计算机组成原理数字逻辑PPT课件

合集下载

计算机组成原理(本全)课件

计算机组成原理(本全)课件
计算机组成原理(本 全)课件
目录
CONTENTS
• 计算机系统概述 • 中央处理器(CPU) • 存储器系统 • 输入输出(I/O)系统 • 计算机的体系结构 • 计算机的软件系统
01 计算机系统概述
计算机的发展历程
第一代计算机
电子管计算机,20世纪40年代 中期至50年代末期,主要用于
军事和科学研究领域。
CPU每个时钟周期执行的指令数,是 衡量CPU性能的重要指标。
03 存储器系统
存储器的分类和作用
分类
根据存储器的功能和位置,可以分为内存和外存两大类。内存是计算机内部存储器,用 于存放运算数据和程序代码;外存则是计算机外部存储器,用于长期保存大量数据和程
序。
作用
存储器是计算机的重要组成部分,它负责存储程序运行过程中所需的数据、指令等信息 ,使得CPU能够快速、准确地读取和写入数据,从而完成程序的执行。
软件系统
包括系统软件和应用软件两大类。
操作系统
是计算机的软件系统中最基本、最重要的部分,负责 管理和调度计算机的软硬件资源。
计算机的工作原理
二进制数制
计算机内部采用二进制数制进行运算和存储。
指令和程序
计算机按照程序中预定的指令序列进行自动执 行。
存储程序原理
将程序和数据存储在计算机内部,根据指令从存储器中取出数据和指令进行运 算和传输。
内存的工作原理和组织结构
工作原理
内存由多个存储单元组成,每个单元可以存储一个二进制数 。当CPU需要读取或写入数据时,会通过地址总线发送地址 信号,内存控制器根据地址信号找到对应的存储单元,完成 数据的读取或写入操作。
组织结构
内存的组织结构通常采用线性编址方式,即将内存单元按照 一定顺序排列,每个单元都有一个唯一的地址。内存的容量 大小由地址总线的位数决定,地址总线位数越多,可访问的 内存单元数量就越多。

计算机组成原理(本全PPT)

计算机组成原理(本全PPT)
应用
用作固件存储,如BIOS、固件等。
外存储器
特点
容量大、价格低、速度慢、数据可长期保存。
分类
机械硬盘(HDD)和固态硬盘(SSD)。
外存储器
应用
作为计算机的主要存储设备。
特点
容量大、价格低、速度慢、数据可长期保存。
外存储器
分类
CD、DVD和蓝光光盘等。
应用
用于数据备份和存储。
高速缓存(Cache)
址和控制信号。
总线按照传输信号类型可以分为 数据总线、地址总线和控制总线。
总线按照连接部件可以分为内部 总线和外部总线,内部总线连接 计算机内部各部件,外部总线连
接计算机与外部设备。
主板的结构与功能
主板的结构包括
处理器插座、内存插槽、扩展插槽、硬盘接口、电源接 口等。
主板的功能包括
提供各部件之间的连接,实现数据传输和控制信号传递 ;保障系统的稳定性和可靠性;提供系统扩展能力。
I/O数据传输方式
优点
CPU可以执行其他任务,适用于高速I/O 设备。
VS
缺点
需要设置中断控制器,实现起来较为复杂 。
I/O数据传输方式
优点
CPU不直接参与数据传输,适用于大数据块 传输。
缺点
需要设置DMA控制器,成本较高。
I/O设备控制方式
要点一
优点
简单、易于实现。
要点二
缺点
CPU效率低下,适用于慢速I/O设备。
计算机组成原理(本全ppt)
• 计算机系统概述 • 中央处理器(CPU) • 存储器系统 • 输入输出系统(I/O) • 总线与主板 • 计算机系统性能评价与优化
01
计算机系统概述
计算机的发展历程

计算机组成原理-数字逻辑共80页PPT

计算机组成原理-数字逻辑共80页PPT

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
计算机组成原理-数字逻辑
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻

