广场上布置一个矩形的花坛,计划用“串红”摆成两条对角线,如果一条对角线用了38盆“串红”,那么还需从花房运来_________盆“串红”; 如果一条对角线用了49盆“串红”,那么还需从花房运来_________盆“串红”。
江苏省盐城市2023-2024学年八年级下学期期末数学试卷(含答案详解)

2023-2024学年度第二学期期终考试八年级数学试题注意事项:1、本试卷考试时间为100分钟,试卷满分120分,考试形式闭卷。
2、本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分。
3、答題前,务必将自己的学校、班组、姓名、准考证号填写在答题纸上相应位置。
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸上相应位置)1.以下调查中,适宜普查的是( )A .了解全班同学每周体育锻炼的时间B .了解夏季冷饮市场上冰淇淋的质量C .了解串场河中鱼的种类D .了解一批洗衣机的使用寿命2.反比例函数的图像一定经过的点( )A .(-3,2)B.(2,3)C .(-2,3)D .(2,-3)3.下列二次根式中,属于最简二次根式的是( )A BC D 4.菱形具有矩形不一定具有的性质是( )A .对边相等B .对边平行C .对角线互相平分D .对角线互相垂直5.若分式中x 、y 的值都变为原来的3倍,则分式的值( )A .不变B .是原来的3倍C .是原来的D .是原来的6.估计 )A .2和3B .3和4C .4和5D .5和67.顺次连接四边形四边中点所得的四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形8.照相机成像时,照相机镜头的焦距f ,物体到镜头的距离u ,胶片(像)到镜头的距离满足.已知f 、v .则( )A .B .C .D .6y x =33x x y -1319()111v f f u v=+≠u =fvf v -f vfv -fvv f -v ffv-二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直接写在答题纸上相应位置)9.若有意义,则x 的取值范围是___________.10___________.11___________.12.抛掷一枚质地均匀的正方体骰子一次,下列3个事件:①向上一面的点数是奇数;②向上一面的点数是3的倍数:③向上一面的点数不小于3.其中发生的可能性最小的事件是___________.(填序号)13.在平面直角坐标系中,若点,在反比例函数的图像上,则___________.(填 “”“”或“”).14.如图,菱形的面积为24,若,则___________.15.已知,且,则的值为___________.16.如图,在矩形纸片中,,,E 是边上一点,先将沿折叠,点B 落在点处,与交于点F ;再折叠矩形纸片,使得点C 与点重合,点D 落在点处,折痕为.则___________.三、解答题(本大题共有9小题,共72分,请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)1722x -=()11,A y ()22,B y ()0k y k x=<1y 2y >=<ABCD 8AC =BD =111x y -=2x y ≠2xy x x y--ABCD 4AB =16BC =BC ABE AE B 'EB 'AD ABCD B 'D ¢EG FG =18.解分式程:.19.先化简,再求值,其中.20.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:)变化时,气体的密度(单位:)随之变化.已知密度与体积V 是反比例函数关系,它的图象如图所示,当时,.(1)求密度ρ关于体积V 的函数表达式;(2)当时,求二氧化碳密度ρ的值.21.为了解某初中校学生最喜爱的球类运动项目,给学校提出更合理的配置体育运动器材和场地的建议.兴趣小组随机抽取部分学生进行问卷调查,被调查学生须从“篮球、乒乓球、足球、排球、羽毛球”中选择自己最喜爱的一个球类运动项目,根据调查结果绘制了如下所示的不完整的统计图.根据统计图信息,解答下列问题:(1)在扇形统计图中,“乒乓球”所在扇形的圆心角为________.