Coherent optical detection of highly excited Rydberg states using electromagnetically induc
光学相干断层扫描血管成像术在糖尿病性视网膜病变中的应用

REVIEW引言随着经济的发展及生活方式的不断改变,糖尿病已经成为全世界普遍的流行病[1-2]。
糖尿病病患者的寿命的增加、基数大、糖尿病的控制不佳及本身糖尿病所导致的血管损伤、代谢障碍、细胞因子与增殖因子的作用、神经凋亡等原因[3]。
导致糖尿病性视网膜病变(Diabetic Retinopathy,DR)的发病率逐年增加,DR可导致视网膜发生新生血管、微血管瘤及视网膜血管闭塞等改变[4],其已经成为了全世界致盲的重要原因,因此对于DR的诊断就显得愈发重要。
光学相干断层扫描血管成像(Optical Coherence Tomography Angiography,OCT-A)是基于分频去相干血管成像(Split-Spectrum Amplitude Decorrelation Angiography,SSADA)的算法获得的血管成像[5]。
相比较于传统血管荧光素造影(Fundus Fluorescein Angiography,FFA)其具有无创、高速、精确的优点,并且OCT-A具有分析量化视网膜脉络膜血管面积及固定范围血流指数的特点,已经成为了诊断DR重要的检查方法,因此了解OCT-A的机制有利于DR的诊治,本文就OCT-A 在DR中的临床应用进行综述。
1 OCT-A的技术原理OCT-A是基于检测血流来构建视网膜血管网图像的一种快速成像方式[6]。
该技术的原理是基于视网膜及脉络膜血管中存在流动的红细胞,对同一平面进行反复的相干光层析扫描;通过SSADA算法,获取视网膜上每个点的光学相干断层成像(Optical Coherence Tomography,OCT),由于不同时间由血流灌注红细胞在血管内运动和静态周围组织之间产生的图像对比来检测变化信号;并据此在同一位置重复采集OCT图像来获取和计算,进行血管结构的三维重建,通过en face的形式逐层显示眼底血管的图像。
通过评估对数个OCT图像之间信号差异,可识别血液(血流)中红细胞流动在不同时间出现的较大变化所致图像像光学相干断层扫描血管成像术在糖尿病性视网膜病变中的应用王贺1,2,陈臻21. 大理大学研究生院,云南大理 671003;2. 云南省第一人民医院眼科,云南昆明 650032[摘 要]随着生活方式的改变及生活水平的提高,糖尿病性视网膜病变的发病率也随着糖尿病的发病率的提高而上升,而光学相干断层扫描血管成像(Optical Coherence Tomography Angiography,OCT-A)作为一种新兴技术,在糖尿病性视网膜病变诊断中具有重要价值。
全视场外差短相干形貌测量技术

快、无接触和无破坏性等优点,如白光干涉法、计
法、投影法和共焦法等「12「15/。其中,利用白
缺陷等信息,是表征 几何信息的重要
形貌测量技术「皿一直是测量、计量和 检
测等领域的
点。高精度 轮廓测量技术
主要可分为接触法和非接触法「I门#接触法 I
机械 对
的表面进行接触测量,并 传
感器将高度信息转换为电信号,通过处理电信号
的表面 信息,具有精度高、数据反
演简单等优点,缺点是易损坏
标表面、空间
分辨率低和效率低。光 量具有精度高、速度
“ 果表明,系统的探测时长小于10 s,测量精度优于2 m#后续经进一步优化设计,探测时间可小于5 s,探测精度优于微
米量级#该方案具有测量速度较快和测量精度较高等优势,在对效率要求较高的工业检测领域具有一定的应用前景#
关键词:光学测量;三维形貌;短相干测量;全视场外差
中图分类号:P164
文献标识码:A doi:10. 3788/OPE. 20202804. 0800
Full-field heterodyne short coherent topography measurement technology
LU Tong,,ZHANG Wen-xi1'2*,LU Xiao-yu1,LI Yang1,,WU Zhou1,KONG Xin-xin1
(1. Key Laboratory of Computational Optics Imaging Technology,Academy of Opto-Electronics,Chinese Academy of Sciences,Beijing 100094,China &
Key words: optical measurement & three-dimensional profilometry & short coherent light source & full
Coherent optical detector and coherent communicati

专利名称:Coherent optical detector and coherentcommunication system and method发明人:Isaac Shpantzer,Aviv Salamon,Pak Shing Cho申请号:US11695920申请日:20070403公开号:US20070274733A1公开日:20071129专利内容由知识产权出版社提供专利附图:摘要:An optical device is provided with first and second inputs. A first couplercoupled is coupled to the first input and produces at least a first and second output. A second coupler is coupled to the second input and produces at least a first and secondoutput. A third coupler is coupled to the first output of the first coupler and to the first output of the second coupler. A fourth coupler is coupled to the second output of the first coupler and to the second output of the second coupler. First and second crossing waveguides are provided with an angle selected to minimize crosstalk and losses between the first and second cross waveguides. The first crossing waveguide connects one of the first or second outputs from the first coupler with an input of the fourth coupler. The second crossing waveguide connects one of the first or second outputs from the second coupler with an input of the third coupler. A first phase shifter is coupled to the first and second waveguides. The first and second waveguides connect one of the outputs of the first or second coupler and one of the inputs of the third or fourth couplers. The first, second, third and fourth couplers, the two crossing waveguides and the phase shifter are each formed as part of a single planar chip made of an electro-optical material.申请人:Isaac Shpantzer,Aviv Salamon,Pak Shing Cho地址:Bethesda MD US,Ra'anana IL,Gaithersburg MD US国籍:US,IL,US更多信息请下载全文后查看。
面结构光三维系统相位测量精度研究

摘要随着光学三维传感技术的广泛应用,其精度要求也日益变得苛刻。
面结构光三维测量技术以其高速、高精度、非接触等优点备受关注,它是一种主动的非相干光学三维传感技术。
面结构光三维测量技术是通过向物体投射面结构光,然后获取被待测物体表面三维面形调制后的图像,解调出待测物体的相位信息,最后通过相位与高度关系可以得到物体表面的三维形貌数据。
相位测量的精度直接影响物体重建面形的测量精度,因此相位精度问题是面结构光三维测量中的关键问题之一,是研究热点与难点。
本文主要围绕相位测量轮廓术与相位测量偏折术的高精度测量展开研究。
论文的主要研究内容包括:1.面结构光三维测量系统相位精度影响因素分析;阐述了相位测量轮廓术与相位测量偏折术这两种测量技术的基本原理、相位解调算法、相位展开算法以及高度重建算法等,分析了面结构光三维测量相位测量精度的影响因素,主要包括:相位解调算法与相位展开算法等导致的噪声问题、系统的随机噪声、由于相位测量轮廓术系统中其他点的镜面分量引起的多次反射问题、系统非线性Gamma效应引起的相位非线性误差等。
这些因素将导致相位测量不准确,降低测量精度。
2.面结构光三维测量中多次反射消除方法的研究分析;研究分析了相位测量轮廓术中存在的多次反射问题。
首先分析了相位测量轮廓术中多次反射问题存在的原因与影响,采用基于高频编码正弦条纹的方法,将相位误差降低了1.3倍,减小了相位测量轮廓术测量系统中多次反射对相位的影响,提高了相位测量精度。
3.面结构光三维测量中非线性误差的消除;本文着重阐述了系统非线性Gamma效应对相位测量精度的影响,并分析比较了相位测量轮廓术与相位测量偏折术中非线性的差异。
分析了预先畸变条纹补偿法与基于三次样条插值的光强补偿法两种方法,基于此提出一种基于线性拟合的相位误差补偿方法。
通过仿真与实验结果分析,证明了该方法的有效性与可靠性,该方法将非线性相位误差降低了20倍。
此外,本文还将几种补偿方法进行了实验分析对比,实验结果表明:基于三次样条插值的光强补偿法补偿效果最差,非线性相位误差降低了5倍,本论文提出的方法补偿效果最佳,大大降低了非线性相位误差。
光通信中的编码技术研究

光通信中的编码技术研究光通信是一种基于光波传输的通信技术。
相对于传统的电磁波通信技术,光通信拥有着更高的带宽、更低的信噪比和更远的传播距离,因此被广泛应用于信息传输、数据存储等各个领域。
而在光通信中,编码技术则是一项至关重要的技术,它能够将信息转化为光信号,同时在传输过程中增强系统的鲁棒性和容错性。
一、光通信中常用的编码技术在光通信中,常用的编码技术包括:脉冲编码调制(Pulse Code Modulation, PCM)、直接序列扩频(Spread Spectrum)、光频移键调制(Optical Frequency Shift Keying, OFSK)和相干解调( Coherent Detection)等。
这些编码技术各自具有优缺点,在不同的应用场景下,需要根据系统的需求选取不同的编码方式。
1.脉冲编码调制脉冲编码调制是一种常用的数字信号传输方式,它将连续的模拟信号转化为一串短脉冲信号,使其适于数字通信传输。
在光通信中,通过光电转换器将数字信号转为光信号,再通过光纤进行传输。
脉冲编码调制具有高效率、高速率和低噪声等优点,同时也存在一些问题,如灵敏度差、抗噪能力低等。
2.直接序列扩频直接序列扩频(Spread Spectrum)是一种广泛应用于无线通信的编码技术,通过将原始信号乘以一个宽带信号,使其宽带化,从而增强了信号的抗噪能力和传输距离。
在光通信中,直接序列扩频主要用于多用户接入和抗干扰等应用场景。
直接序列扩频具有高频带利用率、高容量和抗干扰等优点,同时也存在一些问题,如系统复杂、功耗大等。
3.光频移键调制光频移键调制(Optical Frequency Shift Keying, OFSK)是一种利用信息信号改变激光工作频率的调制技术。
光频移键调制具有频谱利用率高、抗多径干扰等优点,在光纤通信中被广泛应用。
4.相干解调相干解调(Coherent Detection)是一种使用稳定的自参考光源或局部振荡器,对接收信号进行复杂解调的技术。
光电英语词汇(I)

光电英语词汇(I)i/o 输入输出装置iabsorption 本徵吸收ic 积体电路ic memory 积体电路记忆体ice crystal 冰花状晶体iceland spar 冰岛晶icelnned spar 冰洲石icon 图像icon meter 光像测定器iconography 图解iconology 图像学iconometer 量影仪iconometry 量影学iconoscope 光电显管管icosagon 二十边形,二十角形icosahedron 二十面体icositetrahedron 二十四面体ideal blackbody 理想黑体ideal crystal 理想晶体ideal detector 理想探测器ideal dielectric 理想电介质ideal filter 理想滤波器ideal observer 理想观测堵ideal polarization rotator 理想偏振转体ideal radiator 理想辐射体ideal scanning 理想扫描ideal value 理想值ideally-reflecting 理想反射identical graduation 等分度〖www.整理该文章,版权归原作者、原出处所有。