计算机组成原理第1章ppt课件

计算机组成原理第1章ppt课件
和电路实现。
浮点数的表示与运算
浮点数的概念
浮点数是指小数点位置可以浮 动的数,用于表示更大范围、
更高精度的数值。
浮点数的表示方法
通常采用IEEE 754标准表示, 包括符号位、指数位和尾数位 。
浮点数的加减运算
需要进行对阶、尾数加减、规 格化等步骤,同时处理溢出和 舍入等问题。
浮点数的乘除运算
需要设计高效的算法和电路实 现,包括浮点乘法、浮点除法
地址译码器
将地址寄存器中的地址转换为对 应存储单元的选择信号。
存储体
由大量存储单元组成,每个存储 单元可存放一个字节或多个字节 的数据。
读写控制电路
根据CPU的命令控制存储器的读 写操作。
主存储器的性能指标与优化
存储容量
主存储器可以容纳的二进制信息量,通常以字节(Byte)为单位进 行衡量。
存取时间
逻辑门电路
基本逻辑门电路
介绍与门、或门、非门等 基本逻辑门电路的工作原 理和实现方法。
复合逻辑门电路
讲解与非门、或非门、异 或门等复合逻辑门电路的 工作原理和实现方法。
逻辑门电路的应用
介绍逻辑门电路在数字电 路中的应用,如组合逻辑 电路的设计和实现等。
03
计算机中的数据表示
数值数据的表示
定点数表示法
计算机的发展
计算机经历了从机械式计算机、电子管计算机、晶体管计算机、集成电路计算 机到超大规模集成电路计算机的五个发展阶段。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入 输出设备等,是计算机的物理基
础。
软件系统
包括系统软件和应用软件,是计算 机的逻辑基础。
数据
是计算机处理的对象,包括数值数 据、非数值数据和多媒体数据等。

计算机组成原理3-数字逻辑

计算机组成原理3-数字逻辑

04
数字逻辑在计算机中的应 用
计算机中的基本数字逻辑单元
01
逻辑门
逻辑门是构成数字逻辑电路的基本单元,如与门、或门、非门等。它们
按照一定的逻辑关系组合,实现各种复杂的逻辑功能。
02
触发器
触发器是计算机中常用的存储单元,它能够存储一位二进制信息,具有
记忆功能。常见的触发器有RS触发器、D触发器和JK触发器等。
03
编码器与译码器
编码器用于将输入的信号或数据转换为二进制代码,而译码器则将二进
制代码转换为对应的输出信号或数据。编码器和译码器在计算机中用于
数据传输和存储。
计算机中的存储器
寄存器
寄存器是计算机中用于存储数据 的临时存储单元,其特点是存取 速度快,但容量较小。寄存器常 用于CPU内部的数据传输和运算。
THANKS
感谢观看
输出Y仅在所有输入A、B都为高 电平时为高电平。
OR门
输出Y在任一输入A、B为高电平 时为高电平。
NOT门
输出Y与输入A的电平相反。
XOR门
输出Y在输入A、B不同电平时为 高电平,相同时为低电平。
NOR门
输出Y在所有输入A、B都为低电 平时为低电平。
NAND门
输出Y在任一输入A、B为高电平 时为低电平。
05
数字逻辑的发展趋势与展 望
可编程逻辑器件的发展
现场可编程门阵列(FPGA)
FPGA是一种可由用户配置的集成电路,通过编程实现各种数字逻辑功能。随 着技术的进步,FPGA的规模和性能不断提升,应用范围越来越广泛。
专用集成电路(ASIC)
ASIC是一种定制的集成电路,针对特定应用进行优化设计。随着工艺技术的进 步,ASIC的集成度和性能得到大幅提升,同时降低了功耗和成本。