(2)将条形统计图补充完整;(3)估计该校800名初中生中最喜爱篮球项目的人数;23122x x x--=--2121121a a a a a +⎛⎫+÷ ⎪--+⎝⎭1a +3m ρ3kg/m ρ32.5m V =34kg /m ρ=35m V =(4)根据调查结果,请你向学校提一条合理建议.22.观察下列等式:,…解答下列问题:(1)根据上面3个等式的规律,写出第⑤个等式:_______;(2)用含n (n 为正整数)的等式表示上面各个等式的规律,并加以证明.23.四边形是平行四边形,E 、F 分别是、上的点,连接.(1)如图1,对角线、相交于点O ,若经过点O ,求证:.(2)在如图2中,仅用无刻度的直尺作线段,使它满足:①点M 、N 分别在、上;②.(不写画法,保留画图痕迹)24.定义图形如图1,在四边形中,M 、N 分别是边、的中点,连接.若两侧的图形面积相等,则称为四边形的“对中平分线”===ABCD AD BC EF AC BD EF OE OF =MN AD BC MN EF =ABCD AD BC MN MN MN ABCD提出问题有对中平分线的四边形具有怎样的性质呢?分析问题(1)如图2,为四边形的“对中平分线”,连接,,由M 为的中点,知与的面积相等,则,有怎样的位置关系呢?请说明理由.(2)在(1)的基础上,小明提出了下列三个命题,其中假命题的是_____(请把你认为假命题的序号都填上)①若,则四边形是平行四边形;②若,则四边形是菱形;③若,则四边形是矩形.深入探究如图3,四边形有两条对中平分线,分别是,,且相交于点O ,若.请探索四边形的形状并说明理由.25.如图,直线轴于点H ,且与反比例函数及反比例函数与的图像分别交于点A 、B .(1)若,,连接、.①的面积为_______;②当时,求点B 的坐标.(2)若点,过点A 作x 轴的平行线,与一次函数的图像交于点D ,点D 在直线l 的左侧,若和变化时,的值始终不变,求对应k 的值.MN ABCD AN DN AD AMN DMN AD BC MN AB ABCD MN AB =ABCD MN BC ⊥ABCD ABCD MN EF MN EF =ABCD l x ⊥()110,0k y k x x =>>2k y x=()200k x ,18k =22k =-OA OB ABO OA OB ⊥()20H ,()2102y kx k k =+≠1k 2k +AB AD参考答案1.解:A 、了解全班同学每周体育锻炼的时间,适合普查,故本选项符合题意;B 、了解夏季冷饮市场上冰淇淋的质量,适合抽样调查,故本选项不符合题意;C 、了解串场河中鱼的种类,适合抽样调查,故本选项不符合题意;D 、了解一批洗衣机的使用寿命,适合抽样调查,故本选项不符合题意;故选:A .2解:反比例函数中,A 、∵,∴此点不在函数图象上,故本选项不符合题意;B 、∵,此点在函数图象上,故本选项符合题意;C 、∵,∴此点不在函数图象上,故本选项不合题意;D 、∵,∴此点不在函数图象上,故本选项不符合题意.故选:B .3,选项A 、B、C 都不是最简二次根式,故选:D .4.解:菱形的性质有:对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是对角线互相垂直;故选:D .5.解:∵分式中的、的值都变为原来的倍.∴,∴此分式的值不变.故选:A .6又∵,,∴,∴4和5两个整数之间,6y x=6k =()3266-⨯=-≠236⨯=2366-⨯=-≠()2366⨯-=-≠===33x x y-x y 3()()333333333x y x x x x y y x x x y --=--===162025<<<<45<<故选:C .7.解:如图,∵为中点,为中点,∴,,同理,∴,∴四边形是平行四边形.故选:A .8.解:∵,∴,∴,故选:C .9.解:由题意得:,解得:,故答案为:.10.1112.解:①“向上一面的点数是奇数”的概率为,②“向上一面的点数是3的倍数”的概率为,③“向上一面的点数不小于”的概率为,,故其中发生的可能性最小的事件是②,故答案为:②.E ADF AB 12EF BD =EF BD ∥GH BD GH BD =,∥EF GH EF GH =∥,EFGH ()111v f f u v =+≠111v f u v fvf -=-=fv u v f =-20x -≠2x ≠2x ≠==1213323231123>>13.