湖北省咸宁市嘉鱼县城北中学2015届九年级数学上学期第二次月考试题

合集下载

湖北省咸宁市嘉鱼县城北中学九年级数学上学期第二次月

湖北省咸宁市嘉鱼县城北中学九年级数学上学期第二次月

湖北省咸宁市嘉鱼县城北中学2014届九年级数学上学期第二次月考试题一.精心选一选(每小题3分,共24分)1.若二次根式在实数范围内有意义,则x 的取值范围是( ) A . x≥1 B . x≤1 C . x >1 D . x <12.下列四种标志中,既不是轴对称图形又不是中心对称图形的为( ).3.如图,△ABC 内接于⊙O,CD 是⊙O 的直径,∠BCD=50°,则∠A 的度数是( ).A .︒40B .︒35C .︒30D .︒254.下列运算中,正确的是( ). A.562432=+ B .248=C .3327=÷D .3)3(2-=-5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1980张照片,如果全班有x 名同学,根据题意,列出方程为( ).A .1980)1(=-x xB .1980)1(21=-x x C .1980)1(=+x x D .1980)1(2=+x x6.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠BAC=25°,则∠P 为( ).A .︒25B .︒50C .︒30D .︒657.有下列四个命题,其中正确的有( ).①圆的对称轴是直径; ②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧A .4个B .3个C .2个D .1个8.如图Rt△ABC 中,∠ACB=90°,∠B=30°,AC=1,且AC 在直线l 上,将△ABC 绕点A顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+;…按此规律继续旋转,直到点P 2012为止,则AP 2012等于( )A .2011+671B .2012+671C .2013+671D .2014+671二.细心填一填(每小题3分,共24分)9.使二次根式xx 42+有意义的x 的取值范围是 .10.在平面直角坐标系中,点P (2,3-)关于原点对称点P 1的坐标是 .11.在边长为3cm 、4cm 、5cm 的三角形白铁皮上剪下一个最大的圆,此圆的半径为________cm .12.若相交两圆的半径分别为8cm 和10cm ,公共弦长为12cm ,则圆心距是 .13.设a ,b 是方程092=-+x x 的两个实数根,则b a a ++22的值为 .14.若24n 是整数,则正整数n 的最小值是_____________.15.如图,AB 是⊙O 的直径CD 是弦,若AB=10cm ,CD=8cm ,那么A 、B 两点到直线CD 的距离(第2题)中国移动 中国联通 中国网通 中国电信之和为.16.如图,以正方形ABCD边BC为直径作半圆O,过点D作直线切半圆于点F,交AB于点E,则△ADE 和直角梯形EBCD的周长之比为.三.专心解一解(应写出文字说明、证明过程或演算步骤.满分72分)17.(每小题4分,本题满分8分)(1)计算:()221322418--+-(2)解方程:)32(4)23(2xxx-=-.18.(6分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)在图中画出△A1OB1(2)点B关于点O中心对称的点的坐标为_________ ;(3)求△AOA1的面积.19.(9分)已知关于x的一元二次方程x2-2(k+1)x+k2-3=0.(1)若此方程有两个实数根,求实数k的取值范围;(2)如果此方程的两个实数根为x1,x2,且满足321121-=+xx,求实数k的值.AOBEF(第16题)20.(10分)在国家政策的宏观调控下,某市的商品房成交均价由2012年10月底的20000 元/m2下降到2012年12月底的16200元/m2.(1)求2012年11、12两月平均每月降价的百分率是多少?(2)如果房价继续按此降价的百分率回落,请你预测到2013年2月底该市的商品房成交均价是否会跌破13000元/m2?并说明理由.21.(12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.22.(13分)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC 的延长线于点G.试探究线段DF、DG的数量关系.23.(14分)如图,以直角坐标系的原点O为圆心作⊙O,点M、N是⊙O上的两点,M(-1,2),N(2,1)(1)试在x轴上找点P使PM+PN最小,求出P点的坐标;(2)若在坐标系中另有一直线AB,A(10,0),点B在y轴上,∠BAO=30°,⊙O以0.2 个单位/秒的速度沿x轴正方向运动,问圆在运动过程中与该直线有公共点的时间有长?2013年秋季九年级数学参考答案19.(1)∵方程有两个实数根.∴△=[-2(k+1)]2-4(k2-3)≥0.即8k+16≥0.解得k≥-2.(2)k1=0,k2=-3,经检验:k2=-3不符合题意,k1=0是方程的根.故k=0.20.解:(1)设11、12两月平均每月降价的百分率是x,则11月份的成交价是20000﹣20000x=20000(1﹣x),12月份成交价是20000(1﹣x)﹣20000(1﹣x)x=20000(1﹣x)(1﹣x)=20000(1﹣x)2则20000(1﹣x)2=16200,(1﹣x)2=0.81,解得x1=10%,x2=1.9(不合题意,舍去).答:11、12两月平均每月降价的百分率是10%;(2)如果按此降价的百分率继续回落,则估计2013年2月份该市的商品房成交均价为16200(1﹣x)2=16200×0.81=13122>13000.又∵∠DCG+∠DCE=180°∴∠DEF=∠DCG,∵∠EDC旋转得到∠FDG∴∠EDC=∠FDG∴∠EDC-∠FDC=∠FDG-∠FDC 即∠EDF=∠CDG,∵DE=DC∴△EDF≌△CDG(ASA),∴DF=DG.。

九年级上学期第二次月考数学试题 (含答案) (精选5套试题) (1)

九年级上学期第二次月考数学试题 (含答案)  (精选5套试题) (1)

北师大版九年级上学期第二次月考数学试卷注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用铅笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下面各小题均有四个答案,其中只有一个是正确的,将正确的代号字母填入题后的括号内.1.下列方程中,是关于x 的一元二次方程的是 ( ) A .03=+x B .y x x =-32C .52-=x D . 112=+x x2.的值为则的根是方程若c a a cx x a a +=++≠,0)0(2 ( )A .-1B .0C .1D .23.一架长2.5m 的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将滑动 ( ) A .0.9m B .1.5m C .0.5m D .0.8m4. 如图,l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处 5.给出下列命题,正确的有 ( )①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形;A .1个B .2个C .3个D .4个6.如果等腰三角形的底和腰是方程2680x x -+=的两个实数根,则这个三角形的周长为 ( ) A .8 B.10 C.8或10 D.不能确定二、填空题(每小题3分,共27分)7. 命题:“等腰三角形的两个底角相等”的逆命题为 . 8.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .9. 如下图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,则C ∠= __________度.10. 如下图,∠AOB 是一钢架,且∠AOB=10°,为了使钢架更牢固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根 .班级 姓名 考场 考号题号 一 二 三 总分 16 17 18 19 20 21 22 23 分数 得分 评卷人 得分 评卷人ACBD80第9题第10题第4题11.已知m 是方程0132=-+x x 的一个根,则代数式3622-+m m 的值为 . 12.在实数范围内定义一个新运算*,其规则为22*a b a b =-,根据这个规则,方程(2)*50x +=的解是 .13.小军同学家开了一个商店,今年1月份的利润是1000元,3月份的利润是1210元,请你帮助小军同学算一算,他家的这个商店这两个月的利润平均月增长率是___________.14. 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C 。