《计算机组成原理》课件

《计算机组成原理》课件
指令结束
将结果存回内存或寄存器 。
CPU的性能指标
速度
执行指令的速度,通常以MIPS(百万条 指令每秒)表示。
功耗
CPU在工作时的能耗。
集成度
CPU中晶体管的数量和密度。
可靠性
CPU在正常工作条件下无故障运行的概率 。
03
存储器
内存的分类与结构
分类
根据存储介质,内存可以分为RAM(随机存取存储器)和ROM(只读存储器)。RAM又可以分为DRAM(动态 随机存取存储器)和SRAM(静态随机存取存储器)。
谢谢您的聆听
THANKS
《计算机组成原理》ppt课件
CONTENTS
• 计算机系统概述 • 中央处理器 • 存储器 • 输入输出系统 • 总线系统 • 计算机系统可靠性及安全性
01
计算机系统概述
计算机的发展历程
机械计算机时代
1946年第一台电子计算机ENIAC诞生,占地170平方米,重30吨,运算速度5000次/秒。
晶体管计算机时代
20世纪50年代中期至60年代,计算机体积缩小,运算速度提高,可靠性增强。
集成电路计算机时代
20世纪60年代末至70年代初,微处理器出现,个人电脑开始进入市场。
大规模集成电路计算机时代
20世纪70年代中期至今,计算机体积更小,性能更高,应用领域更广泛。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入输出设备 等物理部件。
结构
内存主要由存储单元阵列、地址译码器和数据输入/输出缓冲器组成。每个存储单元阵列负责存储数据,地址译 码器负责将地址码转换为相应的存储单元的地址,数据输入/输出缓冲器则负责数据的读写操作。
内存的工作原理

《计算机组成原理》ppt课件

《计算机组成原理》ppt课件

VS
挑战
在计算机组成原理的发展过程中,面临着 许多挑战和问题,如处理器的性能和功耗 问题、存储器的速度和容量问题、系统的 可靠性和安全性问题等。这些问题需要不 断研究和探索,以推动计算机组成原理的 持续发展。
THANKS
感谢您的观看
解释定点数与浮点数的表示方法,包括整数和实数的表示。
逻辑代数基础
1 2
逻辑变量与逻辑函数
引入逻辑变量和逻辑函数的概念,为后续的逻辑 运算打下基础。
基本逻辑运算
介绍与、或、非三种基本逻辑运算及其性质。
3
复合逻辑运算
阐述其他复合逻辑运算,如异或、同或等。
逻辑门电路
基本门电路
01
介绍与门、或门、非门等基本门电路的工作原理及实现。
01
03 02
I/O接口的功能和基本结构
数据传输寄存器
命令/状态寄存器
控制逻辑电路
I/O控制方式
优点
控制简单,易于实现
缺点
CPU利用率低,实时性差
I/O控制方式
优点
提高了CPU的利用率,实时性较好
缺点
中断次数多,开销大,数据丢失问题
I/O控制方式
优点
数据传输速度快,CPU干预少
缺点
需要专门的DMA控制器,硬件开销大
指令的执行过程
取指周期
从内存中读取指令,并放入指令 寄存器IR中。
中断周期
在执行过程中,如果出现中断请 求,则进入中断周期,保存现场 信息,并转向中断服务程序。
分析周期
对取回的指令进行分析,确定指 令的操作性质和操作数地址。
执行周期
根据分析结果,执行相应的操作 ,如算术运算、逻辑运算、数据 传输等。