〗identification 鉴定,证认identification friend or foe (iff)system 敌我识别器identification signal 识别信号identifier (1)鉴别器(2)鉴别剂(3)标识符(4)鉴定人identity (1)怛定(2)恒等式identity relation 恒等式idiochromatic 本质色的idiochromatism 本质色性idiolelectric 非导体idiophanism 自现干涉图idler (1)空转(2)无效,无动(3)闲频信号idler absorption 无效吸收idnetification testing 览定试验ifomration accumulation 信息储存ignition 点火,引燃ignition temperature 点火温度ignitor discharge 引燃放电iintrinsic jointloss 内禀联结损失iischromatic surface 等色表面illuminance 光照度illuminance meters 照度计illuminant (1)施照体(2)照明illuminated 受照illuminated body 受照体illuminated magnifier 受照放大(透)镜illuminated table 受照台illuminating angle 照射角illuminating beam 照明光束illuminating engineering society (ies)照明工程协会illuminating lens 照明透镜,聚光透镜illuminating poer 照明本领illumination (1)照明(2)照明学(3)照度illumination device 照明装置illumination distribution 照明分布,照度分布illumination factor 照明系数illumination level 照明水平illumination meter (illumionmeter)照度计illumination photometry 照度测量术,测光法illumination ray 照明光束illuminator (1)发光器(2)施照体illuminometer 照度计illusion (1)幻觉(2)幻影illustration (1)示例(2)例图imacon 依麦康变像管imacon camera 依麦康摄影机image 像,图像image analyzer 像分析器image analyzers 影像分析仪image angle 像角image attenuation 影像衷减image blurring 图像模糊image brightness 像亮明image centroid 像矩心image circle 像圈image comensation camera 像补偿式摄影机image comparison 像比较image conduct 传像管image conjugate 像共轭image construction (1)求像法(2)像结构image contrast 像对比image converter camera 变像管摄像机image converter high-seed camera 显像管式高速照相机image converter streak camera 变像管高速扫描照相机image converter tube 变像管image data-processing system 图像数据处理系统image deblurring 图像去模糊image defintion 图像清晰度image degradation 像劣化image description 图像绘制image device 成像器件image digitization 图像数字化image disk 像斑image display device 图像显示器image dissector 析像管image dissector camera 析像管摄像机image dissector tube 析像管image distance 像距image distortion 像畸变image element 像素,像点image emission platelet laser 图像发射薄片激光器image enbancemet 影像增强术image enconding 图像编码image enhancement laser 影像增强雷射image enhancenment 图像增强image error 成像误差image evaluation 像质评质image field 像场image field distrubution 像场分布image filterig 滤像image flattening optical system 平像场光学系统image focal point 像焦点image focus 像焦点image focusing electrode 像聚焦极image force 像力image formation 成像image formation by rays 光线成线image forming tube 成像管image frame 像幅,像帧image frequency (1)像频(2)帧频image frequency interference 像频干扰image funtion 像函数image height adjuster 像高调整器image iconoscope 光电像管image improvement 像改善image information 像信息image inktensifier 像亮化器image integrating 像集成image intensification vision aid 影像加强视力辅助器image intensifier 像增强器image intensifying plate 像亮化板image intensity distribution 像光强座分布image inverter 倒像器image jump 像跳动image lscon 影像分流管image luminance 像发光度image metascope 红外线示像器image modification 像修正image modtion compensation 像移补偿image motion 图像漂移[page]image multiplier 像伯增器image optics 成像光学image orientation 图像定像image orthicon 超正析像管image pattern 像图image persistence 像余辉,像暂留image photo counting distribution (ipd)像影计image pickup 摄像image pickup system 摄像系统image pickup tube 摄像管image plane 像平面image plane holography 像面全息术image plane scanning 像面扫描image point 像点image position sensor (ips)像位传感器image processing 像处理image processor 像处理器image projection 像投射image quality 像质image quality criteria 像质判据,像质标准image recognition 像辨认image recombination 像的复合image reconstruction 像重现image redundancy 备份像image repeater 像重复器image restoration 像复原image retaining panel 影像储存板image retention 图像残留image rotation prism 成像旋转棱镜image rotator 像旋转器image scale 图像比例尺image scanner lenses 影像扫描器镜头image scrambler 图像保密器,图像编码器image seeking method 寻像法image segmentation 图像分割image sensor 图像传感器image sensor type measurement instruments 影像感测器式量测设备image sharpening 图像清晰化image source 像源image space 像方,像空间image stabilizing otpica system 像稳定光学系统image storage screen 像存储屏image storage tube 图像存储管image subtraction 像减去image surface curvature 像面曲率image synchronization 像同步,影像同步image synthesis 图像综合image transducer 影像转送器image transform 图像变换image transformation 像变换image translator 图像转换装器,换像器image tube 移像摄像管image tube camera 像管照相机image vericon 移像正析摄像管image working distance 像运作距离image-carrring fiber 载像纤维,传像纤维image-enhancing equipment 增像装备image-forming system 成像系统image-motion compensation 像动补偿image-splitting eyepiece 分像目镜image-translating device 图像装换装置image-tube camera 电视摄像机imaged converter 变像管imager 成像器imagery 成像imagery retification 成像修正imagin 成像imagin detector 成像探测器imaginary axis 虚轴imaginary line 虚线imaginary number 虚数imaging mosaic 成像感光镶嵌幕imagon lens 伊梅冈镜头imbalance 不平衡imbedding material 嵌料imitation 模拟imitator 模拟器immeasurabilty 不可测量性immersed bolometer 浸没式热辐射计immersed detector 全浸探测器immersed detector element 浸没探测元件immersed focal-plane lens 浸没焦面透镜immersion gain 光学浸油增益immersion grating 浸没光栅immersion lens 浸没透镜immersion liquide 浸液immersion magnifier 浸没放大镜immersion micro objective 浸没显微镜immersion objective 浸没物镜immersion oil 浸油immersion refract meter 浸没式折射计immersion refractometer 油浸折射计immersion series 油浸镜头组immigratimg 移入immiscibilty 不溶混性immittance 导抗immunity (1)抗扰性(2)不敏感性immunofluorescence 免疫萤光impack ionization 碰撞电离impact (1)碰撞(2)突加impact agitation 碰撞骚动impact fluorescence 撞击萤光impact-broadening 碰撞展宽impactexcitation 碰撞激发impatt diode 冲渡二极体impedance 阻抗impedance coupling amplifier 阻抗耦合大器impedance matching 阻抗匹配impedance-coupled amplifier 阻抗耦合放大器imperfect earth 不良接地imperial standard wire gauge 英国标准线规impinging radiation 碰撞辐射,冲击幅射implement (1)仪器(2)工具implosinon 爆聚,向心爆炸imporsity (1)无孔性(2)不透气性impositor 幻灯放映机impregnation 浸渍,浸透improvement of photograph 照相像质改善impulison (1)脉冲(2)冲击impulsator 脉冲发生器impulse (1)冲量(2)脉冲impulse exictation 脉冲激发impulse function 脉冲函数impulse register 脉冲寄存器impulse response 脉冲响应impulse-code modulation 脉冲编碥调制impulser 脉冲发生器,脉冲传感器impurity 杂质impurity absorption 杂质吹收impurity absorption edge (1)杂质吸收限(20杂质吸收边缘impurity activation 杂质激活impurity level 杂质能级impurity lons 杂质,杂子impurity photoconductor 杂质光电导体impurity scattering 杂质散射impurity-doped germanium detector 锗掺杂探测器imurity-to-impurity transition 杂质-杂质跃迁in parallel 并联in phase 同相(的)in series 串联in-cavity (intra-cavity)内共振in-line (1)并行(2)同轴in-line frauhofer hologram 同轴夫琅和费全息图in-line holography 同轴全息术in-phae 同相的in-phase amplitude detection 同相信号振幅探测[page] in-site measurement 现场测量in-step condition 同步条件inaccuracy 不准确,不精密inactivity (1)不活动性(2)不旋光性(3)不放射性(4)无功率incadnescent mantle 白炽灯纱罩incandescence 白炽incandescent body 白炽体incandescent bulb 白炽灯照incandescent cathode 白炽阴极incandescent lamp 白炽灯,钨丝灯incandescent lighting 白炽灯照明inch 英寸inch screw thread 英制螺纹incidence (1)入射(2)入射角incidence matrix 入射矩阵incidence point 入射点incident angle 入射角incident beam 入射光incident flux 入射通量incident illumination 入射照明incident image 入射像incident intensity 入射强度incident light 入射光incident light illuminator 入射光照明器incident light meter 入射光计incident power 入射功率incident radiation 入射辐射incident ray 入射线incident wave 入射波incident wavefront 入射波前incident-particle distribution 入射粒子分布incircle 内切圆incision 切开inclination (1)倾角(2)倾向inclination angle 倾角inclination factor 倾斜因子inclination joint 倾斜接头inclination of image 像倾斜incline level 斜度测量水准器,倾斜针inclined mirror 斜交镜,倾斜反射镜inclined