2019-2020年高一数学 4.2弧度制(第一课时) 大纲人教版必修

合集下载

弧度制课件-高一数学人教A版(2019)必修第一册

弧度制课件-高一数学人教A版(2019)必修第一册
18
课堂精炼
【训练 3】 已知扇形 AOB 的周长为 10 cm. (1)若这个扇形的面积为 4 cm2,求扇形圆心角的弧度数; (2)求该扇形的面积取得最大值时圆心角的大小及弧长.
解 设扇形圆心角的弧度数为 θ(0<θ<2π), 弧长为 l,半径为 r,面积为 S,
l+2r=10,① (1)依题意有12lr=4,② ①代入②得 r2-5r+4=0,解得 r=1 或 r=4.
5.1.2弧度制
题型二 用弧度制表示角的集合
数学
8
知识梳理
弧度数 (1)正角:正角的弧度数是一个正数. (2)负角:负角的弧度数是一个负数. (3)零角:零角的弧度数是 0. (4)如果半径为 r 的圆的圆心角 α 所对弧的长为 l,那么,角 α 的 弧度数的绝对值是|α|=rl.
9
课堂精讲
【例 2】 用弧度表示顶点在原点,始边重合于 x 轴的非负 半轴,终边落在阴影部分内的角的集合(不包括边界,如图). 解 (1)以 OA 为终边的角为π6+2kπ(k∈Z), 以 OB 为终边的角为-23π+2kπ(k∈Z), 所以阴影部分(不包括边界)内的角的集合为 α|-23π+2kπ<α<π6+2kπ,k∈Z. (2)终边落在阴影部分(不含边界)的角的集合是 α|23π+2kπ<α<76π+2kπ,k∈Z.
–1
2
S=5r-r2
课堂小结
1.通过本节课的学习,重点提升学生的数学抽象、数学 运算素养. 2.本节课主要讲述角度制与弧度制的互化和利用弧长公 式、面积公式解决有关计算问题.
21
本内容结束
22
13
先按 x2 项的系 数a的符号分类, 即a>0, a=0, a<0. 再按方程 ax2+bx+c=0的根 x1, x2的大小来分 类, 即x1<x2, x1=x2, x1>x2.

弧度制(课件)高一数学(人教A版2019必修第一册)

弧度制(课件)高一数学(人教A版2019必修第一册)
2 故该扇形的面积的最大值为245cm2,取得最大值时圆心角为 2 rad,弧长为 5 cm.
当堂达标
1.圆的半径为 r,该圆上长为32r 的弧所对的圆心角是(
)
2 A.3 rad
B.32 rad
2π C. 3 rad
D.32π rad
3 B 解析:由弧度数公式 α=rl,得 α=2rr=32,因此圆弧所对的圆心角是32 rad.
显然1π2<1π0<1<71π2. 故 α<β<γ<θ=φ.
显然,15°<18°<57.30°<105°. 故 α<β<γ<θ=φ.
经典例题
题型一 角度制与弧度制的互化
(2)-1 480°=-1 480×1π80=-749π=-10π+169π, 其中 0≤169π<2π, 因为169π是第四象限角, 所以-1 480°是第四象限角.
经典例题
题型二 用弧度制表示终边相同的角
跟踪训练2
用弧度制表示终边落在如图(右)所示阴影部分内的角 θ 的集合.
解:终边落在射线 OA 上的角为 θ=135°+k·360°,k∈Z, 即 θ=34π+2kπ,k∈Z. 终边落在射线 OB 上的角为 θ=-30°+k·360°,k∈Z, 即 θ=-6π+2kπ,k∈Z,
1.角度制:
(1)定义:用 度 作为单位来度量角的单位制.
1
(2)1 度的角:周角的 360 . 2.弧度制:
(1)定义:以 弧度 作为单位来度量角的单位制.
(2)1 弧度的角:长度等于半径长的圆弧所对的圆心角.
自主学习
3.弧度数
一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的
弧度数是 0 . 如果半径为 r 的圆的圆心角 α 所对的弧长为 l,那么,角 α 的弧度数的绝 l