解:∵,∴反比例函数的图象在二、四象限,∵,∴点,在第四象限,y 随x 的增大而增大,∴.故答案为:.14.解:∵四边形是菱形,面积为24,且,∴.故答案为:6.15.解:∵,∴,∴,故答案为:.16.解:∵四边形为矩形,∴,,,,根据折叠可知:,,,,,,∴,∵,∴,∵,∴,∴,∴,设,则,在中,根据勾股定理得:,即,解得:,∴,0k <()0k y k x=<210>>()11,A y ()22,B y 21y y ><ABCD 8AC =2426BD AC ⨯==111x y-=xy y x =-21222xy x y x x y x x y x y x y----===----1-ABCD 4AB DC ==16AD BC ==90B C D ∠=∠=∠=︒AD BC ∥BE B E '=CE B E '=4AB AB '==AEB AEB '∠=∠90AB F B '∠=∠=︒CEG B EG '∠=∠BE CE =16BE CE BC +==8BE CE B E '===AD BC ∥AEB EAF ∠=∠AEB EAF '∠=∠AF EF =EF AF x ==8B F x '=-Rt AB F '△222AF B F AB ''=+()22248x x =+-5x =5EF =∵,∴,∴,∴.故答案为:5.17.18.解:,去分母得:,整理得:,此方程无解,∴原方程无解.19.解:,把代入得:原式.20.(1)解:∵密度与体积V 是反比例函数关系,∴设,∵当时,.∴,∴,∴密度关于体积V 的函数解析式为:;(2)解:把代入得:,AD BC ∥AGE CEG ∠=∠AGE GEF ∠=∠5FG EF ==5=-5=23122x x x--=--232x x +-=-12x x -=-2121121a a a a a +⎛⎫+÷ ⎪--+⎝⎭()2112111a a a a a a +-⎛⎫+÷ =⎪--⎝⎭-()21212a a a a -=⋅-1a =-1a =11=-=ρ()0,0k V k Vρ=>≠32.5m V =34kg /m ρ=4 2.5k =2.5410k =⨯=ρ()100V Vρ=>5V =()100V V ρ=>1025ρ==当时,求二氧化碳密度ρ的值为.21.(1)解:在扇形统计图中,“乒乓球”所在扇形的圆心角为:.(2)解:被抽查的总人数为:(名),∴被抽查的100人中最喜爱羽毛球的人数为:(名),被抽查的100人中最喜爱篮球的人数为:(名),补全图形如图所示:(3)解:(名),答:估计该校800名初中生中最喜爱篮球项目的人数为320名.(4)解:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.(答案不唯一)22.(1(2)解:第1个等式中分母为,第2个等式中分母为,第3个等式中分母为,第4个等式中分母为,35m V =32kg /m 36030%108︒÷=︒3030%100÷=1005%5⨯=∴100301015540----=40800320100⨯==1=======2211=+2521=+21031=+21741=+得第个等式中分母为应为:∴第∵左边右边∴左边右边.23.(1)证明:∵四边形为平行四边形,∴,,∴,,∴,∴.(2)解:如图,即为所求作的线段;∵四边形为平行四边形,∴,,∴,,∴,∴,同理可得:,∴,∴,即,∵,∴四边形为平行四边形,∴.24.解:分析问题:(1);理由如下:过点A 作于点E ,过点D 作于点F ,如图所示:n 21n +n ======ABCD OA OC =AD BC ∥AEO CFO ∠=∠EAO FCO ∠=∠AOE COF △≌△OE OF =MN ABCD OA OC =AD BC ∥AMO CFO ∠=∠MAO FCO ∠=∠AOM COF ≌AM CF =AOE CON ≌△△AE CN =AM AE CF CN -=-ME FN =ME FN ∥MNFE MN EF =AD BC ∥AE BC ⊥DF BC ⊥∵,,∴,∵为四边形的“对中平分线”,∴,∵M 是的中点,∴,∴,∴,∴,∵N 是的中点,∴,∴,∴四边形为平行四边形,∴,即;(2)①∵,∴,∵,∴四边形为平行四边形,∴,∵M 、N 分别是边、的中点,∴,,∴,∵,AE BC ⊥DF BC ⊥AE DF ∥MN ABCD ABNM CDMN S S =四边形四边形AD AMN