plane 斜面inclined ray 倾斜射线inclinometer (1)磁倾计(2)倾斜计included angle 夹角inclusion (1)包含(2)掺杂(3)掺杂物,夹杂物incoding ray 入射光incoherence 非相干性incoherenet-to-coherent optical converte 非相干-相干光转换器incoherent 不相干的incoherent circular source 非相干环性源incoherent disturbance 非相干扰动incoherent fiber bundle 不相干光纤束incoherent holography 不相干全像术incoherent illumination 非相干照相incoherent imageing 非相干成像incoherent interphase boundary 非相干相间边界incoherent light 非相干光incoherent optical information processing 非相千光信息处理incoherent quasimonchormatic soure 非相干准单色光源incoherent scatter 非相干散射incoherent source 非相干光源incoherent to coherent devices (itc)光影像转换元件(itc)incoherent to coherent devices (itc)光影像转换元件(itc)incoherent-light holography 非相干光全息术incoherent-system 非相干系统incoheret reception 非相干接收incomplete radiator 不完全辐射体increased transmission 增透膜increased transmission lens 增透处理increasing wave (1)增加(2)增量increment 耐温耐湿试验incribed angle 内接角incubation test 刻痕,凹槽inculating crystal 籽晶indcution heater 感应加热器indcution motor 感应电动机inddex dial 指度盘indentaiton hardness 压头indentation 压痕硬度indenter 独立激发共振腔independent variable 测不准原理independently excited cavity 独立模式indeterminate princiiple (1)折射率(2)指数(3)指标(4)分度头(5)变址(6)索引index 分度卡盘index dip 折射率倾角index ellipsoide 折射率椭球index error 分度误差index gagae 分度规index glass 分度镜,标镜index guide beam 折射率导向光束index hand 指针index law 指数津index line 分度线,刻度线index liquid 折射率液index mark 分度符号,分度线index microscopoe 指标显微镜index mirror 标镜,分度镜index of idffraction 衍射指数index of refletion 反射率index of refraction 折射率index of refratcion 折射率index plate 标盘,分度盘index profile 折射率截面index-dispersion relation 折射率-色散关系index-gradient optical fiber 折射率陡度光学纤维index-matching material 配率材料index-matching oil 折射率匹配油indexer 分度器indexing (1)分度(2)分度法(3)指数(4)转位(5)变址indexing disc 分度盘indexing head 分度头indexing register 变址寄存器indexing table 分度台indicating calliper 指示卡规indicating device 指示器indicating gague 指示规indicating lamp 指示灯indicating mechanism 指示机构indicating micrometer 指示测微计,指示干分尺indicating range 指示范围,显示范围indication error 示值误差indication lag 指示滞差indication of measuring instrument 测量器示值indication ragne 指示范围indicator (1)指示器(2)指示剂(3)示功器indicator tube 指示管indicatrix (1)指示量(2)指标(3)折射率椭球(4)特性曲线indictrix of diffusion 漫射指示量indifferent equilibrium 随遇平衡indifferent gas 惰性气indiffused crystal waveguide 非漫射晶体波导indigo 靛青indine absorption 碘吸收indirect action receiver 间动式受话器indirect address 间接位址indirect emission 间接发射indirect glare 间接眩光indirect lighting 间接照明indirect measurement 间接测量indirect observation 间接观测[page]indirect radiative transition 间接辐射转变indirect reflection 间接反射indirect scanning 间接扫描indirect transition 间接跃迁indirectly excited antena 间接激发天线indirectly heated cathode 间热式阴极indistinctenss 不清晰度indistinguishability 不可分辨性indium 铟indium (in)铟indium antimonide 锑化铟indium antimonide detector 锑化铟探测器indium arsenide 砷化铟indium arsenide detector 砷化铟探测器indium laser 铟激光器indium tin oxid 氧化铟锡indside recess 内凹座indsie micrometer 内径测微计inducced transition cross section 感生跃迁截面induced absorption band 感应吸收带induced action (1)感应作用(2)感应辐射induced electromotive force 感应电动势induced emission 感应发射induced test 感应试验induced transition 感生跃迁inductance 电感inductance filter 电感滤波器induction 感应induction coil 感应线圈induction current 感应电流induction field 感应场induction force 感应力induction frequency converter 感应转频器induction reactance 感抗inductive pressure transducers 电感性压力转能器inductivity 感应率inductor (1)感应体(2)感应器(3)感应线圈inductor alternator 感应器交流发电机inductormeter 电感计inductosyn 感应同步器industrial instrument 工业仪表industrial instrumentation 工业测量仪表industrial microscope 工业用显微镜industrial television 工业用电视industrial tv camera 工电视摄像机inelastic collision 非弹性碰撞inelastic optical scattering 非弹性光散射inelastic scattering amplitude 非弹性散射振幅inelastic scattering excitation 非弹性散激发inensdity transmission coefficient 光强透射系数inependent mode 自变量,独立变量inerse bandwith 逆带宽inert gas laser 惰性气体激光器inertia (1)惯性(2)惯量inertia of photo 感光惰性inertia-mass 惯性质量inertial effect 惯性效应inertial error 惯性误差inertial laser sensor 惯性激光传感器inertial navigation 惯性导航ineterceptor 窃听器inexactness 不精确性infidelity 失真,不保真infiltration 渗入,渗透infinite (1)无穷的,无限的(2)无穷大infinite ray 平行射线,平行光线infinite series 无穷级数infinite-strip curve mirror 无限带状曲面镜infinitesimal (1)无穷小的,无限小的(2)无穷小infinitesimal calculus 微积分infinitesimal geometry 微积分几何infinity (1)无穷,无限(2)无穷大infintie object point 无限远物点inflammability 可燃性,易燃性inflexibilty 非挠性inflexion (inflection)(1)拐折(2)偏转inflexion point (1)拐折点(2)偏转点influence (1)影响,作用(2)感应,效应influence electricity 感应电information (1)信息,情报(2)数据information bit 信息位information capacity 信息容量information carrier 信息载体information channel 信息通道,信道information coding 信息编码information content of photgraph 照相信息容量information data 信息数据information density 信息密度information display 信息显示information generator 信息源,信息发生器information processing 信息处理系统information theory 信息论information transmission 信息传输information-handing system 信息处理系统information-yielding sytem 信息形成系统informative apttern 信息图infra focal image 红外焦像infra-accoustic frequency 亚声频率infra-red (ir)红外infra-red absorption 红外吸收infra-red absorption spectorscopy 红外吸收光谱学infra-red acquisition (1)红外探测(2)红外捕获infra-red activation 红外瞄准激光器infra-red aids 红外瞄准望远镜infra-red aimed laser 红外放大infra-red analyzer 红外反潜技术infra-red anti-submarine technique 红外光束跟踪器infra-red beam folower 红外双筒望远镜infra-red bincocular 红外双筒潜望镜infra-red bincocular-type periscope 红外照相机infra-red camera 红外元件infra-red cell 红外回旋共振infra-red cyclotron resonance 红外假目标infra-red decoy 红外采测装置infra-red detection device 红外探测器infra-red detector 红外色散infra-red dispersion 红外早期预警infra-red early-warning 红外发射infra-red emission 红外发射光谱infra-red emitter 红外发射源infra-red engineering 红外工怀infra-red excitation 红外激发infra-red extinction spectrum 红外消光光谱infra-red eye (1)红外摄像装置(2)红外寻的器infra-red filter 红外滤光器infra-red flyubgspot telescope 红外扫描望眼镜infra-red fourier transform spectrometry 红外傅里叶变换光谱测定法infra-red frequency 红外频率infra-red fuse discrimination 红外引信鉴别[page] infra-red gas analyzer 红外气体分析器infra-red generator 红外发生器infra-red glass 红外玻璃infra-red guidance systme 红外导系统infra-red heating 红外加热infra-red helium-cooled bolometer 红外氦冷却辐射热计infra-red heterodyne spectroscopy 红外外差光谱学infra-red holography 红外全息术infra-red homing guidance 红外寻的制导infra-red identification 红外鉴别infra-red image converter 红外变像管infra-red image metascope 红外成像指示器infra-red image seeker 红外图像寻的器infra-red imaging array 红外成像阵列infra-red inspection 红外检查,红外探伤infra-red interference filter 红外干涉滤光片infra-red jamming 红外干扰infra-red lamp 红外灯infra-red laser 红外激光器infra-red leak detector 红外检漏器infra-red mapping 红外测绘infra-red microscope 红外显微镜infra-red modulator 红外调制器infra-red night-vision system 红外夜视系统infra-red photo 红外照片infra-red