【2019-2020高一数学课件】人教A版数学必修4第一章1.1.2 弧度制 复习课件

【2019-2020高一数学课件】人教A版数学必修4第一章1.1.2 弧度制    复习课件

知识点四
弧度制下的弧长与扇形面积公式
[填一填] 扇形的半径为 R,弧长为 l,α(0<α<2π)为圆心角,则扇形弧 长为 l= αR ,周长为 l+2R ,扇形面积 S=
1 2lR =
12αR2 .
[答一答] 6.角度制下的弧长公式和扇形面积公式是什么?与弧度制 下的公式相比哪个更优化一些?
提示:角度制下:弧长公式 l=n1π8R0,扇形面积公式 S=n3π6R02.
在 Rt△AOC 中,OA=sin∠1AOC=si1n1. ∴圆心角所对的弧长 l=α·OA=si2n1,故选 C.
(2)解:①设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l,半 l+2r=10,①
径为 r,依题意有12lr=4.② ①代入②得 r2-5r+4=0,解得 r1=1,r2=4. 当 r=1 时,l=8(cm),此时,θ=8 rad>2π rad 舍去. 当 r=4 时,l=2(cm),此时,θ=24=12 rad.
提示:正确.角 α=6 表示 6 弧度的角,这里将“弧度”省 去了.
知识点三
角度与弧度的互化 [填一填]
[答一答] 5.在同一个式子中,角度制与弧度制能否混用?为什么?
提示:不能.因为角度制和弧度制是表示角的两种不同的度 量方法,两者有着本质的不同,因此在同一个表达式中不能出现 两种度量方法的混用,如 α=2kπ+30°,k∈Z 是不正确的写法, 应写成 α=2kπ+π6,k∈Z 或 k·360°+30°,k∈Z.
——本课须掌握的三大问题 1.角的概念推广后,在弧度制下,角的集合与实数集 R 之 间建立起一一对应的关系:每一个角都有唯一的一个实数(即这 个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一 个角(即弧度数等于这个实数的角)与它对应.

弧度制课件-高一数学人教A版(2019)必修第一册

弧度制课件-高一数学人教A版(2019)必修第一册

(1)-1500°=__________;
(2)67°30′=__________.
解析:(1)-1500°=-1500×1π80=-235π.
(2)67°30′=67.5°=67.5×1π80=38π.
答案:(1)-253π
3π (2) 8
学习任务二 用弧度制表示角的集合
[例2] (链接教材P175T3)把下列角化成2kπ+α(0≤α<2π,k∈Z)的形式,指出它是第
[微体验] 3.弧长为3π,圆心角为135°的扇形的半径为__________,面积为__________.
解析:135°=113850π=34π,所以扇形的半径为33ππ=4,面积为12×3π×4=6π. 4
答案:4 6π
合作探究·深化提能
学习任务一 角度与弧度的换算 [例1] (链接教材P173例4)将下列角度与弧度进行互化: (1)5611π;(2)-71π2;(3)10°;(4)-855°. 解:(1)5611π=5161π×1π80°=15 330°. (2)-71π2=-71π2×1π80°=-105°. (3)10°=10×1π80=1π8. (4)-855°=-855×1π80=-194π.
解析:设原来圆的半径为 r,弧长为 l,弧所对的圆心角为 α(0<α<2π),则现在的圆的
半径为 3r,弧长为 l.设弧所对的圆心角为 β(0<β<2π),于是 l=αr=β·3r,所以 β=13α. 答案:13
1
2
3
4
5
6
78
9
10
11
12
13
9.已知 α=-800°. (1)把 α 改写成 β+2kπ(k∈Z,0≤β<2π)的形式,并指出 α 是第几象限角; (2)求角 γ,使 γ 与角 α 的终边相同且 γ∈-π2,π2. 解:(1)因为-800°=-3×360°+280°,280°=149π, 所以 α=149π+(-3)×2π. 因为角 α 与149π终边相同,所以角 α 是第四象限角.