DMN S S = AMN DMN ABNM CDMN S S S S -=- 四边形四边形ABN DCN S S =V V 1122BN AE CN DF ⨯=⨯BC BN CN =AE DF =AEFD AD EF ∥AD BC ∥AD BC ∥AM BN ∥MN AB ABNM AM BN =AD BC 12AM AD =12BN BC =AD BC =AD BC ∥∴四边形为平行四边形,故①是真命题;②当四边形为平行四边形时,,,∵M 、N 分别是边、的中点,∴,,∴,∵,∴四边形为平行四边形,∴,∴当四边形为平行四边形,而不是菱形时,,故②是假命题;③当四边形为等腰梯形时,延长、交于点E ,如图所示:∵四边形为等腰梯形,∴,∴,∵点N 为的中点,∴,∴,∵,∴,∴,∵,,∴,ABCD ABCD AD BC ∥AD BC =AD BC 12AM AD =12BN BC =AM BN =AM BN ∥ABNM AB MN =ABCD AB MN =ABCD BA CD ABCD B C ∠=∠EB EC =BC EN BC ⊥90BNE ∠=︒AD BC ∥90AME BNE ∠=∠=︒EM AD ⊥EB EC =EA ED =EB AB EC CD -=-即,∴,∴四边形为等腰梯形,,∴时,四边形不一定是矩形,故③是假命题;综上分析可知:真命题为①.(3)四边形为菱形;理由如下:∵四边形有两条对中平分线,分别是,,∴根据解析(1)可得:,,∴四边形为平行四边形,∴,∵M 、N 分别是边、的中点,∴,,∴,∵,∴四边形为平行四边形,∴,同理可得:四边形为平行四边形,∴,∵,∴,∴四边形为菱形.25.(1)解:①∵,,直线轴于点H ,∴,,∴;EA ED =AM DM =ABCD MN BC ⊥MN BC ⊥ABCD ABCD ABCD MN EF AD BC ∥AB CD ∥ABCD AD BC =AD BC 12AM AD =12BN BC =AM BN =AM BN ∥ABNM AB MN =EBCF EF BC =MN EF =AB BC =ABCD 18k =22k =-l x ⊥1118422AOH S k ==⨯= 2112122OBH S k ==⨯-= 415AOB AOH OBH S S S =+=+=②设,则,,,,∵,∴为直角三角形,∴,∴,解得:,负值舍去,∴点B 的坐标为;(2)解:∵点,∴,,∴,∵过点A 作x 轴的平行线,与一次函数的图像交于点D ,∴把代入得:,解得:,∴,∴,∴,∵和变化时,的值始终不变,∴为定值,∴为定值,∴,∴.()2,0B m m m -⎛⎫> ⎪⎝⎭8A m m ⎛⎫ ⎪⎝⎭,2224OB m m =+22264OA m m =+22282100AB m m m ⎛⎫=+= ⎪⎝⎭OA OB ⊥AOB 222AB OA OB =+22222100644m m m m m =+++2m =()2,1-()20H ,12,2k A ⎛⎫ ⎪⎝⎭22,2k B ⎛⎫ ⎪⎝⎭122k k AB -=()2102y kx k k =+≠12k y =()2102y kx k k =+≠()121022k kx k k =+≠122k k x k-=121,22k k k D k -⎛⎫ ⎪⎝⎭1222k k AD k -=-1212222k k k AB AD k k ---+=+1k 2k +AB AD 1212222k k k k k ---+()()()()121212121212222222k k k k k k k k k k k k k k k -------+-=+=+10k -=1k =。
人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
2023-2024学年度第一学期期末考试 试题 八年级数学+答案解析

