脱氮除磷污水处理工艺

合集下载

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益突出。

其中,氮、磷的去除是污水处理的重要环节。

污水生物脱氮除磷技术因其成本低、效率高、操作简便等优点,成为当前污水处理的主流技术之一。

然而,面对日益严格的环境排放标准和水质要求,传统的生物脱氮除磷工艺逐渐显露出其局限性。

因此,对污水生物脱氮除磷工艺进行优化,提高其处理效率和稳定性,成为当前研究的重点。

本文将对污水生物脱氮除磷工艺的优化技术进行综述。

二、污水生物脱氮技术概述污水生物脱氮主要通过硝化和反硝化两个过程实现。

硝化过程由亚硝化菌和硝化菌完成,将氨氮氧化为亚硝酸盐氮和硝酸盐氮;反硝化过程则是在缺氧条件下,由反硝化菌将硝酸盐氮还原为气态氮,从而达到脱氮的目的。

三、污水生物除磷技术概述污水生物除磷主要依靠聚磷菌在好氧条件下过度吸收磷酸盐,并在缺氧或厌氧条件下将其释放。

通过交替运行好氧和厌氧阶段,实现污水中磷的去除。

四、污水生物脱氮除磷工艺优化技术(一)工艺参数优化1. pH值控制:适宜的pH值有利于提高硝化、反硝化以及聚磷菌的活性,从而提高脱氮除磷效率。

2. 溶解氧(DO)控制:DO是影响硝化、反硝化过程的关键因素。

通过合理控制DO,可以平衡硝化和反硝化的反应速率,提高脱氮效率。

3. 污泥龄(SRT)与水力停留时间(HRT)优化:通过调整SRT和HRT,可以控制生物反应器的污泥产量和反应效率。

(二)新型生物反应器应用新型生物反应器如移动床生物膜反应器、组合式生物反应器等,具有高效、节能、操作简便等优点,能有效提高脱氮除磷效率。

(三)生物强化技术通过向反应器中投加具有特殊功能的微生物或酶,强化硝化、反硝化和聚磷菌的活性,提高脱氮除磷效率。

(四)组合工艺应用将物理、化学方法与生物法相结合,如采用化学沉淀与生物反应器联合处理,能有效提高污水处理效果。

五、结论与展望通过对污水生物脱氮除磷工艺的优化,如工艺参数优化、新型生物反应器应用、生物强化技术以及组合工艺应用等,可以显著提高污水处理效率和稳定性。

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。

常用的除磷方法有化学法和生物法。

A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。

化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。

B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。

整个处理过程分为厌氧放磷和好氧吸磷两个阶段。

含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。

这就是“厌氧放磷”。

聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。

进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。

这就是“好氧吸磷”。

在此阶段,活性污泥不断增殖。

除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。

脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。

它们均来源于人们食物中的蛋白质。

脱氮的方法有化学法和生物法两大类。

A、化学法脱氮:包括氨吸收法和加氯法。

a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。

通过适当控制加氯量,可以完全除去水中的氨氮。

为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。

B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。

除磷脱氮工艺流程

除磷脱氮工艺流程

除磷脱氮工艺流程
《除磷脱氮工艺流程》
除磷脱氮工艺是水处理领域中常用的工艺之一,其主要目的是去除水体中的磷和氮,从而减少水体污染,保护水环境。

一般来说,除磷脱氮工艺可以分为生物法和化学法。

生物法主要是利用微生物的代谢过程把水体中的磷和氮转化为微生物体内储存物质,从而实现去除。

而化学法则是通过添加化学剂来沉淀和结合磷和氮,达到去除的目的。

在生物法中,常见的去除磷的工艺包括生物接触氧化法(BIOX法)、改良活性污泥法等。

其中,BIOX法是通过在处理污水的氧化池内接入高磷酸盐废水,利用特定微生物利用这些废水中的磷来生长,从而实现磷的去除。

而改良活性污泥法则是通过改良活性污泥微生物的代谢途径来实现磷的去除。

除磷脱氮工艺流程中,除了生物法,还有一种化学法辅助生物法的工艺——生物混凝法。

这种工艺中,一般会先通过生物法去除水体中的氮,然后在处理后的水中加入化学混凝剂,通过混凝沉降将水中的磷去除。

除磷脱氮工艺在现代水处理中起着重要的作用,通过科学合理的工艺流程和技术手段,可以实现高效、低成本地去除水体中的磷和氮,保护水体环境,促进可持续发展。

污水处理工艺之A2O(厌氧缺氧好氧)