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

第22讲弧度制模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换;2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系;3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点1角度制与弧度制的概念1、角度制:规定周角的1360为1度的角,这种用度作为单位来度量角的单位制叫做角度制.2、弧度制的有关概念为了使用方便,数学上采用另一种度量角的单位制——弧度制.(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.(2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:用符号rad表示,读作弧度.如图,在单位圆O中, AB的长度等于1,∠AOB就是1弧度的角.3、弧度制与角度制的区别与联系区别(1)单位不同,弧度制以“弧度”为度量单位,角度制以“度”为度量单位;(2)定义不同.联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值.【注意】用弧度制表示角时,“弧度”二字可以省略不写;用角度制表示角时单位“°”不能丢.知识点2角度制与弧度制之间的互化1、角度制与弧度制的换算2度0°30°45°60°90°120°135°150°180°270°360°弧度6π4π3π2π32π43π65ππ23ππ23、角的集合与实数集R 的关系角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系,如图,每个角都是唯一的实数(等于这个角的弧度数)与它对应;反之,每一个实数也都有唯一的一个角(即弧度数等于这个实数的交)与之对应.知识点3弧长与扇形面积公式1、弧长与扇形面积公式的两种表示类别/度量单位角度制弧度制扇形的弧长180n R l π=l R α=扇形的面积2360n R S π=21122S lR R α==【注】扇形的半径为R ,弧长为l ,)20(παα<<或n °为其圆心角.2、弧长公式与扇形面积公式的注意事项(1)在应用公式时,要注意α的单位是“弧度”;(2)在弧度制下的扇形面积公式12S lR =,与三角形面积公式12S ah =的形式相似,可类比记忆.考点一:角度制与弧度制概念辨析例1.(23-24高一下·陕西·月考)已知相互啮合的两个齿轮,大轮50齿,小轮20齿,当小轮转动一周时大轮转动的弧度数是()A.4π5B.5π4C.π5D.5π【答案】A【解析】小齿轮转动一周时,大齿轮转动202 505=周,故其转动的弧度数是24π2π55⨯=.故选:A.【变式1-1】(23-24高一上·全国·专题练习)(多选)下列各说法,正确的是()A.半圆所对的圆心角是πradB.圆周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】ABC【解析】由弧度制的定义可知:长度等于半径的弧所对的圆心角的大小是1弧度,则长度等于半径的弦所对的圆心角的大小不是1弧度,D的说法错误,根据弧度的定义及角度与弧度的换算可知,ABC的说法正确.故选:ABC【变式1-2】(22-23高一上·上海松江·期末)下列命题中,正确的是()A.1弧度的角就是长为半径的弦所对的圆心角B.若α是第一象限的角,则π2α-也是第一象限的角C .若两个角的终边重合,则这两个角相等D .用角度制和弧度制度量角,都与圆的半径有关【答案】B【解析】1弧度的角就是长为半径的弧所对的圆心角,A 选项错误;若α是第一象限的角,则α-是第四象限的角,所以π2α-+是第一象限的角,B 选项正确;当30α= ,390β= 时,α与β终边重合,但两个角不相等,C 选项错误;不论是用角度制还是弧度制度量角,由角度值和弧度值的定义可知度量角与所取圆的半径无关,D 选项错误.故选:B【变式1-3】(22-23高一下·江西萍乡·期中)(多选)下列说法中正确的是()A .度与弧度是度量角的两种不同的度量单位B .1度的角是周角的1360,1弧度的角是周角的12πC .根据弧度的定义,180︒一定等于π弧度D .不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC【解析】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.考点二:角度制化为弧度制例2.(23-24高一下·北京房山·期中)300o 化成弧度是()A .5π3B .π611C .7π6D .7π4【答案】A【解析】因为180π= ,所以3π5π300300180=⨯=.故选:A 【变式2-1】(23-24高一上·安徽亳州·期末)将315- 化为弧度制,正确的是()A .3π4-B .7π4-C .45π-D .5π3-【答案】B【解析】7π3153151804π-=-⨯=-.故选:B 【变式2-2】(23-24高一上·新疆乌鲁木齐·月考)(多选)把495- 表示成2πk θ+,Z k ∈的形式,则θ值可以是()A .5π4B .5π4-C .3π4D .3π4-【答案】AD【解析】根据角度制与弧度制的互化公式,可得11π4954-=-,再由终边相同角的表示,可得11π3π5π2π4π444-=--=-,所以11π4-与3π4-和5π4的终边相同.故选:AD.