2023-2024学年度第一学期期末考试八年级数学试卷试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.下列几种著名的数学曲线中,不是轴对称图形的是(▲)A .B .C .D .2.有下列实数: ,1.8-,9,3,33,其中无理数有(▲)A .1个B .2个C .3个D .4个3.下列数据中不能确定物体位置的是(▲)A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市4.如图,AD 为∠BAC 的角平分线,添加下列条件后,不能证明△ABD ≌△ACD 的是(▲)A .∠B =∠C B .∠BDA =∠CDA C .AB =AC D .BD =CD 5.在等腰三角形ABC 中,∠A =100°,则底角的度数是(▲)A .100°B .80°C .50°D .40°6.如图,△AOB 是边长为2的等边三角形,点B 在x 轴上,则点A 关于x 轴的对称点的坐标为(▲)A .(1,-3)B .(1,3)C .(-1,-3)D .(-1,3)7.一次函数b ax y +=1与正比例函数bx y =-2在同一坐标系中的图像大致是(▲)A .B .C .D .8.如图,△ABC 中,∠ACB =90°,BC =6,AC =8,点D 是AB 的中点,将△ACD 沿CD 翻折得到△ECD ,连接AE ,BE ,则线段AE 的长等于(▲)A .75B .548C .53D .514第4题图第6题图第8题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.36的平方根是▲.10.扬州市面积约为6591平方公里,数据6591用四舍五入法精确到百位,并用科学记数法表示为▲.11.比较大小:3▲1-π(用“>”、“<”或“=”填空).12.如果将直线y =2x -1向上平移3个单位,那么所得直线的函数表达式是▲.13.已知点A (1,m ),B (32,n )在一次函数y =3x +1的图像上,则m ▲n (用“>”、“<”或“=”填空).14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若BC =3cm ,AD =4cm ,则图中阴影部分的面积是▲cm 2.15.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为()a a -,+112,则a 的值为▲.16.如图,在Rt △ABC 中,AC =4,AB =5,∠C =90°,BD 平分∠ABC 交AC 于点D ,则DC 的长是▲.17.已知A 、B 两地是一条直路,甲骑自行车从A 地到B 地,乙骑摩托车从B 地到A 地,两人同时出发,乙先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,则下列结论正确的有▲.①两人出发2h 后相遇;②甲骑自行车的速度为60km/h ;③乙比甲提前2h 到达目的地;④乙到达目的地时两人相距200km .第14题图第15题图第16题图第17题图18.定义:在平面直角坐标系xOy 中,O 为坐标原点,任意两点P (x 1,y 1)、Q (x 2,y 2),称2121y y x x +++的值为P 、Q 两点的“坐标和距离”.若P (1,-3),Q 为直线y =x +2上任意一点,则P ,Q 的“坐标和距离”的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:9)1(6423--+;(2)求27)4(3-=-x 中x 的值.20.(本题满分8分)已知2a +1与a -4是b 的两个不相等的平方根,求b -1的立方根.21.(本题满分8分)已知y 与2x -3成正比例,且当x =2时,y =2.(1)求y 与x 的函数关系式;(2)求当x =21时的函数值.22.(本题满分8分)已知:如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD ⊥BC ,垂足为点D ,求BC ,AD 的长.23.(本题满分10分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1(点A 、B 、C 分别对应A 1、B 1、C 1);(2)△A 1B 1C 1的面积=▲;(3)若M (x ,y )是△ABC 内部任意一点,请直接写出这点在△A 1B 1C 1内部的对应点M 1的坐标▲;(4)P 是x 轴上一点,满足线段B 1P +BP 的值最小,画出P 点,并写出P 点坐标▲.24.(本题满分10分)已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,连接BM 、DM .(1)求证:BM =DM ;(2)求证:MN ⊥BD .25.