photography 红外照相术,红外摄影infra-red photon 红外光子infra-red phyrometer 红外高温计infra-red quantum converter 红外量子转换器infra-red radar 红外雷达infra-red radiation 红外辐射infra-red radiometry 红外辐射测量术infra-red rangefinder 红外测距仪infra-red rapid-scan monochromator 红外速扫描色仪infra-red ray (ir)红外线infra-red ray drying 红外线乾燥infra-red ray gas analyser 红外线气体分析器infra-red reconnaissance equipment 红外侦察设备infra-red reference body 红外参考体infra-red region 红外区infra-red remote sensing technique 红外遥感技术infra-red response camera tube 红外响应摄像管infra-red scanner 红外扫描器infra-red sean geometry 红外扫描几何图infra-red search system 红外搜索系统infra-red searchlight 红外探照灯infra-red sensing system 红外传感系统infra-red sensor 红外传感器infra-red sight head 红外瞄准头infra-red spectrometer 红外分光计infra-red spectrophotometer 红外分光光度计infra-red spectroradiometer 红外光谱辐射计infra-red spectroscopy 红外光谱学infra-red spectrum 红外光谱infra-red suppression 红外抑制infra-red surveillance system 红外监视系统infra-red telemeter 红外测距仪infra-red telescope 红外望远镜infra-red television camera 红外电视摄像infra-red temperature profile radiometer 红外温度断面辐射计infra-red thermal imaging system 红外热成像系统infra-red thermograph 红外温度记录仪infra-red tracing system 红外跟踪系统infra-red tracker 红外跟踪装置infra-red tracking 红外跟踪infra-red transmittance 红外透射比infra-red transmitting filter 红外透射滤光片infra-red tv tracker 红外电视跟踪器infra-red vidcion 红外摄像管infra-red waves 红外波infra-red windows 红外窗infra-red-sensitive film 红外感光胶片infra-red-transmitting glass 红外透射玻璃infra-red-transmitting semiconductor 红外传输半导体infra-red-transmitting window 透红外窗infraared jjammiing 红外干扰infracord spectrohoptometer 红外记录分光光度计infranics 红外电子学infrared 红外(线)infrared (not for communication)leds 红外线二极体(非通信用) infrared absorbing/reflecting filters 红外吸收/反射滤光镜infrared absorption 红外吸收infrared alarm system 红外警报系统infrared astronomy 红外天文学infrared beacon 红外标向波infrared binoculars 红外双目镜infrared bolometer 红外辐射热(测定)计infrared camera 红外照相机infrared crystals 红外线晶体infrared detector 红外探测器infrared detectors 红外线检测器infrared films and plates 红外线底片及感光板infrared filter 红外滤光器infrared gas density meters 红外线气体浓度感测器infrared glass 红外线玻璃infrared homing 红外归向infrared image tube 红外像管infrared instruments 红外仪infrared lens 红外透镜infrared lenses 红外线透镜infrared light sources 红外线光源infrared materials 红外线材料infrared optical material 红外光学材料infrared phosphor 红外磷光体infrared photoconductor 红外光电导体infrared photodetector arrays 红外光探测器列infrared photography 红外照相术infrared photomicrogaphy 红外显微照相术infrared radiation 红外线辐射infrared radiation souirce 红外辐射源infrared reflectance spectroscopy 红外反射光谱学infrared reflectors 红外反射器infrared scanner 红外扫描器infrared searchlight 红外探照infrared signal generator 红外信号器infrared spectrophotometer 红外分光光度计infrared spectroscopy 红外分谱学[page] infrared thermal detector 红外热探测器infrared thermistor 红外热阻器infrared thickness gauges 红外线厚度计infrared transmitting filters 红外透过滤光镜infrared vidicon 红外视像摄管infrared window 红外窗infrared-emitting diode 红外发射二极体infrasil 红外硅infrmoation retrieval 保息检索infromation storage 信心存储inhomogencity 不均匀性inhomogeneous (1)不均匀的(2)非齐次的inhomogeneous broadening 非均匀加宽inhomogeneous brodadening 非均匀展宽inhomogeneous dispersion 非均匀色散inhomogeneous equation 非齐次方程inhomogeneous layer 非均匀镀层inhomogeneous pumping 非均匀抽运inhomogeneous wave 非均匀波initial acceeleration 起始加速度initial amplitude 初振幅initial bias 初始起置initial cavity photon flux 共振腔初始光子通量initial data 原始数据initial inverson 初始反转initial level 初始能级initial phase 初相initial photo density 初始光子密度initial point 原点,起始点initial population 起始粒子数反转initial reading 初读数initial state 初态initial value 初值,始值initial velocity current 初速电流initiatic signal 起始信号initiatin laser 引爆激光器initiating technique of chemical laser 化学激光器引发技褒initiation (1)激磁(2)起爆(3)起动injection 注入injection equipment 液晶注入装置injection laser 注入式激光器injection laser diode 注入电射二极体injection lelctroluminescence 注入电致发光injection locking technique 注频同步技术injection luminescence 注入发光injection luminescent diode 注入式发光二极管injection molding equipment 射出成形机injection pumping 注入式抽运injection syringe 注入器injection-lock ring amplifier 注入锁定环形放大器injector laser 注入式激光器inkjet plain paper facsimiles 喷墨普通纸传真机inlead 引入线inleakage 漏泄,渗入inlet (1)输入(2)入口(3)引入线inlet port 入口inmspiration 吸气,进气inner diameter 内径inner face 内表面inner hyperboloide 内双曲面inner shell 内壳层inner surface interference microscope 内表面干涉显微镜inner wall 内壁inner-adjustabel focus collimator 内调焦平行光管inner-shelll exiciation 内壳层激发inoized donor 离子化施主inorganic compoun 无机化合物inorganic liquide laser 无机液体激光器input (1)输入(2)输入端input amplifier 输入放大器input attenuation 输入衷器input beam 输入光束input circlult 输入电路input coupler 输入耦合器input impedance 输入阻抗input stage 输入级input terminal 输入端input transformer 输入变压器input transformer less 无输入变压器式inquiry display terminal 查询显示终端机inreasing trasmission treatment 增长波inscattering 内散射inscattering correction 内散射改正insensibility 不灵敏性insepction gage 检验量规insepction window 检查窗insert drawing 插图insert filler 惰性填料insert gas 惰性气体inserted pin 插销inserter 插件insertion gain 插入增益insertion loss 介入损失inset 嵌入物inside calipers 内测循规inside calipers micrometer 内微测微计inside dial indicator 内径测微指示计inside diameter 内径inside lead gauae 内螺纹导程仪inside radius 内半径inside vapor-phase oxidation (ivpo)内汽相氧化法insolation 曝晒insolubility 不溶性inspecting microscope 检验用显微镜inspection glass 检验用玻璃inspection mirror 检验面镜inspection of optical crystal 光学晶体检验inspection thermometer 检查用温度计inspectro (1)检验员(2)检验器insrument bord (1)仪表盘(2)配电盘instability 不稳定性,不安定性instability therory 不稳家理论installation (1)装置(2)安装,装配installation diagram 安装图,装配图installation microscope 安装显微镜instant 瞬时instant photography 瞬时摄影instant reset 瞬时复位instantaneity 瞬时性,即时性instantaneous amplitude 瞬时振幅instantaneous exposure 瞬时曝光instantaneous image 瞬时像instantaneous position 瞬时位置instantaneous power 瞬时功率instantaneous value 瞬时值instanteanous error measurement 瞬时误差测定instat return mirror mechanism 瞬时回镜机构instoscope 目视曝光计instrction 指令instruction (1)指令(2)说明instruction code 指令码instruction register 指令寄存器instructon set 指令系统instrument (1)仪器(2)工具instrument analysis 仪器分析instrument effect 仪器效应instrument error 仪器误差instrument for determing the optical transfer fuction 光学传递数测定仪instrument glass dial 仪器玻璃刻度盘instrument head 测量头,测量端[page]instrument light 仪表照明指示灯instrument panel 仪表操纵板instrument stand 仪器座instrument suppotr 仪器支instrument transformer 仪器变压器instrumental error 仪器误差instrumental optics 仪器光学instrumentla fucction 仪器功能insufficiency 不充分性insulated body 绝缘体insulated paper 绝缘纸insulating blanket 绝缘垫层insulating coating 绝缘涂层insulating substrate 绝缘衬底insulation (1)绝缘(2)隔离insulation power factor 绝缘功率因数insulation resistance 绝缘电阻insulator (1)绝缘体,绝缘子(2)隔热体insytrumentation (1)测量仪表,测试设备(2)仪表化intake (1)进口(2)吸入(3)吸入量inteaction 相互作用intechangable prism 可换棱镜intechanglabel