2016考研数学:2015考研数学高数真题解析
2015考研数学高数真题解析

2015考研数学高数真题解析[摘要]2015年考研结束后,凯程考研不断的为大家整理各类真题,按题型、考点、科目等进行剖析,希望能帮助大家更好的复习!2014年12月28日凯程考研数学教研组第一时间解析了2015考研数学(一)(二)(三)真题,今年的试题难度和去年相比差不多,出题的方向和题目的类型完全在预料之中。
没有偏题怪题,也没有计算量特别大的题目,完全按照考试大纲的要求,只要考生有比较扎实的基本功,复习比较全面,是比较容易拿到高分的。
相信同学们都能做的不错。
证明题是研究生考试几乎每年必考的内容,今年考研数学(一)(三)证明题与以往不同,之前经常考到的是有关中值等式的证明或不等式的证明等等,而今年的证明题是导数公式的证明,题目如下以上是这道证明题的解题过程,这道题也是咱们同济大学第六版高等数学上册教材88页的原定理,所以同学们在预习课本的时候,一定要重视定理、公式、法则、性质等的证明,近几年考研真题都有考过原定理的证明,比如08年考了边上限函数导数的证明,09年考查了拉格朗日中值定理的证明。
所以对于2016届考研的学子来说,一定要重视书中定理、公式、法则、性质等的证明。
在此对准备2016年考试的考生来说,复习安排应注意以下方面:首先,注重基本概念、基本原理的理解,弄懂、弄通教材,打一个坚实的数学基础,书本上每一个概念、每一个原理都要理解到位。
象今年考查的导数的运算法则,就是教材上的一个定理,选择题和部分填空题也是考查基本概念和基本原理,基础知识的考查占有相当大的比例,切不可开始就看复习资料而放弃课本的复习。
其次,注重公式的记忆,方法的掌握和应用。
填空题部分和一部分大题难度不大,需要能够理解原理,熟悉公式,灵活运用方法。
基础复习阶段非常重要,只要掌握好基础,对于后期题型的训练和方法的掌握都有很大的帮助,只有打好基础才能做题达到游刃有余。
再次,注重综合问题、实际问题,这部分内容是强化阶段重点关注的问题和需要培养的能力,需要大家练习一定量的问题,以达到巩固概念方法和原理、提高所学知识解决问题能力的目的。
2016考研数学真题答案解析[数一]
![2016考研数学真题答案解析[数一]](https://img.taocdn.com/s3/m/4b512e35561252d381eb6e1d.png)
WORD 资料 .可编辑2015 年全国硕士研究生入学统一考试数学一试题答案一、选择题 :1~ 8 小题,每小题 4 分,共 32 分 .下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 ....1 、设函数f ( x) 在(-,+)连续,其2阶导函数f (x) 的图形如下图所示,则曲线y f ( x) 的拐点个数为()(A )0(B) 1(C )2(D)3【答案】 (C)【考点】拐点的定义【难易度】★★【详解】拐点出现在二阶导数等于0,或二阶导数不存在的点上,并且在这点的左右两侧二阶导数异号,因此,由 f (x) 的图形可知,曲线 y f ( x) 存在两个拐点,故选(C).2 、设y 1 e2 x x 1e x是二阶常系数非齐次线性微分方程y ay by ce x的一个特解,23则()( A )a3,b1,c 1.(B)a3,b2, c 1.( C )a3,b2, c 1.( D)a3,b2, c 1.【答案】 (A)【考点】常系数非齐次线性微分方程的解法【难易度】★★【详解】 1 e2x, 1 e x为齐次方程的解,所以 2 、 1 为特征方程2 +a b 0 的根,从而23a123,b 1 2 2, 再将特解y xe x代入方程 y 3y 2 y ce x得:c 1.3 、若级数a n条件收敛,则 x 3 与x 3 依次为幂级数na nnx 1的:n 1n 1( A )收敛点,收敛点( B)收敛点,发散点( C )发散点,收敛点( D )发散点,发散点【答案】 (B)【考点】级数的敛散性【难易度】★★★a n条件收敛,故x2为幂级数a n x 1n【详解】因为的条件收敛点,进而得n 1n 1a n xn1,收敛区间为0,21 的收敛半径为,又由于幂级数逐项求导不改变收敛区间,故n 1na n xn0,2 ,因而x3与 x 3 依次为幂级数n1的收敛区间仍为na n x 1 的收敛n 1n1点、发散点 .4 、设 D 是第一象限中曲线2xy1,4 xy 1与直线 y x, y3x 围成的平面区域,函数 f ( x, y)在 D 上连续,则 f (x, y)dxdyD1( A )2d sin 21 42sin 21( C )3d sin 2142sin 2f (r cos , r sin )rdrf (r cos ,r sin )dr1( B)2d sin 2142sin 21(D )3d sin 2142sin 2f (r cos ,r sin )rdrf (r cos , r sin )dr【答案】 (D)【考点】二重积分的极坐标变换【难易度】★★★【详解】由y x 得,;由y3x 得,43由 2xy1得, 2r 2cos sin1, r12sin由 4xy1得, 4r 2cos sin1, r12sin 21所以 f ( x, y)dxdy3d sin 2 f (r cos , r sin)rdr1D42sin 211115、设矩阵A 12a, b d ,若集合{1,2} ,则线性方程组Ax b 有无穷多个14a2 d 2解的充分必要条件为( A )a, d( B)a, d( C )a, d(D )a,d【答案】 (D)【考点】非齐次线性方程组的解法【难易度】★★11111111【详解】A, b12a d01 a 1d11 4 