(本题满分10分)在四边形ABCD 中,O 是边BC 上的一点.若△OAB ≌△OCD ,则点O 叫做该四边形的“全等点”.(1)如图,已知在四边形ABCD 中,∠BAO =85°,∠B =40°,求∠AOD 的度数;(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“全等点”,已知CD =32,OA =5,BC =12,连接AC ,求AC 的长.26.(本题满分10分)如图,一次函数343+-=x y 的图像分别于x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰直角△ABC ,∠BAC =90°.(1)求过B 、C 两点的直线的函数解析式;(2)在x 轴上取一点M ,使△AMC 是等腰三角形,直接写出符合条件的所有M 的坐标.27.(本题满分12分)如图,深50cm 的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,右图为容器顶部离水面的距离y (cm )随时间t (分钟)的变化图像.(1)求放入的长方体的高度;(2)求该容器注满水所用的时间;(3)若长方体铁块的底面积为6cm 2,求圆柱体的底面积.28.(本题满分12分)已知,△ABC 是等边三角形,点D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边△ADE .图1图2图3(1)如图1,点D 在线段BC 上,连接CE ,若AB =4,且CE =1,求线段CD 的长;(2)如图2,点D 是BC 延长线上一点,过点E 作EF ⊥AC 于点F ,求证:CF =AF +CD ;(3)如图3,若AB =8,点D 在射线BC 上运动,取AC 中点G ,连接EG ,请直接写出EG 的最小值.2023-2024学年度第一学期期末考试八年级数学参考答案一、选择题(每题3分,共24分)题号12345678答案DBCDDACB二、填空题(每题3分,共30分)9.±6;10.3106.6⨯;11.<;12.22+=x y ;13.<;14.3;15.-2;16.23;17.①②④;18.2.三、解答题19.(1)计算:9)1(6423--+解:原式=2……………………4分(2)求27)4(3-=-x 中x 的值.解:x =1……………………8分20.解:2a +1+a -4=0a =1……………………4分b =9b -1的立方根为2……………………8分21.(1)解:设y =k (2x -3)(k ≠0)x =2,y =2k =2y =4x -6……………………4分(2)解:当21=x 时y =-4……………………8分22.(1)BC =5……………………4分(2)AD =512……………………8分23.(1)图略……………………2分(2)2……………………4分(3)(-x ,y )……………………6分(4)作出点P 图略…………………8分(0,0)……………………10分24.(1)在△ABC 中,∵∠ABC =90°,M 是AC 的中点∴BM =21AC 同理DM =21AC∴BM =DM ……………………5分(2)在△MBD 中,BM =DM∵N 是BD 的中点∴MN ⊥BD……………………10分25.(1)70;……………………5分(2)80或54……………………10分26.(1)371+=x y ;……………………5分(2)(-1,0)、(9,0)、(10,0)(649,0)……………………10分(其中前3个1分1个,最后一个2分)27.(1)20cm ;……………………4分(2)21分钟;……………………8分(3)8cm 2……………………10分28.(1)3;……………………4分(2)在AC 上取一点G ,使CG =CD ,连EG先证△ABD ≌△ACE 得到∠ACE =∠DCE =60°再证△EGC ≌△EDC 得EG =EA 又∵EF ⊥AC ∴AF =FG ∴CF =AF +CD……………………8分(3)12或32……………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晴 C .
冰雹 A .
雷阵雨 B .
大雪 D .
大营中学八年级数学第一学期期末试卷
(考试时间为90分钟 满分100分)
班级: 学号: 姓名: 得分:
一.选择题 (每题3分,共24分.)