计算机组成原理(本全)ppt课件

计算机组成原理(本全)ppt课件

定点数的加减法实现
通过硬件电路实现定点数的加减法,包括加 法器、减法器等。
浮点数的加减运算
浮点数的表示方法
包括IEEE 754标准中浮点数的表示方法、规格化表示 和精度。
浮点数的加减法规则
包括阶码和尾数的运算规则、对阶操作、尾数加减运 算和结果规格化等。
浮点数的加减法实现
通过硬件电路实现浮点数的加减法,包括浮点加法器 、浮点减法器等。
指令的执行过程与周期
指令执行过程
取指、译码、执行、访存、写回等阶段 。
VS
指令周期
完成一条指令所需的时间,包括取指周期 、间址周期、执行周期等。
07
中央处理器(CPU)
CPU的功能与组成
控制器
负责指令的取指、译码和执行,控制 数据和指令在CPU内部的流动。
运算器
执行算术和逻辑运算,包括加、减、 乘、除、与、或、非等操作。
多核处理器与并行计算
多核处理器
将多个处理器核心集成在一个芯片上,每个核心可以独立执行指令,提高处理器的并行 处理能力。
并行计算
利用多核处理器或多个处理器同时处理多个任务或数据,加速计算过程,提高计算效率 。
08
输入输出系统
I/O接口与I/O设备
I/O接口的功能
实现主机与外设之间的信息交换,包括数据 缓冲、信号转换、设备选择等。
乘法与除法运算
浮点数的乘除法运算
包括浮点数的乘法、除法和平方根运算等。
定点数的乘除法运算
包括原码一位乘法、补码一位乘法、原码除 法和补码除法等。
乘除法运算的实现
通过硬件组成与设计
运算器的基本组成
包括算术逻辑单元(ALU)、寄存器组、数据总线等。
运算器的设计原则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基本运算规则 从三种基本的逻辑关系出发,我们可
以得到以下逻辑运算结果:
0• 0=0 • 1=1 • 0=0 0+0=0 0+1=1+0=1+1=1
1 • 1=1
1 0 01
(1-21)
A+0=A A ·0 =0 ·A=0 AA1
A A0
A A
A+1=1 A ·1=A
AAA
AAA
(1-22)
二、基本代数规律
A/D转换器、D/A转换器
数字电子技术是一门研究用数字电信号来实现运算、 控制和测量的技术。
(1-8)
4.数字电路的特点:
1. 工作信号——不连续变化的离散(数字)信号 2. 主要研究对象——电路输入/输出之间的逻辑关系 3. 主要分析工具——逻辑代数 4. 主要描述工具——逻辑表达式、真值表、卡诺图、
交换律 A+B=B+A A• B=B • A
结合律 A+(B+C)=(A+B)+C=(A+C)+B
A• (B • C)=(A • B) • C
分配律
A(B+C)=A • B+A • C A+B • C=(A+B)(A+C)
普通代 数不适 用!
(1-23)
三、吸收规律 1.原变量的吸收: A+AB=A 证明:A+AB=A(1+B)=A•1=A 利用运算规则可以对逻辑式进行化简。 例如:
1 F
与或非
F3=AB+CD
(1-19)
异或运算
AB F 00 0 01 1 10 1 11 0
逻辑表达“式”运异算或符逻逻辑辑符号
A =1
F=AB=AB+AB
B
同或运算
AB 00
F 1
逻辑表达“式⊙”运同算或符逻逻辑辑符号
01 10
0 0
F=A B= AB
A B
=1
11 1
F
F
(1-20)
1.3 逻辑代数的运算规则和基本定律
–模拟电路: 处理模拟信号的电路,如:运算放大器 在模拟电路中,晶体管一般工作在放大 状态。
(1-5)
数字信号: 数字信号 产品数量的统计。 数字表盘的读数。 数字电路信号: u
t
(1-6)
模拟电路与数字电路的区别
1. 工作任务不同:
模拟电路研究的是输出与输入信号之间的大小、 相位、失真等方面的关系;数字电路主要研究的 是输出与输入间的逻辑关系(因果关系)。
(1-2)
1.1.2 数字信号和模拟信号