objective 可换物镜intecption (1)阻断(2)窃听,监听integer (1)整数(2)总体,整体integeral (1)积分(2)积分的integerated twin-guie laser 集成孪生波导激光器integral calculus 积分学integral constant 积分常数integral density 积分密度integral equation 积分方程integral light counter 积分光量计integral line-breadth 积分谱线宽度integral photography 立体照相,积分照相integral relation 积分关系式integral value 积分值integralization 整化integrand 被积函数integraph 积分仪integrated absoption 积分吸收integrated automation 全盘自动化integrated brightness 累积亮度integrated circuit (ic)集成电路integrated console 联控台integrated device 集成器件integrated electrooptics 集成电光学integrated feedback laser 集成馈激光器integrated interferometric reflector 集成干涉反光镜integrated lasers 累积雷射integrated optical bolometer for radiation 集成光学辐射热测量计integrated optical circuit (ioc)累积光路integrated optical switch 集光学开关integrated optical waveguide coupler 集成光学波导耦合器integrated optics 集成光学integrated package 集成组件,集成块integrated radiance 积分辐射integrated sphere 累计球,积分球integratedf optical circuit 集成光路integrating amplifier 积分放大器。
相干光通信中平衡探测器的研究与测试

相干光通信中平衡探测器的研究与测试石倩芸;艾勇;梁赫西;代永红;陈晶【摘要】在高速相干光通信系统中,平衡光电探测器是其核心器件.通过对相干探测原理的分析,得出了一致性系数与平衡探测信噪比的关系,给出了平衡探测器的组成结构,设计了相干探测的测试方案.当通信速率为5 Gbps时,该平衡探测器的共模抑制比高于27dB,采用平衡探测实现相干解调的最小信号光功率比单管探测改善了8 dB,验证了该平衡探测器用于高速相干光通信的可行性.【期刊名称】《科学技术与工程》【年(卷),期】2016(016)016【总页数】5页(P207-211)【关键词】相干光通信;平衡探测;一致性系数;信噪比【作者】石倩芸;艾勇;梁赫西;代永红;陈晶【作者单位】武汉大学电子信息学院,武汉430072;武汉大学电子信息学院,武汉430072;武汉大学电子信息学院,武汉430072;武汉大学电子信息学院,武汉430072;武汉大学电子信息学院,武汉430072【正文语种】中文【中图分类】TN247随着科学技术的飞速发展,传统的强度调制/直接探测(IM/DD)技术已经无法满足人们对空间光通信高速率、远距离、大容量的迫切需求。
相干光通信凭借着灵敏度高、抗干扰能力强、通信保密性能好、适合多种调制格式等众多优点备受人们的关注,是实现未来高速空间光通信的重要手段[1—3]。
直接将非相干光通信中的单管探测用于相干接收,不仅无法完全利用3 dB耦合器输出的中频信号,还容易受到来自信道以及本振激光的共模噪声的影响。
为了完全利用混频信号并抑制共模噪声,采用平衡探测代替单管探测用于相干接收是一种较好的选择。
近年来,美国、欧洲、日本先后在飞行平台、卫星平台等空间平台进行了空间相干光通信技术的研究,并成功搭建了空间相干光通信链路[4—6]。
2008年3月,在德国TerraSAR-X卫星与美国NFIRE卫星之间,采用平衡探测器实现了5.6 Gbps 相距5 000 km的零差相干光通信实验[5]。
co2金属管射频激光器 英语

Abstract:This extensive analysis delves into the intricate details and multi-faceted aspects of CO2 metal tube radio frequency (RF) lasers, emphasizing their exceptional quality and adherence to high industry standards. Spanning over 1345 words, the discussion covers the fundamental principles, operational mechanisms, key features, applications, performance benchmarks, maintenance requirements, and future advancements in this cutting-edge technology. The objective is to provide readers with a thorough understanding of the CO2 metal tube RF laser's superiority and its pivotal role in various industrial sectors.1. IntroductionCO2 metal tube RF lasers represent a pinnacle of innovation in the realm of laser technology, offering unparalleled precision, efficiency, and reliability in material processing tasks. These lasers, harnessing the power of carbon dioxide molecules stimulated by radio frequency energy, have established themselves as indispensable tools across diverse industries, ranging from aerospace and automotive to medical device manufacturing and packaging. This comprehensive analysis explores the intricacies of CO2 metal tube RF lasers, examining their underlying principles, technical specifications, applications, and future prospects, all while maintaining a focus on their unwavering commitment to high quality and stringent standards.2. Fundamental Principles and Operational MechanismsAt the core of a CO2 metal tube RF laser lies the principle of stimulated emission. The laser cavity contains a mixture of carbon dioxide, nitrogen, hydrogen, and helium gases, which, when excited by an RF electric field, undergoes population inversion. This process enables the CO2 molecules to transition from higher energy states to lower ones, releasing photons of coherent light at a characteristic wavelength of 10.6 μm. The RF excitation, typically generated by a resonant RF circuit, ensures uniform energy distribution and enhanced stability compared to DC-excited or transverse discharge systems.The metal tube serves as the containment vessel for the gas mixture, providing robustness, thermal conductivity, and precise optical alignment. The tube is designed with highly reflective inner surfaces to facilitate multiple passes of the laser beam, amplifying it through constructive interference. Additionally, the RF laser incorporates advanced cooling systems, such as water jackets or forced-air cooling, to maintain optimal operating temperatures and ensure long-lasting performance.3. Key Features and Performance BenchmarksCO2 metal tube RF lasers are renowned for several distinguishing features that contribute to their high-quality and standard-compliant performance:a. **Versatility:** Capable of processing a wide range of materials, including metals, plastics, ceramics, glass, textiles, and wood, these lasers exhibit excellent versatility, making them suitable for numerous applications.b. **Precision and Speed:** With beam quality factors (M²values) typically ranging from 2 to 7, CO2 RF lasers deliver highly focused, controllablebeams, enabling precise cutting, engraving, and welding at rapid speeds. Their high peak powers and repetition rates further enhance productivity.c. **Efficiency and Reliability:** The RF excitation mechanism ensures efficient energy transfer to the lasing medium, resulting in superior electrical-to-optical conversion efficiencies (typically around 10-20%). Moreover, the metal tube design, combined with advanced cooling systems, promotes longevity and minimal downtime.d. **Environmental Compatibility:** CO2 metal tube RF lasers emit minimal ultraviolet (UV) and infrared (IR) radiation, reducing potential hazards to operators and the environment. They also feature efficient fume extraction systems to manage byproducts generated during material processing.4. ApplicationsCO2 metal tube RF lasers find extensive use in various industrial sectors due to their remarkable performance characteristics:a. **Manufacturing:** Precision cutting, drilling, and welding of metals and non-metals in automotive, aerospace, electronics, and appliance production.b. **Packaging and Printing:** Marking, coding, and cutting of cardboard, paper, and plastic packaging materials; trimming and die-cutting in the converting industry.c. **Medical Devices:** Microprocessing of polymers, ceramics, and metals for medical implants, surgical instruments, and diagnostic equipment.d. **Textiles and Leather:** Cutting, engraving, and marking of fabrics, leather goods, and footwear components.e. **Architecture and Artwork:** Laser cutting and engraving of acrylics, woods, and metals for