1.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 ( )
2.如图,小手盖住的点的坐标可能为( )
A .(46)--,
B .(63)-,
C . (52),
D .(34)-, 3.下列各式中正确的是( )
A .416±=
B .9273-=-
C .3)3(2-=-
D .2
1
1412
= 4.一个正方形的面积为28,则它的边长应在( )
A .3到4之间
B .4到5之间
C .5到6之间
D .6到7之间 5.已知函数y =3x+1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -1
6.若点),(1y a 、),1(2y a +在直线1+=kx y 上,且21y y >,则该直线所经过的象限是( )
A .第一、二、三象限
B .第一、二、四象限
C .第二、三、四象限
D .第一、三、四象限
7.如图所示,把一个正方形三次对折后沿虚线剪出图①,则图①展开的图形是 ( )
8.当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )
O y
x
第2题图
上折
右折
右下方折
沿虚线剪开
图①
A .
B .
C .
D .
A. B. C. D.
二. 填空题(每题3
分
,
共30分.)
9.平方根等于本身的数是 .
10.把2取近似数并保留两个有效数字是 .
11.已知:如图,E (-4,2),F (-1,-1),以O 为中心,把△EFO 旋转180°,则点E
的对应点E ′的坐标为 .
12.梯形的中位线长为3,高为2,则该梯形的面积为 .
13.在ABC ∆中,3A B ∠=∠,30A C ∠-∠=︒,则A ∠=__________,B ∠=_________,
C ∠=_____________. 14.等腰梯形的上底是4cm ,下底是10cm ,一个底角是60
,则等腰梯形的腰长是 cm .
15.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组,
y ax b y kx =+⎧⎨
=⎩
的
解是 .
16.在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =15,且BD ∶DC =3∶2,则D 到边AB 的距离是 .
17.在△ABC 中,∠A =40°,当∠B = 时,△ABC 是等腰三角形. 18.如图,有一种动画程序,屏幕上正方形区域ABCD 表示
黑色物体甲.已知A (1,1),B (2,1),C (2,2),D (1,2), 用信号枪沿直线y = 2x + b 发射信号,当信号遇到区域甲
y D C B
A
1 2 O y
E x F
第11题图 第15题图 O y x
P -4
-2 y kx = y ax b =+
第16题图 B
C
D A
(正方形ABCD )时,甲由黑变白.则b 的取值范围 为 时,甲能由黑变白.
三.解答题(46分)
19.(4分)
(1) 22)1
)2)(2(x
x x x x +-+--( (2)已知:9)1(2=-x ,求x 的值.
20.(5分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
21.(6分)如图所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 ; (2)画出四边形OABC 绕点O 顺时针方向旋转90°后得到的四边形OA 2B 2C 2;连结OB ,求
出OB 旋转到OB
2所扫过部分图形的面积.
22.(6分)如图,点B 、E 、C 、F 在同一直线上,AB =DE ,∠B =∠DEF , BE =CF .请说明:
(1)△ABC ≌△DEF ; (2)AC ∥FD .
23.(8分)已知一次函数y kx b =+的图像经过点(-1,-5),且与正比例函数1
2
y x =的图像相交于点(2,m ).
(1)求m 的值;
(2)求一次函数y kx b =+的解析式;
(3)这两个函数图像与x 轴所围成的三角形面积.
E F
C
B D
A
24.(10分)小明平时喜欢玩“QQ 农场”游戏,本学期八年级数学备课组组织了几次数学的月考测试,小明的数学成绩如下表:
月份x (月) 9 10 11 12 … 成绩y (分)
90
80
70
60
…
(1)以月份为x 轴,成绩为y 轴,根据上表提供的数据在下列直角坐标系中描点; (2)观察①中所描点的位置关系,照这样的发展趋势........
,猜想y 与x 之间的函数关系,并求出所猜想的函数解析式;
(3)若小明继续沉溺于“QQ 农场”游戏,照这样的发展趋势,请你估计元月份的期末考试中小明的数学成绩,并用一句话对小明提出一些建议.
25.(7分)有一条直线y=kx+b ,它与直线1
32
y x =
+交点的纵坐标为5,而与直线y =3x -9的交点的横坐标也是5.求该直线与两坐标轴围成的三角形面积.
40
50 60 70 80
90 100 2
1 1
2 11 10 9 y
x
O。