【变式2-3】(23-24高一上·广东·月考)(多选)下列各角中,与角495︒终边相同的角为()A .3π4B .5π4-C .9π4-D .13π4【答案】AB【解析】对于A ,495360135︒=︒+︒,3π1354︒=,故A 正确;对于B ,与3π4终边相同的角为324k παπ=+,k ∈Z ,当1k =-时,5π4α=-,故B 正确;对于C ,令3π9π2π44k +=-,解得32k =-∉Z ,故C 错误;对于D ,令3π13π2π44k +=,解得54k =∉Z ,故D 错误.故选:AB.考点三:弧度制化为角度制例3.(23-24高一上·湖南株洲·月考)把5π4化成角度是()A .45︒B .225︒C .300︒D .135︒【答案】B【解析】5π5π18022544π︒=⨯=︒.故选:B 【变式3-1】(23-24高一上·广东汕头·月考)5π12化为角度是()A .60︒B .75︒C .115︒D .135︒【答案】B 【解析】5π5180751212=⨯︒=︒.故选:B 【变式3-2】(23-24高一上·广东汕头·月考)3rad 是第()象限角A .一B .二C .三D .四【答案】B【解析】π180rad = ,540903180πrad ⎛⎫∴<=< ⎪⎝⎭为第二象限角.故选:B【变式3-3】(22-23高一上·北京·期末)下列与7π4的终边相同的角的表达式中,正确的是()A .()2π315Z k k +∈B .()36045Z k k ⋅-∈C .()7π360Z 4k k ⋅+∈D .()5π2πZ 4k k +∈【答案】B【解析】因为7πrad 3154=,终边落在第四象限,且与45- 角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==-+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.考点四:扇形弧长的相关计算例4.(23-24高一上·云南曲靖·月考)半径为3cm ,圆心角为210°的扇形的弧长为()A .630cmB .7cm6C .7πcm 6D .7πcm 2【答案】D【解析】圆心角210︒化为弧度为7π6,则弧长为7π7π3cm 62⨯=.故选:D 【变式4-1】(23-24高一上·广东深圳·期末)若扇形的面积为1,且弧长为其半径的两倍,则该扇形的周长为()A .1B .2C .4D .6【答案】C【解析】设扇形的半径为r ,圆心角为α,则弧长2l r r α==,所以2α=,扇形的面积22112S r r α===,解得1r =或1r =-(舍去),所以2l r α==,则该扇形的周长为24r l +=.故选:C【变式4-2】(23-24高一下·江西景德镇·期中)古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的扇面多为扇环形.已知某纸扇的扇面如图所示,其中外弧长与内弧长之和为89cm ,连接外弧与内弧的两端的线段长均为18cm ,且该扇环的圆心角的弧度数为2.5,则该扇环的外弧长为()A .63cmB .65cmC .67cmD .69cm【答案】C【解析】设该扇环的内弧的半径为r cm ,则外弧的半径为()18cm r +,圆心角 2.5α=,所以()1889r r αα++=,即()2.5 2.51889r r ++=,解得8.8r =,所以该扇环的外弧长()()2.518 2.58.81867cm l r =+=+=.故选:C【变式4-3】(23-24高一下·山东烟台·月考)《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为)1.41≈()A.1.01米B.1.76米C.2.04米D.2.94米【答案】B【解析】由题意可知,“弓”所在圆的弧长为 ππ5π2488BC=⨯+=,由弧度数公式得5ππ81.252lBOCr∠===,即BOC为等腰直角三角形,所以π4OBC∠=,则掷铁饼者双手之间的距离()5 1.41 1.76mπ44sin4rBC==≈⨯≈.故选:B.考点五:扇形面积的相关计算例5.(23-24高一下·广东韶关·月考)已知扇形的圆心角为2弧度,其弧长为8m,则该扇形的面积为()A.28m B.212m C.216m D.232m【答案】C【解析】由扇形的圆心角为2弧度,其弧长为8m,得扇形所在圆半径4m=r,所以该扇形的面积148162S=⨯⨯=(2m).故选:C【变式5-1】(23-24高一上·云南昆明·期末)已知某扇形的圆心角是3π8,半径为4,则该扇形的面积为.【答案】3π【解析】由扇形的圆心角是3π8,半径为4,则该扇形的面积为23π43π812S ⨯⨯==.故答案为:3π.【变式5-2】(22-23高一下·河南南阳·期中)圆环被同圆心的扇形截得的一部分叫做扇环.如图所示,扇环ABCD 的内圆弧AB 的长为2π3,外圆弧CD 的长为4π3,圆心角2π3AOB ∠=,则该扇环的面积为()A .πB .π2C .4π3D .2π3【答案】A【解析】由扇形面积公式2122l S lr α==(其中l 为扇形弧长,α为扇形圆心角,r 为扇形半径)可得,扇环面积22214π2π34ππ2334π3S α⎡⎤⎛⎫⎛⎫'=-=⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:A 【变式5-3】(23-24高一下·河南驻马店·月考)如图,在菱形ABCD 中,45A ∠=︒,1A ,1B ,1C ,1D 分别是边AB ,BC ,CD ,DA 的中点,以点A 为圆心,以1AA ,2AA 为半径作出两段圆弧,与AD 分别交于点1D ,3A ,分别以B ,C ,D 为圆心,用同样方法作出如图阴影部分的扇环,其中121212121A A B B C C D D ====.