architectural models, signage, and decorative elements.5. Maintenance Requirements and Service LifeMaintaining a CO2 metal tube RF laser involves regular inspection, cleaning, and calibration of critical components, such as the optical path, gas supply system, and cooling apparatus. The service life of the metal tube itself can span several thousand hours, depending on usage conditions and adherence to recommended maintenance schedules. Replacement tubes, manufactured to exacting standards, ensure seamless integration and continued high-performance operation.6. Future Advancements and TrendsOngoing research and development in CO2 metal tube RF laser technology aim to enhance performance, reduce costs, and expand application areas. Key trends include:a. **Integration of Artificial Intelligence (AI):** AI algorithms can optimize laser parameters in real-time, adapting to varying material properties and processing requirements, thereby enhancing productivity and quality.b. **Miniaturization and Modular Design:** Smaller, lighter, and more versatile laser systems are being developed, enabling easier integration into existing production lines and facilitating mobile applications.c. **Energy Efficiency and Sustainability:** Efforts are underway tofurther improve energy conversion efficiencies and minimize environmental impacts, such as through the use of eco-friendly gases and advanced waste management systems.d. **Hybrid Laser Systems:** Combining CO2 RF lasers with other laser sources, such as fiber or disk lasers, can offer unique processing capabilities, expanding the range of materials and applications addressed.ConclusionCO2 metal tube RF lasers exemplify the fusion of advanced scientific principles and engineering excellence, delivering high-quality, high-standard performance across a multitude of industrial applications. Their versatility, precision, speed, efficiency, and reliability, coupled with ongoing technological advancements, solidify their position as indispensable tools in modern manufacturing and processing environments. As research continues to push the boundaries of laser technology, the future of CO2 metal tube RF lasers appears promising, with potential for even greater versatility, sustainability, and cost-effectiveness, ensuring their enduring relevance in the ever-evolving landscape of material processing.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :q u a n t -p h /0612200v 2 10 J a n 2007Coherent optical detection of highly excited Rydberg states using electromagneticallyinduced transparencyA.K.Mohapatra,T.R.Jackson and C.S.AdamsDepartment of Physics,Durham University,Rochester Building,South Road,Durham DH13LE,England.(Dated:February 1,2008)We observe electromagnetically induced transparency (EIT)on the 5s →5p transition in a room temperature rubidium vapour cell by coupling the 5p state to a Rydberg state (ns or nd with n =26to 124).We demonstrate that the narrow line–width of the EIT resonance (2MHz)allows precise measurement of the d state fine structure splitting,and together with the sensitivity of the Rydberg state to electric fields,we are able to detect transient electric fields produced by the dynamics of charges within the cell.Coherent coupling of Rydberg states via EIT could also be used for cross–phase modulation and photon entanglement.PACS numbers:03.67.Lx,32.80.Rm,42.50.GyIn comparison to low energy atomic states,highly ex-cited Rydberg states (with principal quantum n >25)display rich many–body behavior due to their enhanced two–body interactions [1,2].For example,a gas of ultra–cold Rydberg atoms is found to evolve spontaneously into a plasma [3]and back [4].There is considerable interest in the potential to exploit the strong dipole –dipole inter-action between Rydberg atoms [5]to realise fast quan-tum gates [6,7].The dipole –dipole interactions also leads to ionization if the ions are not separately con-fined [8].In addition,electromagnetically induced trans-parency (EIT)involving a Rydberg transition could be used to devise a photonic phase gate for optical quantum computing [9].Experimentally,Rydberg atoms are detected indirectly via the ions or electrons produced by an ionization pulse [1].This detection technique provides high efficiency but is destructive and the atom cannot be re–used.For quan-tum information applications a non–destructive detec-tion of the Rydberg state is preferable.One possibility is electromagnetically induced transparency (EIT)which is manifest as an absence of absorption or an associated rapid variation in the dispersion allowing dissipation free sensing of the desired atomic resonance.EIT has been widely studied in atomic vapors [10],frequently using a Λ–scheme where a coherence is induced between two ground states.Alternatively,in the ladder scheme the coherence is induced between a ground state and an ex-cited state via an intermediate state [11].Previously,excited d states with principal quantum number up to n =8have been observed via optical probing of a ladder system [12].In our work,we present experimental results on an EIT ladder system involving highly excited Rydberg states with n =26−124.We show that the non–destructive probing of a Rydberg level opens up an wide range of possible experiments.In particular we focus on two ap-plications:Firstly we exploit the narrow line–width of the EIT spectra to extend measurement of the nd series fine structure splitting up to n =96.Secondly,we il-lustrate the potential of Rydberg EIT for detecting the dynamics of ions or electrons in the vicinity of the Ryd-berg excitation region.As ions can be produced by either interactions [8]or the laser fields used to excite and trap Rydberg atoms [13],knowledge of the role of ions is es-sential to the success of quantum gate schemes.As we show Rydberg EIT provides an useful diagnostic of the presence of charges.The energy levels of 85Rb relevant to this work and the experimental set-up are shown in Fig. 1.The EIT ladder system consists of a weak probe beam resonant with 5s 2S 1/2(F =3)→5p 2P 3/2(F ′)transition and an intense coupling beam resonant with the 5p 2P 3/2(F ′)→nd 2D 3/2or 5p 2P 3/2(F ′)→nd 2D 5/2as indicated in Fig.1(a).The d state hyperfine splitting is negligi-ble.The probe beam with wavelength λp =780.24nm,power 1µW and beam size 0.4mm (1/e 2radius)propa-gates through a room temperature rubidium vapor cell of length 75mm,Fig.1(b).The transmission through the cell as the probe beam is scanned is monitored