a2 d 20 0 a 1 a 2 d 1 d 2Ax b 有无穷多解R( A)R( A,b)3a 1或 a 2 且 d 1 或 d 26 、设二次型 f ( x1, x2 , x3 ) 在正交变换x Py 下的标准形为 2y12y22y32,其中P (e1 ,e2 , e3 ) ,若 Q(e1 , e3 , e2 ) ,则 f ( x1 , x2 , x3 ) 在正交变换x Qy 下的标准形为( A )2y12y22y32( B)2y12y22y32( C )2y12y22y32( D)2y12y22y32【答案】 (A)【考点】二次型【难易度】★★200【详解】由 x Py ,故f x T Ax y T (P T AP ) y 2y12y22y32且: P T AP 010001100200 QP00 1 PC,Q T AQ C T (P T AP)C 0 10 010001所以fx T Ax y T (Q T AA) y2y12y22y32,故选 (A)7 、若A, B为任意两个随机事件,则( A )P(AB) P( A)P(B)( B)P( AB) P( A)P(B)(C )P( AB)P( A) P(B)(D)P( AB)P(A)P(B) 22【答案】 (C)【考点】【难易度】★★【详解】P(A)P(AB), P(B)P(AB)P(A)P(B)2P(AB)P(AB)P(A)P(B)故选( C)28 、设随机变量X,Y不相关,且 EX2, EY1, DX3,则E X X Y 2(A )-3(B)3(C )-5(D)5【答案】 (D)【考点】【难易度】★★★【详解】EXXY2 E X 2XY 2XEX2EXY 2EXDX E2X EXEY 2EX 5二、填空题: 9 ~ 14小题 ,每小题 4 分 ,共 24 分 .请将答案写在答题纸指定位置上 ....ln cos x9 、limx2x 01【答案】2【考点】极限的计算【难易度】★★ln cosxln(1 cos x 1)cos x 11 x 21【详解】 lim limlim2x 2limx 2x 2x 22xx 0x 0x 02 (sin xx )dx10、 -cos x212【答案】4【考点】积分的计算【难易度】★★sin x2【详解】2 (x )dx 22xdxcosx4-2111 、若函数 z z( x, y) 由方程 ezxyz+xcos x 2 确定,则 dz (0,1).【答案】【考点】隐函数求导【难易度】★★【详解】令 F ( x, y, z)ezxyz x cos x2 ,则 F xyz 1sin x , F y xz , F z xy ,又当 x0, y 1时, z0 ,所以zF x 1,zF ydxx(0,1)F zy(0,1)0 ,因而 dz (0,1)F z12 、设是由平面 xyz 1与三个坐标平面所围成的空间区域,则( x 2 y 3z)dxdydz1 【答案】4【考点】三重积分的计算【难易度】★★★【详解】 由轮换对称性,得1òòò(x+2y + 3z )dxdydz= 6 òòòzdxdydz = 6 ò0zdz òòdxdyW WDzWORD 资料 .可编辑其中 D z 为平面 z= z 截空间区域 W 所得的截面,其面积为1(1- z )2.所以2òòò()òòò11 21321z × (1 - z )dz =3z- 2z + z dz=x + 2y + 3z dxdydz = 6zdxdydz = 64WWò2ò()2 0 0 2-1220 02 2 13 、 n 阶行列式 0 0-1 2【答案】 2n 12【考点】行列式的计算 【难易度】★★★【详解】 按第一行展开得= 2n+1- 214 、设二维随机变量 ( X ,Y ) 服从正态分布 N (1,0,1,1,0) ,则 P( XY Y 0).【答案】12【考点】【难易度】★★【详解】( X ,Y) ~ N (1,0,1,1,0), X ~ N (1,1),Y ~ N (0,1), 且 X ,Y 独立X 1~ N(0,1), P XYY 0P(X 1)Y 0P X1 1 1 1 110,Y0 PX10,Y02 2 2 22三、解答题: 15~ 23 小题 , 共 94 分 .请将解答写在答题纸指定位置上.解答应写出文字说明、证明...过程或演算步骤.15 、(本题满分10 分)设函数 f (x) x a ln(1 x) bx sin x , g( x) kx3,若 f ( x) 与 g ( x) 在x0 是等价无穷小,求a ,b,k值。
考研数学15年16题

考研数学15年16题解析这是一道考研数学题,属于15年的真题。
本文将对这道题的解析进行详细介绍,帮助考生更好地理解和掌握这道题型。
题目如下:设A、B、C为数学矩阵,则以下四个结论中正确的是()。
A. (A + B)C = AC + BCB. (A - B)C = AC - BCC. (AB)^T = A TB TD. (AB)^T = BA我们需要判断哪个结论是正确的。
解析如下:A. (A + B)C = AC + BC首先,我们将(A + B)进行展开运算,得到:(A + B)C = AC + BC这个展开运算是正确的,因此结论A是正确的。
B. (A - B)C = AC - BC同样地,我们将(A - B)进行展开运算,得到:(A - B)C = AC - BC这个展开运算也是正确的,因此结论B是正确的。
C. (AB)^T = A TB T我们将(AB)^T进行展开运算,得到:(AB)^T = B TA T因此,结论C是错误的。
D. (AB)^T = BA同样地,我们将(AB)^T进行展开运算,得到:(AB)^T = B TA T因此,结论D是错误的。