九年级上册第二次月考试数学试卷(解析版) (精选5套试题) (20)

九年级上册第二次月考试数学试卷(解析版)   (精选5套试题) (20)

九年级上学期第二次月考数学试卷一、选择题(共10题,每题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)w1.方程x2﹣3x=0的解是()tA.x=3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x1=1,x2=﹣3h 2.已知一元二次方程的两根之和是3,两根之积是﹣2,则这个方程是()Y A.x2+3x﹣2=0 B.x2+3x+2=0 C.x2﹣3x+2=0 D.x2﹣3x﹣2=06 3.用配方法将二次三项式x2+4x﹣96变形,结果为()OA.(x+2)2+100 B.(x﹣2)2﹣100 C.(x+2)2﹣100 D.(x﹣2)2+1005 4.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO 于点E,AB=4,则BE等于()IA.4 B.3 C.2 D.1a5.下列说法正确的是()hA.对角线相等且互相垂直的四边形是菱形;P B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形;D.对角线相等且互相平分的四边形是矩形6.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()8A.168(1+x)2=128 B.168(1﹣x)2=128C.168(1﹣2x)=128 D.168(1﹣x2)=128Z7.同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是()k A.0 B.C.D.148.甲从标有1,2,3,4的4张卡片中任抽1张,然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()0A.B.C.D.A9.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17A10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()=A.线段EF的长逐渐增大B.线段EF的长逐渐减小=C.线段EF的长不改变D.线段EF的长不能确定二、填空题(共6题,每题3分,共18分.请将答案填入答题卡的相应位置)11.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.12.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是.13.一道选择题有A,B,C,D 4个选项,只有1个选项是正确的.若两位同学随意任选1个答案,则同时选对的概率为.14.现有6张扑克牌,牌面分别是方块l,2,3和草花2,3,4、小红从草花和方块里各摸1张牌,摸到2张牌上的数之和是5的概率是.15.如图,在矩形ABCD中,AB=6,AD=8,将BC沿对角线BD对折,C点落在E点上,BE交AD于F,则AF的长为.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).三、解答题:(17题12分,18题6分,19题8分,20题8分,21题8分,22题10分,共6大题,满分52分,请在答题卡的相应位置解答)17.解下列方程(1)x2﹣8x+9=0 (2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=x﹣3.18.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.19.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?20.如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.求证:△CBE≌△CDG.21.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?22.如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.参考答案与试题解析一、选择题(共10题,每题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.方程x2﹣3x=0的解是()A.x=3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x1=1,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣3)=0,可得x=0或x﹣3=0,解得:x1=0,x2=3.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.已知一元二次方程的两根之和是3,两根之积是﹣2,则这个方程是()A.x2+3x﹣2=0 B.x2+3x+2=0 C.x2﹣3x+2=0 D.x2﹣3x﹣2=0【考点】根与系数的关系.【分析】根据根与系数的关系可写出二次项系数为1的一元二次方程,然后对各选项进行判断.【解答】解:∵一元二次方程的两根之和是3,两根之积是﹣2,∴这个一元二次方程可为x2﹣3x﹣2=0.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.3.用配方法将二次三项式x2+4x﹣96变形,结果为()A.(x+2)2+100 B.(x﹣2)2﹣100 C.(x+2)2﹣100 D.(x﹣2)2+100【考点】配方法的应用.【分析】此题考查了配方法,若二次项的系数为1,则常数项为一次项系数的一半的平方,若二次项系数不是1,则可先提取二次项系数,将其化为1即可.【解答】解:x2+4x﹣96=x2+4x+4﹣4﹣96=(x+2)2﹣100故选C.【点评】此题考查了学生的应用能力,解题时注意常数项的变化,在变形的过程中注意检查不要改变式子的值.4.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO 于点E,AB=4,则BE等于()A.4 B.3 C.2 D.1【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,证出△AOB是等边三角形,得出OB=AB=4,再由等边三角形的三线合一性质得出BE=OB=2即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=4,∵AE⊥BO,∴BE=OB=2.故选C【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.5.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.【解答】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选D.【点评】本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.6.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128 D.168(1﹣x2)=128 【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:168(1﹣x)2=128,故选B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.7.同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是()A.0 B.C.D.1【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出朝上一面点数的和是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中朝上一面点数的和是偶数的结果数为18,所以朝上一面点数的和是偶数的概率==.故选C.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.甲从标有1,2,3,4的4张卡片中任抽1张,然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()A.B.C.D.【考点】列表法与树状图法.【分析】抽2次总共有4×4=16种情况,计算出和是偶数的情况个数,利用概率公式进行计算.【解答】解:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8故是2的倍数的(包括2)概率是.故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;易错点是得到两人抽到的标号的和是2的倍数的总情况数.9.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【考点】菱形的性质;等边三角形的判定与性质;正方形的性质.【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题(共6题,每题3分,共18分.请将答案填入答题卡的相应位置)11.已知方程x2+kx﹣2=0的一个根是1,则另一个根是﹣2,k的值是1.【考点】根与系数的关系.【分析】可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出k值和方程的另一根.【解答】解:设方程的也另一根为x1,又∵x=1,∴,解得x1=﹣2,k=1.【点评】此题也可先将x=1代入方程x2+kx﹣2=0中求出k的值,再利用根与系数的关系求方程的另一根.12.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是a <1且a≠0.【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,继而可求得a的范围.【解答】解:∵关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1,∵方程ax2+2x+1=0是一元二次方程,∴a≠0,∴a的范围是:a<1且a≠0.故答案为:a<1且a≠0.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.13.一道选择题有A,B,C,D 4个选项,只有1个选项是正确的.若两位同学随意任选1个答案,则同时选对的概率为.【考点】概率公式.【分析】一个同学任取一个有四种情况,选对的情况只有一种.计算出各自概率再相乘即可.【解答】解:一个同学任取一个的概率为,故两位同学随意任选1个答案同时选对的概率为=.【点评】用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.14.现有6张扑克牌,牌面分别是方块l,2,3和草花2,3,4、小红从草花和方块里各摸1张牌,摸到2张牌上的数之和是5的概率是.【考点】概率公式.【分析】小红从草花和方块里各摸1张牌总共有9种情况,求出和是5的情况个数,利用概率公式进行计算即可.【解答】解:摸到2张牌上的数之和是5的情况有:1,4;2,3;3,2.故摸到2张牌上的数之和是5的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.如图,在矩形ABCD中,AB=6,AD=8,将BC沿对角线BD对折,C点落在E点上,BE交AD于F,则AF的长为.【考点】翻折变换(折叠问题).【分析】先由长方形的性质可知,AB=CD,BE=BC,再根据图形翻折变换的性质可知,CD=DE=AB,利用全等三角形的判定定理可得△ABF≌△EDF,故BF=DF,AF+BF=AD,设AF=x,由勾股定理即可求出x的值.【解答】解:∵四边形ABCD是长方形,AB=6,AD=8,∴AB=CD=6,AD=BC=8,∵△BED是△BCD沿BD翻折而成,∴CD=DE=AB=6,∠E=90°,∴△ABF≌△EDF,∴BF=DF,AF+BF=AD=8,在Rt△ABF中,设AF=x,则BF=8﹣x,由勾股定理得BF2=AB2+AF2,即(8﹣x)2=62+x2,解得x=.故答案为:.【点评】本题考查的是翻折变换的性质、全等三角形的判定与性质、勾股定理,熟知图形翻折变换的性质是解答此题的关键.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为(+1)cm(结果不取近似值).【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【解答】解:连接DQ,交AC于点P,连接PB、BD,BD交AC于O.