on a pho-todiode.The probe laser polarization is varied between linear (vertical or horizontal)and circular using appro-priate waveplates.The coupling beam with wavelength λc =479.2−483.9nm is produced by a commercial dou-bled diode laser system (Toptica TA-SHG).The coupling beam counter–propagates through the cell with a power up to 200mW,a spot size of 0.8mm (1/e 2radius),and linear polarization in the vertical direction.The vapor cell is placed inside a µ-metal shield to reduce the effect of stray magnetic fields.A typical spectrum corresponding to the 85Rb 5s 2S 1/2(F =3)→5p 2P 3/2→45d ladder system is shown in Fig. 2.In (a)we show the probe absorption with the coupling laser tuned close to and far way from the 5p 2P 3/2(F =4)→45d 2D 5/2resonance.The fre-quency axis is calibrated using the known splittings be-tween the 5p 2P 3/2hyperfine states [14].Note that due to the Doppler mismatch between the probe and cou-pling lasers,the hyperfine splitting of the 5p 2P 3/2state is scaled by a factor of 1−λc /λp ,and the fine structure splitting of the nd state by λc /λp .In Fig.2(b)we show the difference between the reso-nant and far–detuned traces.The spectrum contains six2PhotodiodeFIG.1:(a)Energy level diagram of the85Rb ladder sys-tem.A probe beam at780nm measures the absorption on the5s2S1/2→5p2P3/2transition while an intense coupling beam at480nm dresses the5p2P3/2→nd2D3/2,5/2transi-tion with n=26−124.Thefine and hyperfine splitting of the nd and5p2P3/2states respectively give rise to six two–photon resonance lines.The Rydberg state hyperfine splitting is neg-ligible.(b)A schematic of the experimental set-up.The480 and780nm beams counter-propagate through a room tem-perature Rb vapour cell.The transmission of the780nm light is detected on a photodiode.The vapour cell is placedtuning near the85Rb5s2S1/2(F=3)→5p2P3/2resonance with the coupling laser detuned nearly on–resonance(red line) and far above resonance(blue line)with the5p2P3/2(F= 4)→45d2D5/2trnasition.(b)The change in the transmis-sion,∆T,due to the coupling beam given by the difference between the two curves in(a).Six EIT resonances are ob-served.lines corresponding to transitions between the F=2,3, and4hyperfine states in the5p2P3/2state and both the fine structure components2D3/2and2D5/2of the45d state as indicated in Fig.1(a).The position of the EIT peak within the Doppler broadened absorption profile is determined by the coupling laser detuning.For a cou-pling power of180mW,the largest peak corresponding to the5p2P3/2(F=4)→45d2D5/2resonance,produces a change in the probe transmission of5%.This peak height is reduced and the width is increased by about a factor of two if we remove the magnetic shield.The ob-served spectra are not strongly dependent on the probe laser polarization.The line–width of the EIT resonance is between2and 4MHz depending on the laser power and the transi-tion.The EIT line–width is considerably narrower than the natural width of the intermediate5p states(6MHz) but much larger than the natural width of the Rydberg states.At low probe laser power,the line–width is lim-ited by the line–width of the probe and coupling lasers and incomplete cancellation of the Doppler shifts due to the wavelength mismatch.The line–width can be broad-ened to of order10MHz by increasing the probe inten-sity above saturation providing a convenient signal for frequency stabilization of the480nm laser.Also apparent in Fig.2(b)is that the lineshape of the EIT feature displays enhanced absorption just below and above the two–photon resonance.This effect arises due to the wavelength mismatch between the coupling and probe lasers.Although the effect is known[15],it has not been observed in previous experiments.One can obtain a theoretical prediction for the EIT lineshape using an approximate expression for the susceptibility derived in the limit of a weak probe[11]χ(v)d v=−i3λ2pγ3−i(∆p+∆c−(k p+k c)·v)−1,(1)whereΩp,c,∆p,c,and k p,c=2π/λp,c are the probe or coupling laser Rabi frequencies,detunings and wavevec-tors,respectively,and N(v)is the number density of85Rb atoms with velocity v.The decay ratesγ2,3are the nat-ural widths of the intermediate and upper state in the ladder system.Additional line broadening mechanisms such as laser line–width can be included inγ3.By sum-ming the contributions from the different hyperfine lines in the5p2P3/2state(with appropriate weightings)and integrating the imaginary part of(1)over the velocity distribution for a room temperature vapor one obtains the absolute absorption coefficient,and hence the trans-mission through the vapor cell as a function of the probe detuning.Multiple levels in the upper state of the ladder system can be included by adding extra coupling terms in Eq.(1)[16].Fig.3shows the prediction of Eq.(1) in comparison to the experimental data for(a)n=45 and(b)n=80.The onlyfit parameters are the Rabi frequency and detuning of the coupling laser,the rate γ3,and thefine structure splitting of the d state.The enhanced absorption observed at higherΩc,Fig.3(a),is accurately predicted by Eq.(1).For the80d state,Fig.3(b),the change in the probe transmission is reduced to about1%.This is consistent with the expected1/n3/2scaling of the coupling beam Rabi frequency.We can still observe the EIT resonance3red line)compared to Eq.(1)(thin black line)for(a)the n= 45d state withΩc=2π(3.5MHz)andγ3=2π(0.3MHz),and (b)n=80withΩc=2π(1.5MHz)andγ3=2π(0.3MHz). up to the101d state and using lock-in detection up to the 124d state.The EIT spectra give a direct measure of the d statefine structure splittings.Previous measurements using two–photon absorption and a thermionic diode to detect theionised Rydberg states have reported values up to n=65[17].We are able to resolve the splitting up to n=96.In Fig.4we plot thefine structure splitting as a function of n together with data from[17].The line shows afit assuming a form A/n∗3with A=11.5(4)×103GHz and n∗=n−δ,whereδ=1.35is the quantum defect. The n=75spectrum displays an asymmetric lineshape which leads to a systematic error.Our measured split-tings are typically larger than those observed in[17]by up to10MHz.Finally,we investigated the effect of an external elec-tricfield on the Rydberg energy levels by applying a volt-age between the copper bar electrodes shown in Fig.1(b). We observe no effect on the EIT spectra for dc elec-tricfields up to100Vcm−1regardless of the probe and coupling laser polarizations suggesting that the Rydberg atoms are being