综上所述,正确的结论是A和B。
总结:本题考察了关于矩阵的运算和转置的知识点。
我们需要熟悉矩阵的加法、减法、乘法、转置等基本运算法则,以及它们之间的相互关系。
通过这道题的解析,我们可以更好地理解和掌握矩阵的运算规律,为解答类似的矩阵题提供基础。
希望本文对考生能够有所帮助,让大家对这道题的解析有更清晰的认识。
祝愿所有考生都能在考试中取得好成绩!加油!。
2015~2016年考研数学(一)真题含答案详解

2015年全国硕士研究生入学统一考试数学(一)一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c (3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C)()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D)()1sin 23142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y(D) 2221232++y y y(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx →=(10)22sin ()d ________.1cos xx x x ππ-+=+⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z=(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(13) n 阶行列式20021202___________.00220012-=-L LM M OM M L L(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.(18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式.已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量.答案解析(1)【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3)【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4)【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰故选(B ) (5)【答案】(D)【解析】221111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )x(6)【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7)【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 2()()()()2()D X E X E X E Y E X =++⋅- 23221225=++⨯-⨯=,选(D) . (9)【答案】12-【分析】此题考查型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换. 【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰ (11)【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =. 所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zz xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰(13)【答案】122n +-【解析】按第一行展开得1111200212022(1)2(1)220220012n n n n n D D D +----==+--=+-L L LL L221222(22)2222222n n n n D D ---=++=++=+++L 122n +=-(14)【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. (15)【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx→+++= ()()2333330236lim 1x x x x x a x o x bx x o x kx →⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx →⎛⎫++-+-+ ⎪⎝⎭==即10,0,123a aa b k +=-== 111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=201sin cos 1lim 13x ab x bx x x kx →++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- 111,,23a b k ∴=-=-=-(16)【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M ====3=.