∵四边形ABCD是正方形,∴AC⊥BD,BO=OD,CD=2cm,∴点B与点D关于AC对称,∴BP=DP,∴BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ===cm,∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).故答案为:(+1).【点评】根据两点之间线段最短,可确定点P的位置.三、解答题:(17题12分,18题6分,19题8分,20题8分,21题8分,22题10分,共6大题,满分52分,请在答题卡的相应位置解答)17.(12分)(2016秋•陕西校级月考)解下列方程(1)x2﹣8x+9=0(2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=x﹣3.【考点】解一元二次方程-因式分解法.【分析】(1)用公式法求解即可;(2)直接分解为两个一元一次方程求解即可;(3)移项后提取公因式即可化为一元一次方程求解;【解答】解:(1)∵a=1,b=﹣8,c=9,∴△=b2﹣4ac=(﹣8)2﹣4×1×9=28,∴x==4,∴原方程的解为x1=4,x2=4﹣;(2)方程可变为:2x﹣3=0,x﹣4=0,解得:x1=,x2=4.(3)移项得:(x﹣3)2﹣2x(x﹣3)=0,提取公因式得:(x﹣3)(x﹣3﹣2x)=0,即x﹣3=0,﹣3﹣x=0,解得:x1=3,x2=﹣3;【点评】本题考查了一元二次方程的解法,解题的关键是根据不同的题目选择不同的方法,难度不大.18.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.【考点】菱形的性质.【分析】由菱形的性质知,菱形的面积等于它的两条对角线的乘积的一半.【解答】解:菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE的长为cm.【点评】本题考查了菱形的性质,属于基础题,关键是掌握菱形的面积等于它的两条对角线的乘积的一半.19.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?【考点】列表法与树状图法.【分析】利用树状图可得到共有7×8种等可能的结果数,若袜子不分左右,从中随机抽取2只恰好配成一双的结果数为32,若袜子不分左右,从中随机抽取2只恰好配成一双的结果数为32,然后根据概率公式分别计算两种情况下的概率.【解答】解:共有7×8=56种等可能的结果数,若袜子不分左右,从中随机抽取2只恰好配成一双的结果数为32,所以袜子不分左右,那么从中随机抽取2只恰好配成一双的概率==;若袜子不分左右,从中随机抽取2只恰好配成一双的结果数为32,所以袜子不分左右,那么从中随机抽取2只恰好配成一双的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.求证:△CBE≌△CDG.【考点】正方形的性质;全等三角形的判定.【分析】本题中四边形ABCD和四边形CEFG都是正方形,那么可得出CB=CD,CG=CE,∠BCE和∠DCG都同一个角互余,因此这两个角相等,根据全等三角形判定中的SAS即可得出所要证明的条件.【解答】证明:∵四边形ABCD和四边形CEFG都是正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°.∴∠BCE=90°﹣∠DCE,∠DCG=90°﹣∠DCE.∴∠BCE=∠DCG.∴△CBE≌△CDG.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?【考点】一元二次方程的应用.【分析】设售价为每个x元,则每个利润为(x﹣40),销售量为500﹣10(x﹣50),根据:每个利润×销售量=总利润,列方程求解.【解答】解:设售价为每个x元,依题意,得(x﹣40)[500﹣10(x﹣50)]=8000,整理得x2﹣140x+4800=0解得:x1=60,x2=80,当x=60时,成本=40×[500﹣10(x﹣50)]=16000>10000,当x=80时,成本=40×[500﹣10(x﹣50)]=8000<10000,答:售价为80元,应进货200个.【点评】本题属于销售利润问题,要会结合题意,表示每个的销售利润,销售量,根据销售利润的基本等量关系,列方程求解.22.(10分)(2009•益阳)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.【考点】翻折变换(折叠问题).【分析】(1):先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=6.【解答】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分)∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°.∴∠EAF=90°.又∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分)又∵AE=AD,AF=AD,∴AE=AF.(5分)∴四边形AEGF是正方形.(6分)(2)解:设AD=x,则AE=EG=GF=x,(7分)∵BD=2,DC=3,∴BE=2,CF=3.∴BG=x﹣2,CG=x﹣3.(9分)在Rt△BGC中,BG2+CG2=BC2∴(x﹣2)2+(x﹣3)2=52(11分),∴(x﹣2)2+(x﹣3)2=52,化简得,x2﹣5x﹣6=0.解得x1=6,x2=﹣1(舍),所以AD=x=6(12分).【点评】本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.九年级上学期第二次月考数学试卷一、用心选一选:(每小题3分,共42分)1.关于x的方程ax2﹣3x+3=0是一元二次方程,则a的取值范围是()A.a>0 B.a≠0 C.a=1 D.a≥02.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2= 4.关于x的方程(x+m)2=n,下列说法正确的是()A.有两个解x=±B.当n≥0时,有两个解x=±﹣m C.当n≥0时,有两个解x=±D.当n≤0时,方程无实根5.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△ABC ≌Rt△A′B′C′的是()A.AB=A′B′=5,BC=B′C′=3 B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3 D.AC=A′C′=5,∠A=∠A′=40°6.方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=,x2=0 D.x=07.在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边中垂线的交点8.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0 9.等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()A.4 B.10C.4或10 D.以上答案都不对10.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是()A.580(1+x)2=1185 B.1185(1+x)2=580C.580(1﹣x)2=1185 D.1185(1﹣x)2=58011.一元二次方程x2﹣4=0的根为()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=412.已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.13.如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.AD=DB B.DE=DC C.BC=AE D.AD=BC 14.已知2是关于x的方程:x2﹣3x+a=0的一个解,则2а﹣1的值是()A.5 B.﹣5 C.3 D.﹣3二、细心填一填:(每小题3分,共27分)15.一元二次方程ax2+bx+c=0(a≠0)的求根公式是,条件是.16.将方程3x2+8x=3转化为(x+m)2=n(n为常数)的形式为.17.三个连续整数刚好是一个直角三角形的三边边长,则这三个连续整数分别为,,.18.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=A C.若∠B=20°,则∠C=°.19.等腰三角形的边长是方程x2﹣6x+8=0的解,则这个三角形的周长是.20.已知x2﹣2x﹣3与x+7的值相等,则x的值是.21.一个等腰三角形的一个角为80°,则它的顶角的度数是.22.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.23.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长=cm.三、耐心做一做24.按要求解下列方程:(1)x2+2x﹣3=0(配方法)(2)5(x+1)2=7(x+1)(用适当方法)(3)7x(5x+2)=6(5x+2)(因式分解法)(4)3x2+5(2x+1)=0(公式法)25.已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥C D.26.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?27.如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:AN=BM.28.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?29.如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案与试题解析一、用心选一选:(每小题3分,共42分)1.关于x的方程ax2﹣3x+3=0是一元二次方程,则a的取值范围是()A.a>0 B.a≠0 C.a=1 D.a≥0考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.解答:解:由一元二次方程的特点可知a≠0.故选B.点评:要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.在ax2+bx+c=0(a≠0)中,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.2.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等考点:直角三角形全等的判定.专题:压轴题.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.3.用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解答:解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴(x﹣)2=.故D选项正确.故选:B.点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.关于x的方程(x+m)2=n,下列说法正确的是()A.有两个解x=±B.当n≥0时,有两个解x=±﹣mC.当n≥0时,有两个解x=±D.当n≤0时,方程无实根考点:解一元二次方程-直接开平方法.专题:计算题.分析:由于(x+m)2=n,左边是一个完全平方式,所以n必须大于等于0才会有意义,然后用直接开平方法进行解答.解答:解:在方程(x+m)2=n中,因为(x+m)2≥0,所以当n≥0时,方程才有意义.即有两个解x=±﹣m.故选B.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.5.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△ABC ≌Rt△A′B′C′的是()A.AB=A′B′=5,BC=B′C′=3 B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3 D.AC=A′C′=5,∠A=∠A′=40°考点:直角三角形全等的判定.专题:证明题.分析:根据全等三角形的判定方法对4个选项给出的已知条件逐个分析判定即可.解答:解:∵在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°A选项:AB=A′B′=5,BC=B′C′=3,符合直角三角形全等的判定条件HL,∴A选项能使Rt△ABC≌Rt△A′B′C′;B选项:AB=B′C′=5,∠A=∠B′=40°,不符合符合直角三角形全等的判定条件,∴B选项不能使Rt△ABC≌Rt△A′B′C′;。