screened.The main source of charge within the cell appears to be ions and electrons pro-duced by photo–desorption induced by the coupling laser at the surface of the cell[18].For example,by retro–reflecting the480nm laser with a glancing angle at the cell wall we can generate an asymmetric charge distribution which creates afield of order50mV/cm in the EIT interaction region.We can detect this smallfield as a2.5MHz splitting of the70d line.To further investigate the screening effect and charge dynamics within the cell,we studied the effect switch-ing the electricfield direction in a time of order1µs. For a dcfield,the charges drift with a distribution which exactly compensates the appliedfield.However,if the field is switched in a time less than the relaxation time of the charge distribution there is incomplete cancella-tion of the appliedfield leading to a perturbation of the EIT signal.To monitor the response of the EIT peak FIG.4:The observedfine structure splitting(filled circles)of the d state as a function of the principal quantum number n. The open diamonds are data from Ref.[17].The line is afit of the form A/n∗3with A=11.5(4)×103GHz.FIG.5:The width of the EIT transient as the electricfield is switched between±10V/cm as a function of the coupling laser power.The transient time decays exponentially to a fixed value at high power.Inset:The transient EIT response as thefield is switched between±2V/cm.to a time varyingfield we lock the probe laser to the 5s2S1/2(F=3)→5p2P3/2(F=4)transition using po-larization spectroscopy[19],and tune the coupling laser to resonance with the5p2P3/2(F=4)→45d2D5/2 transition.The change in transmission(∆T)as thefield is switched is shown in Fig.5(inset).Each time thefield direction changes the EIT peak is suppressed due to the transient penetration of the appliedfield.The duration of this transient depends linearly on the amplitude of the field,and decreases exponentially with the coupling laser power,see Fig.5.The dependence on the coupling laser power arises because at higher power the charge density is increased and the distribution can relax faster towards the steady–state fully–screened distribution.There is a small asymmetry between the response to increasing and4FIG.6:EIT spectra observed by scanning the coupling laser across the5p2P3/2(F=4)→45d2D resonance with the probe laser locked to the5s2S1/2(F=3)→5p2P3/2(F=4) transition.A higher probe power is used so the lines are power broadened and the enhanced absoprtion effect is lost.An rf field with frequency90MHz and amplitude(a)0;(b)180;(c)320;and(d)480mV/cm is applied.The largest and next largest peak in(a)are the2D5/2and2D3/2lines,respectively. As thefield is increased these lines are split into3and2|m J| states.In(d)the2D3/2(|m J|=1/2)states have moved out of frame to the left.decreasingfield that depends on the alignment of the EIT probe relative to the center axis of the cell.If we apply an rf frequency to the electrodes then the time variation of thefield is too fast for either the ions or electrons to screen thefield.In this case,the 2D5/2and2D3/2resonances are split into3and2lines corresponding to their respective|m J|components,as shown in Fig.6.Similar spectra have recently been ob-served by ionizing ultra–cold Rydberg atoms[20].In a time varyingfield,one may not expect to observe nar-row lines,however,due to the quadratic dependence on the electricfield,the time dependence of the resonancelines has a rectified sin2–dependence which is almost like a dcfield.The distortion of the lineshape due to thetime–dependence of thefield is most apparent in the 2D5/2(|m J|=1/2)line(at−120MHz in Fig.6(d))as it has the highestfield sensitivity.These results indicate that Rydberg EIT could provide a useful optical probeof photo–ionization processes and plasma dynamics.In summary,we have demonstrated the coherent op-tical detection of highly excited Rydberg states(up to n=124)using EIT,providing a direct non–destructive probe of Rydberg energy levels.The observed spectra, display enhanced absorption below and above the Ryd-berg resonance,and can be accurately predicted by the optical Bloch equations.The narrow line–width of the EIT resonance allows us to extend measurements of the fine structure splitting of the nd series up to n=96.We also show that the EIT spectra are sensitive to charge dynamics within the cell.In our experiment the density of atoms participating in the EIT resonance is more than two orders of magnitude lower than the density used in the observation of dipole blockade[5].In future work we will apply the technique to higher density vapors to investigate dipole blockade effects and their potential ap-plication in photon entanglement[9].We are grateful to S.L.Cornish,I.G.Hughes,M.P.A.Jones and R.M.Potvliege for stimulating discussionsand A.P.Monkman for the loan of equipment.We also thank the EPSRC forfinancial support.[1]T.F.Gallagher,Rydberg atoms(Cambridge UniversityPress,Cambridge1994).[2]I.Mourachko,parat,F.de Tomasi,A.Fioretti,P.Nosbaum,V.M.Akulin,and P.Pillet,Phys.Rev.Lett.97,083003(2006).[3]M.P.Robinson, burthe Tolra,M.W.Noel,T.F.Gallagher,and P.Pillet,Phys.Rev.Lett.85,4466(2000).[4]T.C.Killian,M.J.Lim,S.Kulin,R.Dumke,S.D.Bergeson and S.L.Rolston,Phys.Rev.Lett.86,3759 (2001).[5]T.Vogt,M.Viteau,J.Zhao,A.Chotia,parat,and P.Pillet,Phys.Rev.Lett.97,083003(2006). [6]D.Jaksch,J.I.Cirac,P.Zoller,S.L.Rolston,R.Cˆo t´eand M.D.Lukin,Phys.Rev.Lett.85,2208(2000). [7]M.D.Lukin,M.Fleischhauer,R.Cˆo t´e,L.M.Duan,D.Jaksch,J.I.Cirac and P.Zoller,Phys.Rev.Lett.87, 037901(2001).[8]W.Li,P.J.Tanner and T.F.Gallagher,Phys.Rev.Lett.94,173001(2005).[9]I.Friedler,D.Petrosyan,M.Fleischhauer,and G.Kur-izki,Phys.Rev.A72,043803(2005).[10]M.Fleischhauer,A.Imamoglu and J.P.Marangos,Rev.Mod.Phys.77,633(2005).[11]M.Xiao,Y.Q.Li,S.Z.Jin and J.Gea–Banacloche,Phys.Rev.Lett.74,666(1995).[12]J.Clarke,H.Chen and W.A.van Wijngaarden,Appl.Opt.40,2047(2001).[13]R.M.Potvliege and C.S.Adams New J.Phys.8,163(2006).[14]U.D.Rapol,A.Krishna and V.Natarajan,Eur.Phys.J.D23,185(2003).[15]A.Krishna,K.Pandey,A.Wasan and V.Natarajan,Europhys.Lett.72,211(2005).[16]S.D.Badger,I.G.Hughes and C.S.Adams,J.Phys.B34,L749(2001).[17]K.C.Harvey and B.P.Stoicheff,Phys.Rev.Lett.38,537(1977).[18]J.H.Xu,A.Gozzini,F.Mango,G.Alzetta and R.A.Bernheim,Phys.Rev.A54,3146(1996).[19]C.P.Pearman,C.S.Adams,S.G.Cox,P.F.Griffin,D.A.Smith,and I.G.Hughes J.Phys.B35,5141(2002).[20]A.Grabowski,R.Heidemann,R.L¨o w,J.Stuhler and T.Pfau,Fortschr.Phys.54,765(2006).。