(18)【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+(II )由题意得12()[()()()]n f x u x u x u x ''=L121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L (19)【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d π2θθ==(20)【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭20121224021201k k k k ==≠++ 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即101010020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21)【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP(22)【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰, 从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑,所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()(). (23)【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--.从而dln d 1L nθθθ=-(),关于θ单调增加, 所以$12min nX X X θ={,,,}L 为θ的最大似然估计量. 2016年全国硕士研究生入学统一考试数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2015年考研数学真题解析:数字特征

2015年考研数学真题解析:数字特征数学是一个讲究实践性的学科,“纸上得来终觉浅”是很多考生备考数学的共同感受。
数学的课本简单,寥寥几笔,但是当真正拿起笔做起题目来,很多考生却觉得很难上手。
所以,数学是一个需要大量练习的学科,而真题无疑是题海中最重要的组成部分。
因而如何利用好真题至关重要。
今天,为考生整理了2015年考研数学真题解析,希望考生认真练习。
概率统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的。
这主要是由两方面造成的。
一方面是时间不充裕,概率解答题位于试卷的最后,学生即使会,也来不及解答;另一方面是概率本身学科的特点,导致很多学生觉得概率非常难。
概率与数理统计学科的特点:1、研究对象是随机现象。
高数是研究确定的现象,而概率研究的是不确定的,是随机现象。
对于不确定的,大家感觉比较头疼。
2、题型比较固定,解法比较单一,计算技巧要求低一些。
比如概率的解答题基本上就围绕在随机变量函数的分布,随机变量的数字特征,参数的矩估计和最大似然估计这几块。
3、高数和概率相结合。
求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。
在复习概率与数理统计的过程中,把握住这门课程的特点,并且能够结合历年考试试题规律,概率一定能取得好成绩。
下面重点来说一下数字特征。
随机变量的数字特征,它是描述随机变量分布特征的数字,他们能够集中地刻画出随机变量取值规律的特点。
这是概率的重点,近10年至少考了13次有关数字特征的问题,特别是随机变量函数的期望。
要灵活应用数字特征相应的计算公式,同时结合高数积分的性质,这会给计算带来很大的方便。
除了求一些给定的随机变量的数学期望外,很多数学期望或方差的计算都与常用分布有关。
应该牢记常用分布的参数的概率意义,特别是二项分布、几何分布、泊松分布、指数分布、均匀分布和正态分布。
统计量的数字特征也是重点之一,数三经常以选择题、填空题的形式出现。
2016年与2015年考研数学(一、二、三)真题高数知识点考查对比

2016年与2015年考研数学(一、二、三)真题高数知识点考查对比为了让考生对今年数二有一个整体的把握以及对比去年有何改变,跨考教育数学教研室佟庆英老师将今年和去年的考研数学(一、二、三)真题中涉及到的高数知识点作如下对比,帮助考生自己心里有一个对比。
一、数学一
考题
序号
考查知识点解题思路点睛考查知识点解题思路点睛
1 反常积分敛散性利用反常积分的
性质
导数应用(拐点)
利用拐点的充分条
件
2 原函数存在性连续函数必有原
函数
二阶常系数微分
方程解的性质
利用二阶微分方程
解的性质计算
二、数学二
2 原函数存在性利用连续函数必
有原函数
间断点
首先计算出
f(x)的表达式,
在找出可疑间断
点,计算左右极
限即可
三、数学三。
2015年考研数学二真题及答案解析

2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
) (1)下列反常积分中收敛的是 (A)∫√x2 (B)∫lnxx+∞2dx(C)∫1xlnx+∞2dx (D) ∫xe x+∞2dx【答案】D 。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
∫√x2=2√x|2+∞=+∞;∫lnx x +∞2dx =∫lnx +∞2d(lnx)=12(lnx)2|2+∞=+∞;∫1xlnx+∞2dx =∫1lnx+∞2d(lnx)=ln (lnx)|2+∞=+∞;∫xe x+∞2dx =−∫x +∞2de −x =−xe −x |2+∞+∫e −x+∞2dx=2e −2−e −x |2+∞=3e −2, 因此(D)是收敛的。
综上所述,本题正确答案是D 。