湖北省咸宁市嘉鱼县城北中学2015届九年级数学上学期第一次月考试题

湖北省咸宁市嘉鱼县城北中学2015届九年级数学上学期第一次月考试题

某某省某某市嘉鱼县城北中学2015届九年级数学上学期第一次月考试题1、观察下列图案,其中既是轴对称图形又是中心对称图形的是( )0302322=+-=--x x x x 与所有实数根的和为( )A. 2B. -4 C3.若点P (1,-n ),Q (m ,3)关于原点对称,则P ,Q 两点的距离为( ) A 、8 B 、22 C 、10 D 、1024.有一人患流感,经过两轮传染后共有100人患流感,那么每轮传染中平均一个人传 染的人数为( )人A 、8B 、9C 、10D 、115.如图所示是一个正方体的表面展开图,已知正方体相对两个面上的数相同,且不相 对两个面上的数值不相同,则“★”面上的数为( )小黑板上的题目(如图)后,小敏回答:“方程有一根为1.”小聪回答:“方程有一根为2.”你则认为( )A 、小敏、小聪回答都不正确B 、小敏、小聪回答都正确C 、只有小敏回答正确D 、只有小聪回答正确7.将正方形A 的一个顶点与正方形B 的对角线交点重合,如图(1),则阴影部分面积是正方形A 的面积的81,若将正方形B 的一个顶点与正方形A 的对角线交点重合,按图(2),则阴影部分面积是正方形B 面积的( ) A.41 B.31 C.21D.328. 如图,在Rt △ABC 中,∠C=90°,AC=BC ,AB=8,点D 为AB 的中点,若直角MDN 绕点D 旋转分别交AC 于点E ,交BC 于点F ,则下列说法:①AE=CF ②EC+CF= ③DE=DF ④若△ECF 的面积为一个定值,则EF 的长也是一个定值,其中正确的是( )A. ①②B.①③C.①②③D.①②③④ 二、填空题(本大题有8小题,每小题3分,计24分)()0226533+-=+-x x x x ,则x = .0252=+-x x 的两根为21,xx ,则=-+2121x x x x .x 的方程()012212=---x k x k 有两个不相等实数根,则k 的取值X 围为 .12.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为_______.13.如图,在直角坐标系中,已知点A (-3,0),B (0,4),对△OAB 连续作旋转变换,依次得到三角形①,②,③,④…,则第16个三角形的直角顶点的坐标为 .14.如图,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至在△ADE 处,使点B 落在BC 的延长线上的D 点处,则∠BDE= .15.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD. 要使点D 恰好落在BC 上,则AP 的长是_________16. 如图,在Rt △ABC 中,AB=AC .D ,E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF②△ABE ≌△ACD ③BE+DC=DE ④BE2+DC2=DE2其中正确的是__________.(填序号) 三.解答题(本大题有8小题,共72分)17.按要求解下列一元二次方程(3分×2+5分×2)(1)05322=--x x (公式法); (2)01222=-+x x (配方法)(3)已知b a ,是一元二次方程02102=++x x 两根,求ab ba +的值.(4)求方程0432=+-k x x两实数根之积的最大值.18.(3分×2)在下列所给四个代数式中,选择合适..的代数式并求值...①b a + ②b a - ③ab ④ba(1)若)0(≠a a 是关于x 的方程02=++a bx x的根,我选_________求值.(2)若0≠ab 且满足012722=+-b ab a ,我选_________求值.△ABC 在平面直角坐标系xOy 中的位置如图所示. (1)作△ABC 关于点C 成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2. (3)在x 轴上求作一点P ,使PA1+PC2的值最小,并求出点P 的坐标20.将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D= 30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F.(1)求证:AF+EF=DE ;21.(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中的结论是否仍然成立;22.(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③,你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