若扇环1231A A A D 的周长为7π24+,则扇环1231B B B A 的面积为()A .3πB .21π8C .7π8D .3π4【答案】B【解析】设2AA r =,则11AA r =+,因为扇环1231A A A D 的周长为7π24+,所以:()ππ7π122444r r +++=+⇒3r =.所以扇环1231B B B A 的面积为:2213π13π432424⋅⋅-⋅⋅21π8=.故选:B考点六:扇形周长、面积的最值例6.(23-24高一下·重庆璧山·月考)已知某扇形的周长是24,则该扇形的面积的最大值是()A .28B .36C .42D .50【答案】B【解析】设扇形的弧长为l ,半径为r ,则224l r +=,所以扇形的面积22111212123624424l r S lr l r +⎛⎫==⋅≤=⨯= ⎪⎝⎭,当且仅当2l r =,即12,6l r ==时取等号,所以该扇形的面积的最大值是36,故选:B【变式6-1】(23-24高一上·江苏南京·期末)(多选)已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是()A .该扇形面积的最小值为8B .当扇形周长最小时,其圆心角为2C .2r l +的最小值为9D .2214r l+的最小值为12【答案】BCD【解析】由题意,知2r l rl +=,则(),22lr l l =>-,所以扇形面积22111(2)4(2)422222l l l S rl l l -+-+==⋅=⋅--1411[(2)4]4)(44)42222l l =-++≥⨯=⨯+=-,当且仅当422l l -=-,即4l =时,等号成立,选项A 错误;扇形周长为()()22242422222l l l l r l l l l l -+-++=+==---4(2)44482l l =-++≥+=-,当且仅当422l l -=-,即4l =时,等号成立,此时,圆心角为422l r==,选项B 正确;()()()222522222522222l l l l l l r l l l -+-+=-+=+=--++-5459≥=+=当且仅当()2222l l -=-,即3l =时,等号成立,选项C 正确;()22222222144841118421l r l l l l l l -⎛⎫+=+=-+=-+ ⎪⎝⎭,当114l =时,上式取得最小值为12,选项D 正确.故选:BCD.【变式6-2】(23-24高一上·云南曲靖·期末)已知一扇形的圆心角为α(α为正角),周长为C ,面积为S ,所在圆的半径为r .(1)若36α=︒,10cm r =,求扇形的弧长;(2)若4cm C =,求S 的最大值及此时扇形的半径和圆心角.【答案】(1)()2πcm ;(2)S 的最大值为1,此时扇形的半径是1cm ,圆心角2rad .【解析】(1)π13636rad πrad 1805α=⨯=︒=,扇形的弧长()1π102πcm 5l r α==⨯=;(2)设扇形的弧长为l ,半径为r ,则24r l +=,()4202l r r ∴=-<<,则()()22114221122S lr r r r r r ==-=-+=--+,当1r =时,2max 1cm S =,此时4212cm l =-⨯=,2lrα==,S ∴的最大值是21cm ,此时扇形的半径是1cm ,圆心角2rad α=.【变式6-3】(23-24高一下·河南南阳·月考)已知一扇形的圆心角为()0αα>,半径为R ,面积为S ,周长为L .(1)若24cm S =,则扇形圆心角α为多少弧度时,L 最小?并求出L 的最小值;(2)若10cm L =,则扇形圆心角α为多少弧度时,S 最大?并求出S 的最大值.【答案】(1)2rad α=,最小值为8cm ;(2)2rad α=,最大值为225cm 4.【解析】(1)2214cm 2S R α== ,28Rα∴=则288222L R R R R R R Rα=+=+⋅=+.由基本不等式可得828R R +≥=,当且仅当82R R =,即2R =时等号成立,此时2822α==.∴当2rad α=时,L 最小,最小值为8cm .(2)210cm L R R α=+= ,102RRα-∴=.22221110252552224R S R R R R R R α-⎛⎫==⋅⋅=-+=--+ ⎪⎝⎭.当52R =,即2α=时,max 254S =.∴当2rad α=时,S 最大,最大值为225cm 4.一、单选题1.(23-24高一上·贵州黔南·315︒化为弧度是()A .π4-B .7π4C .11π6D .5π3【答案】B 【解析】3157315ππ1804︒==.故选:B 2.(23-24高一上·江苏徐州·月考)把2π3弧度化成角度是()A .30︒B .60︒C .90︒D .120︒【答案】D【解析】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.(22-23高一上·广东深圳·期末)在半径为2的圆中,弧长为π的弧所对的圆心角为()A .60︒B .90︒C .120︒D .180︒【答案】B【解析】弧长为π的弧所对的圆心角为πrad 902︒=,故选:B 4.(23-24高一下·辽宁大连·月考)已知扇形的弧长为2π,半径为3,则扇形的面积为()A .πB .3π2C .3πD .6π【答案】C【解析】由扇形的面积可得,112π33π22S lr ==⨯⨯=.故选:C 5.(23-24高一下·内蒙古赤峰·月考)已知扇形的半径为2,圆心角为2弧度,则此扇形的弧长为()A .4B .6C .8D .10【答案】A【解析】因为半径2r =,圆心角=2α,所以根据弧长公式l r α=得4l =.