【考点】高等数学—一元函数积分学—反常积分 (2)函数f (x )=lim t→0(1+sin t x)x 2t在(-∞,+∞)内(A)连续 (B)有可去间断点 (C)有跳跃间断点 (D)有无穷间断点 【答案】B【解析】这是“1∞”型极限,直接有f (x )=lim t→0(1+sin t x)x 2t=elim t→0x 2t(1+sin tx−1)=ex limt→0sint t=e x (x ≠0),f (x )在x =0处无定义,且lim x→0f (x )=lim x→0e x =1,所以 x =0是f (x )的可去间断点,选B 。
综上所述,本题正确答案是B 。
【考点】高等数学—函数、极限、连续—两个重要极限 (3)设函数f (x )={x αcos1x β,x >0,0,x ≤0(α>0,β>0).若f ′(x )在x =0处连续,则(A)α−β>1 (B)0<α−β≤1 (C)α−β>2 (D)0<α−β≤2 【答案】A 【解析】易求出f′(x )={αx α−1cos 1x β+βx α−β−1sin 1x β,x >0,0,x ≤0再有 f +′(0)=lim x→0+f (x )−f (0)x =lim x→0+x α−1cos 1x β={0, α>1,不存在,α≤1,f −′(0)=0于是,f ′(0)存在⟺α>1,此时f ′(0)=0. 当α>1时,lim x→0x α−1cos 1x β=0,lim x→0βxα−β−1sin 1x β={0, α−β−1>0,不存在,α−β−1≤0,因此,f′(x )在x =0连续⟺α−β>1。
2015年考研数三真题及答案解析(完整版)

2015年考研数三真题及答案解析(完整版)
凯程考研辅导班,中国最权威的考研辅导
机构
2015
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构
凯程考研辅导班,中国最权威的考研辅导机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016考研数学:2015考研数学高数真题
解析
证明题是研究生考试几乎每年必考的内容,今年考研数学(一)(三)证明题与以往不同,之前经常考到的是有关中值等式的证明或不等式的证明等等,而今年的证明题是导数公式的证明,题目如下:
以上是这道证明题的解题过程,这道题也是咱们同济大学第六版高等数学上册教材88页的原定理,所以同学们在预习课本的时候,一定要重视定理、公式、法则、性质等的证明,近几年考研真题都有考过原定理的证明,比如08年考了边上限函数导数的证明,09年考查了拉格朗日中值定理的证明。
所以对于2016届考研的学子来说,一定要重视书中定理、公式、法则、性质等的证明。
在此对准备2016年考试的考生来说,复习安排应注意以下方面:首先,注重基本概念、基本原理的理解,弄懂、弄通教材,打一个坚实的数学基础,书本上每一个概念、每一个原理都要理解到位。
象今年考查的导数的运算法则,就是教材上的一个定理,选择题和部分填空题也是考查基本概念和基本原理,基础知识的考查占有相当大的比例,切不可开始就看复习资料而放弃课本的复习。
其次,注重公式的记忆,方法的掌握和应用。
填空题部分和一部分大题难度不大,需要能够理解原理,熟悉公式,灵活运用方法。
基础复习阶段非常重要,只要掌握好基础,对于后期题型的训练和方法的掌握都有很大的帮助,只有打好基础才能做题达到游刃有余。
再次,注重综合问题、实际问题,这部分内容是强化阶段重点关注的问题和需要培养的能力,需要大家练习一定量的问题,以达到巩固概念方法和原理、提高所学知识解决问题能力的目的。
从真题上可以看出,对基本概念、基本性质和基本方法的考查才是考研数学的重点。
下面以真题中的几道题目为例,例如:数学三第13题,考查的内容就是特征值的基本运算性质,如果考生能够掌握特征值之积等于行列式的值,那么该题很容易求解;数学三第5题,考查的内容是非齐次线性方程组解的判定,如果考生能够清楚的知道非齐次线性方程组有无穷多解的充要条件为r(A)=r(A,b)
针对以上特点,老师建议各位2016考研的学子在进行线性代数复习时,一定要注重基本概念、基本性质和基本方法的复习。
很多考生由于对这些基础内容掌握不够牢固,理解不够透彻,导致许多失分现象,这一点在线性代数这个模块上体现的更加明显。
比如,线性代数中经常涉及到的基本概念,余子式,代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性表示,线性相关与线性无关,极大线性无关组,基础解系与通解,特征值与特征向量,矩阵相似与相似对角化,二次型的标准形与规范形,正定矩阵与正定二次型,合同变换与合同矩阵等等,这些概念必须理解清楚。
对于线性代数中的基本运算,行列式的计算(数值型、抽象型),求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关性的判定,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量,判断矩阵是否可以相似对角化,求相似对角矩阵,用正交变换法化实对称矩阵为对角矩阵,用正交变换化二次型为标准形等等。
一定要注意总结这些基本运算的运算方法。
例如,复习行列式的计算时,就要将各种类型的行列式计算方法掌握清楚,如,行(列)和相等型、爪型、三对角线型,范德蒙行列式等等。
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。
例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。
凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。
此外,最好还要看一下他们的营业执照。