九年级数学上学期第二次月考试题新试题_00012

九年级数学上学期第二次月考试题新试题_00012

湖北省咸宁市温泉中学2015届九年级数学上学期第二次月考试题一、选择题(共24分,每小题3分)1、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A B C D 2、下列语句中正确的是( )A 、平分弦的直径垂直于弦B 、过圆心的线段叫圆的直径C 、相等的圆心角所对弧相等D 、在同一圆中,相等的弧所对圆心角相等 3、一元二次方程(2014)2014x x x -=-的根是( ) A 、-1 B 、2014 C 、1和2014 D 、-1和20144、已知20,,a y ax y ax ≠==在同一坐标系中函数与的图象可能是( )A B C D5、如图,在⊙O 中,半径OC 垂直弦AB 于点D ,交⊙O 于点C ,若OD=2,AB=82,则CD 长是( ) A 、 6 B 、5 C 、4 D 、36、关于2(2)310,x a x x a ---=的方程有实数根则满足( )A 、14a ≥-B 、12a a 〉-≠且C 、124a a ≥-≠且 D 、2a ≠ 7、已知线段OA 交⊙O 于点B ,且OB=AB ,点P 是⊙O 上一个动点, 那么OAP ∠的最大值是( )A 、90︒B 、60︒C 、45︒D 、30︒8、如图是二次函数21y ax bx c x =++=-图象的一部分其对称轴,且过点(-3,0)下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(2,y 2 )是抛物线上两点,则y 1>y 2.其中说法正确的是( )A .①②B .②③C .①②④D .②③④ 二、填空题(共24分,每小题3分)9、一个圆锥的侧面积是底面积的4倍,则圆锥母线与底面半径的比是_____________.10、某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是_____________ 11、已知抛物线12C C 与抛物线关于原点成中心对称,若抛物线213(2)14C y x =+-的解析式为,则抛物线2C 的解析式为_______________________12、方程2680x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形周长是_______________ 13、如图点A 、B 、C 、D 在⊙O 上,且四边形OABC 为平行四边形,则D ∠=____________14、如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分面积为______________________(结果保留π)15、如图,在等腰Rt △ABC 中,90B ∠=︒将△ABC 绕点A 逆时针旋转60︒得△''',AB C AB C ∠则___________度 16、如图,在直角坐标系中,已知点A (-3,0),B (0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④….则三角形⑩的直角顶点坐标为____________________三、解答题(共计72分)17、用适当方法解下列方程(6分) (1)23410x x -+= (2)(32)(4)(32)(15)x x x x -+=--第16题第13题 第14题第15题18、在由边长为1个单位的小正方形组成的10×10网格中平面直角坐标系和四边形A B C D 的位置如图所示(8分)(1)将四边形ABCD 平移,使点D 到原点O 的位置,得到四边形A 1B 1C 10,请在网格中画出四边形A 1B 1C 10; (2)把四边形A 1B 1C 10绕点(1,1)逆时针旋转90°得到四边形A 2B 2C 202, 请直接写出点A 2,B 2,C 2的坐标.19、(8分)如图,抛物线2y x bx c =++经过坐标原点,并与x 轴交于点A(2,0)(1)求此抛物线解析式: (2)写出顶点坐标及对称轴:(3)若抛物线上有一点B ,且S △OAB=3,求点B 坐标.20、(8分)如图△ABC 中90,,2ACB D AB A DCB ∠=︒∠=∠是上一点且,E 是BC 边上一点,以EC 为直径⊙O 经过点D(1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE=ED ,求BD 的长.21、(10分)如图,某菜农在生态园蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度(弦AB 的长)为8515米,大棚顶点C 离地面高度为2.3米。

2014-2015年城北中学九年级上第二次月考数学试卷及答案解析

2014-2015年城北中学九年级上第二次月考数学试卷及答案解析

有两个不相
等的实数根.
(1)求 k 的取值范围; (2)是否存在实数 k,使方程两个实数根的倒数和等于 0?若存在,求出 k 的值,若不存在, 说明理由.
21.(8 分)(2003•江西)如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD.
(1)P 是 上一点(不与 C、D 重合),求证:∠CPD=∠COB; (2)点 P′在劣弧 CD 上(不与 C、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明 你的结论.
19.(8 分)(2014 春•高密市期末)如图,四边形 ABCD 中∠BAD=∠C=90°,AB=AD,AE⊥BC 于 E,△ BEA 旋转后能与△ DFA 重合. (1)旋转中心是哪一点? (2)旋转了多少度? (3)若 AE=5cm,求四边形 AECF 的面积.
20.(8 分)(2009•吴兴区校级自主招生)关于 x 的方程
经观察可以发现:图(2)比图(1)多出 2 个“树枝”,图(3)比图(2)多出 5 个“树枝”,
图(4)比图(3)多出 10 个“树枝”,照此规律,图(7)比图(6)多出
个“树
枝”.
三、解答题(共 72 分)
17.(10 分)(2014 秋•嘉鱼县校级月考)解方程: (1)x2 ﹣5x+6=0; (2)(x﹣5) 2=4(5﹣x).
A.(0,3)
B. ( 0, )
C.(0,2)
D.(0, )
二、填空题(每小题 3 分,共 24 分) 9.(3 分)(2012•渝北区校级模拟)一个正方形要绕它的中心至少旋转 能与原来的图形重合.
度,才
10.(3 分)(2014 秋•苍溪县校级期中)若关于 x 的一元二次方程 ax2 +bx+c=0 一个根是 1,