故选:A.6.(23-24高一上·陕西铜川·月考)已知一扇形的周长为40,当扇形的面积最大时,扇形的圆心角等于()A .2B .3C .1D .4【答案】A【解析】设扇形所在圆半径为r ,则该扇形弧长402l r =-,020r <<,于是该扇形的面积21(20)(10)1001002S rl r r r ==-=--+≤,当且仅当10r =时取等号,所以当10r =时,扇形的面积最大,此时扇形的圆心角等于2lr=.故选:A 二、多选题7.(23-24高一下·安徽淮北·)A .120-︒化成弧度是2πrad3-B .πrad 10化成角度是18°C .1 化成弧度是180rad D .10πrad 3-化成角度是60-︒【答案】AB【解析】对于A 项,因π2120120πrad 1803-︒=-⨯=-,故A 项正确;对于B 项,因ππ180rad=(181010π⨯=,故B 项正确;对于C 项,因ππ11rad rad 180180=⨯=,故C 项错误;对于D 项,因1010180πrad π(60033π-=-⨯=-,故D 项错误.故选:AB.8.(23-24高一下·湖南·期中)已知某扇形的周长和面积均为18,则扇形的圆心角的弧度数可能为()A .4B .3C .2D .1【答案】AD【解析】设扇形的半径为r ,弧长为l ,圆心角为α,根据扇形的周长和面积均为18,则2181182l r lr +=⎧⎪⎨=⎪⎩,解得312r l =⎧⎨=⎩或66r l =⎧⎨=⎩,则4lrα==或1.故选:AD .三、填空题9.(23-24高一下·河南驻马店·月考)已知某扇形的半径为42,周长为122,则该扇形的面积为.【答案】16【解析】设扇形的弧长为l ,依题意,242122l ⨯+=,解得42l =.故该扇形的面积为14242162⨯⨯=.故答案为:16.10.(23-24高一下·河南南阳·月考)以密位作为角的度量单位,这种度量角的单位制,叫作角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数之间画一条短线,如5密位写成“005-”,235密位写成“235-”,1246密位写成“1246-”.1周角等于6000密位,写成“6000-”.已知某扇形中的弧的中点到弧所对的弦的距离等于弦长的36,则该扇形的圆心角用密位制表示为.【答案】2000-【解析】如图,C 是弧AB 的中点,由题意可得3363CD AB BD ==,即3=BD CD .因为AB CD ⊥,所以π6CBD ∠=,所以同弧所对圆心角π3AOC ∠=,所以2π2π60002000332πAOB ∠==⨯=,即该扇形的圆心角用密位制表示为2000-.故答案为:2000-11.(23-24高一下·江西乙醇·dm ,宽为1dm 的长方体木块在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方体木块底面与桌面所成的角为π6,求点A 走过的路程为.()dm【解析】第一次是以B 为旋转中心,以2BA ==为半径旋转90︒,此次点A 走过的路径是π2π2⨯=,第二次是以C 为旋转中心,以11CA =为半径旋转90︒,此次点A 走过的路径是ππ122⨯=,第三次是以D 为旋转中心,以2DA =60︒,此次点A 走过的路径是π3=∴点A 三次共走过的路径是()3π9πdm 236++=,()dm .四、解答题12.(23-24高一下·辽宁辽阳·期中)如图,这是一个扇形环面(由扇形OCD 挖去扇形OAB 后构成)展台,4=AD 米.(1)若2π3COD ∠=,2OA =米,求该扇形环面展台的周长;(2)若该扇形环面展台的周长为14米,布置该展台的平均费用为500元/平方米,求布置该扇形环面展台的总费用.【答案】(1)16π83+米;(2)6000元【解析】(1)弧AB 的长度14π3l =,弧CD 的长度212π3l =,所以扇形环面展台周长为:1216π2483l l ++⨯=+米;(2)设COD θ∠=,OA r =米,则弧AB 的长度1l r θ=,弧CD 的长度()244l r r θθθ=+=+,因为该扇形环面的周长为14米,所以124214l l ++⨯=,即4814r r θθθ+++=,整理得23r θθ+=,则该扇形环面展台的面积:()2211(4)48421222S r r r r θθθθθθ=+-=+=+=平方米,所以布置该扇形环面展台的总费用为:125006000⨯=元.13.(23-24高一上·安徽淮北·月考)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若3πα=,10cm R =,求扇形的弧长l .(2)若扇形的周长是20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若,2cm 3R πα==,求扇形的弧所在的弓形的面积.【答案】(1)10cm 3π;(2)2α=时,面积最大;(3)23π⎛⎝cm 2.【解析】(1)由,10cm 3R πα==,则扇形的弧长101033l R ππα==⨯=(cm).(2)由已知得,220l R +=,则202l R =-,∴()()22022111202252242R R S lR R R -+⎡⎤==-⋅≤=⎢⎥⎣⎦当且仅当2022R R -=,即5R =时扇形的面积最大,此时圆心角1025α===l R .(3)设弓形面积为S 弓形,由,2cm 3R πα==,得()2cm 3l R πα==,所以22121222sin cm 23233S πππ⎛=⨯⨯-⨯⨯= ⎝弓形.。