模拟信号


随时间连续变化的信号




数字信号

时间和幅度都是离散的
(1-3)
模拟信号: 正弦波信号 u
锯齿波信号
u
t t
(1-4)
研究模拟信号时,我们注重电路 输入、输出信号间的大小、相位关系。 相应的电子电路就是模拟电路,包括 交直流放大器、滤波器、信号发生器 等。
逻辑非 逻辑反
真值表
(1-17)
二、几种常用的复合逻辑关系逻辑
“与”、“或”、“非”是三种基本的 逻辑关系,任何其它的逻辑关系都可以以 它们为基础表示。
与非:条件
A、B、C都具 备,则F 不发 生。
A
F1 A•B•C
B C
&F
(1-18)
或非:条件
A、B、C任一 具备,则F不 发生。
A
FABC
B C
(1-12)
逻辑式 F=A•B•C
A BC F 00 0 0 00 1 0 01 0 0 01 1 0 10 0 0 10 1 0 11 0 0 11 1 1
逻辑乘法 逻辑与 真值表
(1-13)
(2)“或”逻辑
A、B、C只有一个条件具备时,事件F就 发生。
A
逻辑符号
B
E
C
F
A B
1 F
C
(1-14)
§ 1.1 数字电路的基础知识
– 数字量和模拟量
– 模拟量: 可以在一定范围内取任意实数值的物理量, 如:温度、压力、距离和时间等。 – 数字量: 在时间上和数量上都是离散的物理量, 如:自动生产线上的零件记录量,台阶的阶数
– 数字信号和模拟信号
– 模拟信号:表示模拟量的电信号,如:热电 偶的电压信号,温度变化时,电压随之改变
– 数字信号:表示数字量的电信号
(1-1)
§ 1.1 数字电路的基础知识 1.1.1 数字量和模拟量
模拟量 时间上、数量变化上都是连续的物理量; 表示模拟量的信号叫做模拟信号; 工作在模拟信号下的电子电路称为模拟电路。
数字量 时间上、数量变化上都是离散的物理量; 表示数字量的信号叫做数字信号; 工作在数字信号下的电子电路称为数字电路。
逻辑式 F=A+B+C
A BC F 00 0 0 00 1 1 01 0 1 01 1 1 10 0 1 10 1 1 11 0 1 11 1 1
逻辑加法 逻辑或
真值表
(1-15)
(3)“非”逻辑
A条件具备时 ,事件F不发生;A不具备 时,事件F发生。
R
逻辑符号
EAFຫໍສະໝຸດ (1-16)逻辑式
FA
AF 01 10
2. 三极管的工作状态不同:
模拟电路中的三极管工作在线性放大区,是一 个放大元件;数字电路中的三极管工作在饱和 或截止状态,起开关作用。
因此,基本单元电路、分析方法及研究的范围
均不同。
(1-7)
3.数字电路研究的问题
基本电路元件
逻辑门电路
基本数字电路
触发器
组合逻辑电路
时序电路(寄存器、计数器、脉冲发生器、脉冲整 形电路)
A B C D AD B (E F )A B CD
在逻辑代数中,逻辑函数的变量只能 取两个值(二值变量),即0和1,中间值 没有意义,这里的0和1只表示两个对立的 逻辑状态,如电位的低高(0表示低电位, 1表示高电位)、开关的开合等。
(1-11)
基本逻辑关系:
(1)“与”逻辑 A、B、C条件都具备时,事件F才发生。
A BC
E
F
逻辑符号
A B
&F
C
• 目前,逻辑代数已成为研究数字系统逻辑设计 的基础理论。无论何种形式的数字系统,都是 由一些基本的逻辑电路所组成的。为了解决数 字系统分析和设计中的各种具体问题,必须掌 握逻辑代数这一重要数学工具。
(1-10)
一、 逻辑代数与基本逻辑关系
在数字电路中,我们要研究的是电路 的输入输出之间的逻辑关系,所以数字电 路又称逻辑电路,相应的研究工具是逻辑 代数(布尔代数)。
逻辑图、时序波形图、状态转换图等。
(1-9)
§ 1.2 逻辑代数的三种基本运算
• 逻辑代数首先是由英国数学家乔治·布尔 (George Boole)[1815~1864年]奠定的,因此 又称为布尔代数;布尔代数的二值性质应用于 两态元件组成的数字电路(开关电路)尤为适合, 自从布尔代数用于开关数字电路之后,又被称 为开关代数。所以逻辑代数、布尔代数、开关 代数都是指同一概念。
相关文档
最新文档