2015年湖北省咸宁市中考数学调研试卷和答案

2015年湖北省咸宁市中考数学调研试卷和答案

2015年湖北省咸宁市中考数学调研试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)2.(3分)一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100° D.180°3.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.0 B.2 C.4 D.84.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.+=C.a6÷a3=a3D.(a+b)2=a2+b25.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°6.(3分)下列说法正确的是()A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B.一组数据6,8,7,9,7,10的众数和中位数都是7C.为了解全国中学生的心理健康情况,应该采用全面调查的方式D.若甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定7.(3分)若抛物线y=x2﹣2x+c与x轴的一个交点为(3,0),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.关于x的一元二次方程x2﹣2x+c的两个根为﹣1,38.(3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个 B.6个 C.8个 D.10个二、填空题(共8小题,每小题3分,满分24分)9.(3分)近三年来我市成功引进央企,省企投资近20000000000元,建设五条高速公路,创造了“咸宁速度”,“咸宁模式”,该数据用科学记数法表示应为.10.(3分)若m+n=1,则代数式m2﹣n2+2n的值为.11.(3分)三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30°,则AB的长为cm.12.(3分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,则甲、乙、丙三人中至少有一人在B餐厅用餐的概率是.13.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.14.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是.15.(3分)平移小菱形“”可以得到美丽的“中国结”图案,左边四个图案是由“”平移后得到的类似“中国结”的图案,按图中规律,第10个图案中,小菱形“”的个数.16.(3分)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:①当0<t≤5时,y=t2②tan∠ABE=③点H的坐标为(11,0)④△ABE与△QBP不可能相似.其中正确的是(把你认为正确结论的序号都填上)三、专心解一解(共8小题,满分72分)17.(8分)(1)计算:|﹣2|﹣()﹣1﹣(2)解方程:2﹣=.18.(7分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(x>0)的图象交于A(m,1)B(1,n)两点(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣≤0的x的取值范围.19.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.20.(8分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).请你根据统计图解答下列问题(1)该班一共有名学生,在扇形统计图中“E”对应扇形的圆心角的度数为(2)将下面的频数分布直方图补充完整(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.21.(9分)如图,在△ABC中,AB=AC,角平分线AE,BD相交于M,点O在AB边上,以OB为半径的圆恰好经过点M,且与AB相交于另一点F.(1)判断AE与⊙O的位置关系,并说明理由.(2)当BC=4,cosC=,求⊙O的半径.22.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售可增加10千克.(1)若该商品销售这种核桃要想平均每天获利2240元①每千克核桃应降低多少元?②在平均每天获利不变的情况下,为尽可能吸引顾客,赢得市场,该店应按原售价的几折出售?(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使平均每天获得的利润最大?23.(10分)【阅读】我们分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.【运用】利用“作差法”解决下列问题:(1)小丽和小颖分别两次购买同一种商品,小丽两次都买了m千克商品,小颖两次购买商品均花费n元,已知第一次购买该商品的价格为a元/千克,第二次购买该商品的价格为b元/千克(a,b是整数,且a≠b),试比较小丽和小颖两次所购买商品的平均价格的高低.(2)奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃了亏?并说明理由.24.(12分)如图甲,已知△ABC,AB=AC=4,∠A=90°,取含45°角的直角三角尺,将45°角的顶点放在BC的中点O处,并绕点O顺时针旋转三角尺,当45°角的两边分别与AB,AC交于点E,F时,连接EF,如图乙.(1)指出图乙中一对相似三角形,并给出证明.(2)设CF=x,BE=y,试求y与x的函数解析式,并指出x为何值时△OEF为等腰三角形;(3)探究在三角尺绕点O旋转的过程中,△AEF的周长是否为定值?若是,试求这个定值;若不是,请说明理由.2015年湖北省咸宁市中考数学调研试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.2.(3分)一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100° D.180°【分析】根据两直线平行,内错角相等可知是140°.【解答】解:∵AB∥CD,∠B=140°,∴∠C=∠B=140°.故选:A.3.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.0 B.2 C.4 D.8【分析】将原方程转化为一元二次方程的一般形式,再根据根与系数的关系x1+x2=﹣就可以求出其值.【解答】解:∵x2=4,∴x2﹣4=0,∴a=1,b=0,c=﹣4,∵x1,x2是方程是x2=4的两根,∴x 1+x2=﹣,∴x1+x2=﹣=0,故选:A.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.+=C.a6÷a3=a3D.(a+b)2=a2+b2【分析】根据有理数的减法,可判断A,根据合并同类二次根式,可判断B,根据同底数幂的除法,可判断C,根据完全平方公式,可判断D.【解答】解:A、减去一个数等于加上这个数的相反数,故A错误;B、不是同类二次根式不能合并,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.5.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.6.(3分)下列说法正确的是()A.一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B.一组数据6,8,7,9,7,10的众数和中位数都是7C.为了解全国中学生的心理健康情况,应该采用全面调查的方式D.若甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定【分析】根据概率的意义,可判断A;根据中位数、众数的定义,可判断B;根据调查方式,可判断C;根据方差的性质,可判断D.【解答】解:A、一个游戏的中奖率是1%,则做100次这样的游戏可能中奖,可能不中奖,故A错误;B、一组数据6,8,7,9,7,10的众数是7,中位数是7.5,故B错误;C、为了解全国中学生的心理健康情况,应该采用抽样调查的方式,故C错误;D、甲乙两人六次跳远成绩的方差S=0.1,S=0.03,则乙的成绩更稳定,故D正确;故选:D.7.(3分)若抛物线y=x2﹣2x+c与x轴的一个交点为(3,0),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.关于x的一元二次方程x2﹣2x+c的两个根为﹣1,3【分析】由二次项系数a=1>0,得出抛物线的开口向上,得出A正确;把(3,0)代入抛物线得出c=﹣3,把抛物线解析式化成顶点式,得出对称轴和最小值,得出B正确,C不正确;由y=0时,解方程x2﹣2x﹣3=0即可得出结果.【解答】解:∵抛物线y=x2﹣2x+c的二次项系数a=1>0,∴抛物线的开口向上,∴A正确;把(3,0)代入抛物线y=x2﹣2x+c得:c=﹣3,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴x=1,∴B正确;∵抛物线的开口向上,∴y有最小值=﹣4,∴C不正确;当y=0时,x2﹣2x﹣3=0,解得:x=﹣1,或x=3,∴方程x2﹣2x﹣3=0的两个根是﹣1,3;∴D正确.故选:C.8.(3分)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个 B.6个 C.8个 D.10个【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【解答】解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:D.二、填空题(共8小题,每小题3分,满分24分)9.(3分)近三年来我市成功引进央企,省企投资近20000000000元,建设五条高速公路,创造了“咸宁速度”,“咸宁模式”,该数据用科学记数法表示应为2×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将200 0000 0000用科学记数法表示为:2×1010.故答案为:2×1010.10.(3分)若m+n=1,则代数式m2﹣n2+2n的值为1.【分析】先利用平方差公式把m2﹣n2分解为(m+n)(m﹣n),再利用整式的加减即可解答.【解答】解:m2﹣n2+2n=(m+n)(m﹣n)+2n=1×(m﹣n)+2n=m﹣n+2n=m+n=1.故答案为:1.11.(3分)三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30°,则AB的长为7cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EG=14cm,∠EGF=30°,∴EQ=AB=×14=7(cm).故答案为:7.12.