2019-2020年新人教B版高中数学(必修4)1.1.2《弧度制和弧度制与角度制的换算》word教案

2019-2020年新人教B版高中数学(必修4)1.1.2《弧度制和弧度制与角度制的换算》word教案

2019-2020年新人教B版高中数学(必修4)1.1.2《弧度制和弧度制与角度制的换算》word教案一、教学目标1.知识目标:①了解弧度制,能进行弧度与角度的换算.②认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.2. 能力目标:①了解弧度制引入的必要性及弧度制与角度制的区别与联系.②了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.③通过角度制与弧度制的换算,对学生进行算法训练,提高学生的计算能力.3.情感目标:使学生认识到角度制、弧度制都是角的度量制度,二者虽单位不同,但是二者相互联系、辩证统一. 进一步加强学生对辩证统一思想的理解.二、教学重点、难点重点:了解弧度制,并能进行弧度与角度的换算.难点:弧度的概念及其与角度的关系.三、教学方法自学—讨论—讲授—练习先由学生自学,而后教师设置一些问题供学生思考,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.四、教学过程读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.②平角、周角的弧度数:平角= rad 、周角=2 rad ③正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0④角的弧度数的绝对值 r l=α(l 为弧长,r 为半径) 3.角度制与弧度制的换算:∵ 360=2 rad∴180= rad∴ 1=rad rad 01745.0180≈π '185730.571801=≈⎪⎭⎫ ⎝⎛=πrad 4. 用弧度制表示弧长及扇形面积 公式:① 弧长公式:α⋅=r l 由公式:⇒=rlα α⋅=r l 比公式180rn l π=简单。

必修四1.1.2弧度制第一课时[PPT课件]人教版高中数学

必修四1.1.2弧度制第一课时[PPT课件]人教版高中数学

例题
例 2 把下列各角的弧度化为度数。
5
(3) ;
12
方法:乘以

(4) 。
4
180 0

2019/8/8
20
解 (3)
5 180 5 75 12 12
(4) 180 45 44

角度制与弧度制互化时要抓住 180°= rad 这个关键。
2019/8/8
360
角的大小; 1弧度≠1º (3)以弧度和度为单位的角,都是一个与半 径无关的定值。
2019/8/8
用弧度制表示弧长公式:
① 弧长公式: l r
由公式: l l r
r
比公式
l nr
180
简单.
弧长等于弧所对的圆心角弧度的绝对值
与半径的积.
2019/8/8
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.2019为/8/8第四象限角,则2 在
.
练习 已知
则:
A | 2 (2k 1) ( ) B | 6 6
A B | 6 ,或0
2r
逆时针 顺时针 逆时针 逆时针
未做旋转
顺时针 逆时针 逆时针

2
1
-2
0

2
角AOB的度数
1800
3600
180 0



2

180
0

00
1800
1800
3600
2019/8/8
弧度制与角度制相比:
(1) 弧度制是以“弧度”为单位的度量角的单 位制,角度制是以“度”为单位来度量角的单 (位2制)1弧度是弧长等于半径长的圆弧所对的圆 心角的大小,而1度是圆周 1 的所对的圆心