(3分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,则甲、乙、丙三人中至少有一人在B餐厅用餐的概率是.【分析】列举出所有情况,让甲、乙、丙三人中至少有一人在B餐厅用餐的情况数除以总情况数即为所求的概率.【解答】解:某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中一个餐厅用餐,共8种情况;甲、乙、丙三人都不在B餐厅,即都在A餐厅用餐的只有1种情况,至少有一人在B餐厅用餐有7种情况,故其概率为.13.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.14.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是a ≤﹣2且a≠﹣3.【分析】首先根据=1,可得x=a+2;然后根据关于x的分式方程=1的解是非正数,求出a的取值范围即可.【解答】解:∵=1,∴x=a+2,∵关于x的分式方程=1的解是非正数,∴a+2≤0,解得a≤﹣2,又∵x=a+2≠﹣1,∴a≠﹣3,∴a的取值范围是:a≤﹣2且a≠﹣3.故答案为:a≤﹣2且a≠﹣3.15.(3分)平移小菱形“”可以得到美丽的“中国结”图案,左边四个图案是由“”平移后得到的类似“中国结”的图案,按图中规律,第10个图案中,小菱形“”的个数200.【分析】仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=10即可求得答案.【解答】解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第10个图形有2×102=200个小菱形;故答案为:200.16.(3分)如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:①当0<t≤5时,y=t2②tan∠ABE=③点H的坐标为(11,0)④△ABE与△QBP不可能相似.其中正确的是①②③(把你认为正确结论的序号都填上)【分析】根据图乙可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】①如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2(故②正确);②又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,∴tan∠ABE==,故②正确;③由图象知,在D点时,出发时间为7s,因为CD=4,所以H(11,0),故③正确;④当△ABE与△QBP相似时,点P在DC上,如图2所示:∵tan∠PBQ=tan∠ABE=,∴,即,解得:t=.故④错误;故答案为:①②③.三、专心解一解(共8小题,满分72分)17.(8分)(1)计算:|﹣2|﹣()﹣1﹣(2)解方程:2﹣=.【分析】(1)利用绝对值的性质和负整数指数幂的性质分别化简求出即可;(2)利用一元一次方程的解法,去分母化简求出即可.【解答】解:(1)|﹣2|﹣()﹣1﹣=2﹣﹣2﹣=﹣﹣;(2)2﹣=去分母得:12﹣2(2x+1)=3(x+1)去括号得:12﹣4x﹣2=3x+3,整理得:7x=7解得:x=1.18.(7分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(x>0)的图象交于A(m,1)B(1,n)两点(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣≤0的x的取值范围.【分析】(1)把A、B代入y=(x>0),可得m、n的值,再根据待定系数法,可得一次函数的解析式;(2)根据观察函数图象的交点,可得出答案.【解答】解:(1)由题意,得1=,n=解得m=4,n=4∴A(4,1),B(1,4),∵一次函数y=kx+b(k≠0)经过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+5;(2)由图可知kx+b﹣≤0的x的取值范围是0<x≤1或x≥4.19.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.【分析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.【解答】(1)解:如图所示:EF即为所求;(2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,∵,∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴四边形DEBF是菱形.20.(8分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).请你根据统计图解答下列问题(1)该班一共有50名学生,在扇形统计图中“E”对应扇形的圆心角的度数为36°(2)将下面的频数分布直方图补充完整(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【分析】(1)用C组的人数除以它所占的百分比即可得到全班人数,用E组的所占百分比乘以360°即可得到在扇形统计图中“E”对应扇形的圆心角的度数;(2)先计算出D组和A组的人数,然后补全频数分布直方图;(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【解答】解:(1)根据题意得:该班一共有学生:12÷24%=50(名),在扇形统计图中“E”对应扇形的圆心角的度数为:×360°=36°;故答案为:50,36°;(2)如图,D组人数=18%×50=9;选“A“的人数为50﹣12﹣9﹣7﹣5=17(人),(3)画树状图为:共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种,所以选出的2人恰好1人选修篮球,1人选修足球的概率==.21.(9分)如图,在△ABC中,AB=AC,角平分线AE,BD相交于M,点O在AB边上,以OB为半径的圆恰好经过点M,且与AB相交于另一点F.(1)判断AE与⊙O的位置关系,并说明理由.(2)当BC=4,cosC=,求⊙O的半径.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)通过解直角三角形求得AB=6,设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到=,即可解得R=,从而求得⊙O 的半径为.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC,又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)∵AB=AC,∴∠B=∠C,∵cosC=,∴cosB=,∵CE=BE=BC=2,∴=,∴AB=6,设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=,∴⊙O的半径为.22.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售可增加10千克.(1)若该商品销售这种核桃要想平均每天获利2240元①每千克核桃应降低多少元?②在平均每天获利不变的情况下,为尽可能吸引顾客,赢得市场,该店应按原售价的几折出售?(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使平均每天获得的利润最大?【分析】(1)①设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;②为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【解答】解:(1)①设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:每千克水果应降价4元或6元;②由①可知每千克水果可降价4元或6元.因为要尽可能让利于顾客,所以每千克水果应降价6元.此时,售价为:60﹣6=54(元),×100%=90%.答:该店应按原售价的九折出售.(2)设每天获得的利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴若不考虑其他因素,销售价格定为55时,才能使平均每天获得的利润最大.23.(10分)【阅读】我们分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.【运用】利用“作差法”解决下列问题:(1)小丽和小颖分别两次购买同一种商品,小丽两次都买了m千克商品,小颖两次购买商品均花费n元,已知第一次购买该商品的价格为a元/千克,第二次购买该商品的价格为b元/千克(a,b是整数,且a≠b),试比较小丽和小颖两次所购买商品的平均价格的高低.(2)奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃了亏?并说明理由.【分析】(1)根据题意分别表示出小丽和小颖两次所购买商品的平均价格,利用作差法比较即可;(2)设篮子的质量为xkg,根据题意可得奶奶有的玉米数量为(20﹣x)kg,小贩给小莲的大米数量为(10﹣)kg,再根据玉米大米兑换比例即可得解.【解答】解:(1)∵=,=,∴﹣==>0,∴小丽两次所购买商品的平均价格高.(2)奶奶吃亏.理由:设篮子重xkg,玉米重(20﹣x)kg,应换取kg大米,商贩给奶奶的大米(10﹣x)kg,﹣(10﹣x)=.答:在此过程中奶奶吃亏,吃亏千克.24.(12分)如图甲,已知△ABC,AB=AC=4,∠A=90°,取含45°角的直角三角尺,将45°角的顶点放在BC的中点O处,并绕点O顺时针旋转三角尺,当45°角的两边分别与AB,AC交于点E,F时,连接EF,如图乙.(1)指出图乙中一对相似三角形,并给出证明.(2)设CF=x,BE=y,试求y与x的函数解析式,并指出x为何值时△OEF为等腰三角形;(3)探究在三角尺绕点O旋转的过程中,△AEF的周长是否为定值?若是,试求这个定值;若不是,请说明理由.【分析】(1)根据两个角相等的两个三角形相似证明;(2)根据△EBO∽△OCF,得到=,把x、y代入计算即可,根据对应边相等的相似三角形全等解答;(3)连接OA,在AC上取CH=AE,连接OH,证明△AEO≌△HCO,△EOF≌△HOF即可.【解答】解:(1)△EBO∽△OCF,证明:∵∠EOF=45°,∴∠BOE+∠COF=135°,∵∠B=45°,∴∠BOE+∠BEO=135°,∴∠BEO=∠COF,又∠B=∠C=45°,∴△EBO∽△OCF;(2)∵△EBO∽△OCF,∴=,∴xy=4,即y=,∵AB=AC=4,∠A=90°,∴BC=4,当CF=OB=2时,△EBO≌△OCF,则OE=OF,∴x=2时,△OEF为等腰三角形;(3)连接OA,在AC上取CH=AE,连接OH,在△AEO和△HCO中,,∴△AEO≌△HCO,∴OE=OH,∠EOA=∠HOC,∴∠EOF=∠FOH=45°,在△EOF和△HOF中,,∴△EOF≌△HOF,∴FH=EF,∴△AEF的周长=AE+AF+EF=AF+FH+HC=AB=4,∴△AEF的周长为定值,这个定值是4.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2015年湖北省咸宁市中考数学试题及解析