任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。

2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一数学 4.2弧度制(第一课时) 大纲人教版必修 ●教学目标
(一)知识目标
1.1弧度的角的定义;
2.弧度制的定义;
3.角度与弧度的换算.
(二)能力目标
1.理解1弧度的角、弧度制的定义;
2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算;
3.熟记特殊角的弧度数.
(三)德育目标
使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系 的、辩证统一的.进一步加强对辩证统一思想的理解.
●教学重点
使学生理解弧度的意义,正确地进行角度与弧度的换算.
●教学难点
弧度的概念及其与角度的关系.
●教学方法
讲授法
1.讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.
2.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.
3.通过周角的两种单位制的度量,得到角度与弧度的换算公式.
●教具准备
1.幻灯片两张
第一张:P 8图4-5,图4-6(记作§4.2.1 A)
第二张:本节课教案后面的预习提纲(记作§4.2.1 B)
2.简单课件(记作§4.2.1 C)
作半径不等的甲乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到1弧度的角,将乙图移到甲图上,两个1弧度的角完全重合.
(用此简单课件,就是要利用其能够移动的直观性).
3.准备两张半径不等的圆形硬纸片,照上述方法当堂作演示也可,或者在黑板上画出甲乙两个半径不等的圆.在每个圆上作出等于其半径的弧长.连接圆心与弧的两个端点,得到一个角,用量角器度量其角度数也可,但都没有课件的直观性强.
●教学过程
Ⅰ.课题导入
[师]在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢? [生]周角的360
1为1°的角. [师]回答正确.这种用度作为单位来度量角的单位制叫做角度制,今天我们再来学习另一种在数学和其他学科中常用的度量角的单位制——弧度制(板书课题).
Ⅱ.讲授新课
[师]弧度制的单位符号是rad ,读作弧度.
我们把长度等于半径长的弧所对的圆心角叫做1弧度的角(板书).即用弧度制度量时,这样的圆心角等于1 rad.
如图(打出幻灯片§4.2.1 A )甲,的长等于半径r ,所对的圆心角∠AOB 就是1弧度的角,图乙中圆心角∠AO C所对的弧长l =2r .那么∠AO C的弧度数就是
r l =r r 2=2. [师]请同学们考虑一下,周角的弧度数是多少?平角呢?直角呢?
[生]因为周角所对的弧长l =2πr ,所以周角的弧度数是r
r π2=2π.同理平角的弧度数是r r
π=π,直角的弧度是2ππ=2r r . [师]由此可知,任一0°到360°的角的弧度数x (x =r
l ),必然适合不等式0≤x < 2π.角的概念推广后,弧度的概念也随之推广.如果圆心角表示一个负角,且它所对的弧长 l =4πr 时,这个圆心角的弧度数是多少呢?此时,我们应该先求出这个角的绝对值,然后在其前面放上“-”号,即所求圆心角的弧度数是-=r l -r
r π4=-4π 一般地,(板书)正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零.任一角α的弧度数的绝对值|α|=r
l ,其中l 是以角α为圆心角时所对弧的长,r 是圆的半径,这种以弧度作为单位来度量角的单位制叫做弧度制.
[师]上面我们学习了弧度制的定义,从定义中我们可以看出,弧度制实质上是用弧长与其半径的比值来反映弧所对圆心角的大小,这个比值与半径的大小有没有关系呢?(展示课件§4.2.1 B ,通过移图——重合,说明这个比值与半径的大小无关而只与角的大小有关,即这样定义是合理的),(也可通过其他方法,证明此问题).
[师]用角度制和弧度制度量零角,单位不同,但量数相同(都是0),用角度制和弧度制度量任一非零角,单位不同,量数也不同.下面我们来讨论角度与弧度的换算.
因为周角的弧度数是2π,而在角度制下它是360°,所以360°=2π rad.
180°=π rad ⇒1°=
180πrad 角度化弧度时用之. 1 rad =(π180
)° 弧度化角度时用之
Ⅲ.例题分析
[例1]把67°30′化成弧度
解:∵67°30′=(67
2
1)° ∴67°30′=180π rad ×678
321=π rad. [例2]把5
3π rad 化成度 解:53π rad =5π3×(π180)°=53×180°=108° 注意:(板书)
(1)今后用弧度制表示角时,或者说“弧度”为单位度量角时,“弧度”二字或符号“rad ”可以省略不写,而只写这个角的弧度数.(此时的弧度在形式上是不名数,但应当把它理解为名数.如α=2,即α是2 rad 的角,si n 3表示3 rad 角的正弦,π=180°即π rad =180°).但用角度制表示角时,或者用“度”为单位度量角时,“度”即“°”不能省去.
(2)用弧度制表示角时,或者说用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.
(3)今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k ·360°+3π或者2k π-60°一类的写法.
Ⅳ.课堂练习
课本P 11练习 1、2、3、4、7
对于练习中的1题再补充将60°、135°、150°化成弧度;3题再补充将11°15′化成弧度.
Ⅴ.课堂小结
本节课我们学习了弧度制的定义,角度与弧度的换算公式与方法.应该注意,角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.
Ⅵ.课后作业
(一)课本P 12习题4.2 1、2、3、10
(二)1.预习内容
课本P 10~P 11
2.预习提纲。

相关文档
最新文档