2015年湖北省咸宁市中考数学试题及解析

2015年湖北省咸宁市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.(3分)(2015•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.23.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°5.(3分)(2015•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣36.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:67.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015•咸宁)﹣6的倒数是.10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=.12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为.13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400=.16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE 交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.2015年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.考点:正数和负数.分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解答:解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.点评:本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.(3分)(2015•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.2考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°考点:平行线的性质.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解答:解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.(3分)(2015•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣3考点:同底数幂的除法;立方根;完全平方公式;负整数指数幂.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用完全平方公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用立方根定义计算得到结果,即可做出判断.解答:解:A、原式=a4,错误;B、原式=a2+b2+2ab,错误;C、原式=,错误;D、原式=﹣3,正确,故选D点评:此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌握公式及法则是解本题的关键.6.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6考点:位似变换.分析:利用位似图形的性质首先得出位似比,进而得出面积比.解答:解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.点评:此题主要考查了位似图形的性质,得出位似比是解题关键.7.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小考点:扇形面积的计算.分析:作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.解答:解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DMCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选C.点评:本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(2015•咸宁)﹣6的倒数是.考点:倒数.分析:根据倒数的定义求解.解答:解:因为(﹣6)×(﹣)=1,所以﹣6的倒数是﹣.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.考点:列代数式.分析:8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.解答:解:8折=80%,a÷80%=,故答案为:.点评:本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=3.考点:配方法的应用.专题:计算题.分析:原式配方得到结果,即可求出m的值.解答:解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.考点:解二元一次方程组;平方差公式.专题:计算题.分析:方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.解答:解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣点评:此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.考点:扇形统计图.分析:根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.解答:解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.点评:本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解答:解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.点评:本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE 交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②④.(把你认为正确的说法的序号都填上)考点:四边形综合题.分析:根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G 点为AC中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG长度.解答:解:∵在正方形ABCD中,BF⊥AE,∴∠AGB保持90°不变,∴G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,∴当E移动到与C重合时,F点和D点重合,此时G点为AC中点,∴AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;∵当E点运动到C点时停止,∴点G运动的轨迹为圆,圆弧的长=×2=,故③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC==,CG的最小值为OC﹣OG=﹣1,故④正确;综上所述,正确的结论有②④.故答案为②④.点评:本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、专心解一解(本大题共8小题,满分72分)17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.解答:解:(1)原式=﹣1+2+1=3;(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.考点:相似三角形的判定;全等三角形的判定.分析:(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.解答:解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.点评:此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.考点:列表法与树状图法;加权平均数;中位数;众数;方差.专题:计算题.分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.解答:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.考点:一次函数的应用;分式方程的应用.分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解答:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x.(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.点评:本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.考点:四边形综合题.分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省咸宁市嘉鱼县城北中学2015届九年级数学上学期第二次月考试题
一、选择题(每小题3分,共24分)
1、方程 032=-x x 的解是( )
A .x =3
B .x 1=0,x 2=3
C .x 1=0,x 2=-3
D .x 1=1,x 2=3 2、用配方法解一元二次方程0782=++x x ,则方程可化为( )
A.942=+)(x
B.942=-)(x
C.23)8(2=+x
D.9)8(2=-x
3、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )
4、如图,△ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( ) A.62° B.60° C.56°
D.28° 5、三角形两边长分别是8和6,第三边长是一元二次方程216600x x -+=的
一个实数根,则该三角形的面积是( )
6、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90°后,B 点到达的位置
坐标为( )
A .(-2,2)
B .(4,1)
C .(3,1)
D .(4,0)
7、如图,△ABC 中,AD 是∠BAC 内的一条射线,BE⊥AD,且△CHM 可由△BEM 旋转而得,则下列结论中错误的是( )
A .M 是BC 的中点
B .EH 21FM =
C .CF⊥A
D D .FM⊥BC
8、如图,⊙M 与x 轴相切于原点,平行于y 轴的直线交圆于P 、Q 两点,P 点在Q 点的下方,若P 点的坐标是(2,1),则圆心M 的坐标是( )
A .(0,3)
B .(0,25)
C .(0,2)
D .(0,2
3) 二、填空题(每小题3分,共24分)
9、一个正方形要绕它的中心至少旋转______度,才能与原来的图形重合.
10、若一元二次方程ax 2+bx+c=0一个根是1,且a 、b 满足等式 333+-+-=a a b 则c= .
11、直线y =x +3上有一点P (m -5,2m ),则P 点关于原点的对称点P ′为______ .
12、如图,直角三角形△ABC 中,BD 是斜边上的高,将△ABC 绕着直角顶点B 顺时针旋转得到△EBF ,旋转
角是∠ABD , EF、CB 相交于H ,若AC=7cm ,则BH 的长为 .
13、如图,在⊙O 中,直径CD 与弦AB 相交于点E ,若BE=3,AE=4,DE=2,则⊙O 的半径是 .
14、如图,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于点P ,则图中阴影部分的面积是 .
15、关于x 的一元二次方程2210x mx m -+-=的两个实数根分是12x x 、,且22127x x +=,则212()x x -的
值是 .
16、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”.
三、解答题(共72分)
17、解方程(每小题5分,共10分)
(1)x 2-5x+6=0 (2) (x -5)2=4(5-x )
18、(本小题8分)为落实素质教育要求,促进学生全面发展,城北中学2012年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2014年投资18.59万元.
(1)求该学校为新增电脑投资的年平均增长率.
(2)从2012年到2014年,该中学三年为新增电脑共投资多少万元?
19、(本小题8分)如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD,AE ⊥BC 于E,BEA ∆旋转后能与DFA ∆重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF 的面积.
20、(本小题8分)关于x 的方程04
)2(2=+++k x k kx 有两个不相等的实数根. (1)求k 的取值范围.
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.
21、(本小题8分)如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD .
(1)P 是优弧CAD 上一点(不与C 、D 重合),求证:∠CPD=∠COB .
(2)点P′在劣弧CD 上(不与C 、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明你的结论.
22、(本小题8分)如图,在平面直角坐标系中,⊙C 与y 轴相切,且C 点坐标为(1,0),直线l 过点A (—1,0),与⊙C 相切于点D ,求直线l 的解析式.
23、(本小题10分)如图(1),在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转a 度得到四边形OA ′B ′C ′,此时直线OA ′、直线B ′C ′分别与直线BC 相交于点P 、Q .
⑴ 四边形OABC 的形状是__________,当a =90°时,BQ
BP 的值是__________. ⑵如图(2),当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求△OPB ′的面积.
⑶ 在四边形OABC 旋转过程中,当0<a ≤180°时,是否存在这样的点P 和点Q ,使BP =
2
1BQ ?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
24、(本小题12分)如图①,在平面直角坐标系中,以坐标原点O 为圆心的⊙O 的半径为12-,直线l :2--=x y 与坐标轴分别交于A 、C 两点,点B 的坐标为(4,1),⊙B 与x 轴相切于点M .
(1)求点A 的坐标及∠CAO 的度数.
(2)⊙B 以每秒1个单位长度的速度沿x 轴负方向平移,同时,直线l 绕点A 顺时针匀速旋转。

当⊙B 第一次与⊙O 相切时,直线l 也恰好与⊙B 第一次相切。

问:直线AC 绕点A 每秒旋转多少度?
(3)如图②,过A 、O 、C 三点作⊙O 1,点E 为劣弧A O 上一点,连接EC 、EA 、EO ,当点E 在劣弧A O 上运动时(不与A 、O 两点重合),EO
EA EC -的值是否发生变化?如果不变,求其值;如果变化,说明理由.
数学参考答案
21、(1)证明:连接OD ,∵AB 是直径,AB ⊥CD ,∴∠COB=∠DO B=COD ∠2
1. 又∵∠CPD=COD ∠2
1,∴∠CPD=∠COB.(4分) (2)∠CP′D 与∠COB 的数量关系是:∠CP′D +∠COB=180°.
证明:∵∠CPD+∠CP′D=180°,∠CPD=∠COB,∴∠CP′D+∠COB=180°.(4分)
22、解:如图所示,连接CD ,∵直线l 为⊙C 的切线,∴CD ⊥AD.
∵C 点坐标为(1,0),∴OC=1,即⊙C 的半径为1,∴CD=OC=1.
又∵点A 的坐标为(—1,0),∴AC =2,∴∠CAD=30°.
作DE ⊥AC 于E 点,则∠CDE=∠CAD=30°,∴CE=2
121=CD , 2
3=DE ,∴OE=OC-CE=21,∴点D 的坐标为(21,23). 0=
—k+b ,
23=2
1k+b.
设直线l 的函数解析式为b kx y +=,则 解得k=33,b=33, ∴直线l 的函数解析式为y=33x+3
3.(8分)
(3)EO
EA EC -的值不变,等于2 . 如图,在CE 上截取CK=EA ,连接OK , ∵∠OAE=∠OCK,0A=0C , ∴△O AE≌△OCK . ∴OE=OK , ∠EOA =∠KOC. ∴∠EOK=∠AOC=90°∴EK=2 EO ∴
EO
EA EC -=2 (5分)。

相关文档
最新文档