污水处理工艺之A2O(厌氧缺氧好氧)

2.3 A2O工艺(厌氧缺氧好氧工艺)2.3.1 A2O工艺原理A2O工艺是脱氮除磷工艺,英文缩写:Anaerobic-Anoxic-Oxic,即厌氧-缺氧-好氧生物处理工艺。

其工艺特点是生化系统内进行两段回流,其一:污水进图好氧池进行硝化反应,经过好氧硝化的混合液回流至前端的缺氧池,进行反硝化,将硝酸盐和亚硝酸盐还原为氮气,从而达到脱氮的目的,缺氧段要控制DO<0.5mg/L,由于兼氧脱氮菌的作用;其二:二沉池污泥回流至厌氧段,此部分回流主要进行两个反应,污泥厌氧消化和厌氧释磷,在厌氧段释放的磷,进入后续处理,经过污泥吸附,与剩余污泥一起排出系统外,在厌氧状态下DO<0.3mg/L,污水中的磷,由聚磷菌的作用被释放出来,在好氧状况下又将其吸收,最后以剩余污泥的形式排出系统。

首段厌氧池,其主要功能是释放磷,原水流入及从二沉池回流的含磷污泥,使污水中磷的浓度升高,溶解性有机物被厌氧微生物吸收而使污水中BOD5浓度下降;另外,细胞的合成会消耗部分污水中的氨氮,使污水中氨氮浓度下降,但整体系统的氨氮含量是没有变化的。

在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量的硝酸根和亚硝酸根还原为N2释放至空气,因此氨氮浓度大幅度下降。

在好氧池中,有机物被微生物生化降解,BOD5大幅下降,好氧处理也是去处有机物最有效的方法;有机氮被氨化,继而被硝化,使氨氮转化为硝态氮,随着硝化过程使硝态氮的浓度增加,在厌氧段释放的磷也被污泥吸附。

所以,A2O 工艺它可以同时具有有机物去除及脱氮除磷功能。

在好氧池的活性污泥中能积累磷的微生物,可以大量吸收溶解性磷,把它转化成不溶性多聚正磷酸盐在体内贮存起来,最后通过排放剩余污泥达到系统除磷的目的。

见A2O处理工艺流程。

2.3.2 A2O工艺特点1、污染物去除效率高,运行稳定,有较好的耐冲击负荷。

2、在厌氧、缺氧、好氧环境下交替运行,有利于抑制丝状菌的膨胀,改善污泥的沉降性能。

污水生物脱氮除磷原理及工艺

污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合

污水处理工艺脱氮

污水处理工艺脱氮

污水处理工艺脱氮引言概述:污水处理是一项重要的环境保护工作,其中脱氮是其中一个关键的工艺。

脱氮工艺的目的是去除污水中的氮元素,以减少对水体的污染。

本文将从五个大点来详细阐述污水处理工艺脱氮的方法和原理。

正文内容:1. 生物脱氮工艺1.1 传统的硝化-反硝化工艺:通过好氧菌将氨氮转化成硝态氮,再通过厌氧菌将硝态氮还原成氮气释放。

1.2 间歇式生物脱氮工艺:通过控制好氧和厌氧条件的切换,使得污水中的氨氮在不同环境中转化为氮气释放。

1.3 碳源添加工艺:在污水处理过程中添加适量的碳源,促进好氧菌的生长和硝化反应,从而实现脱氮效果。

2. 物化脱氮工艺2.1 化学沉淀法:通过添加化学药剂,使污水中的氮元素与药剂发生反应生成不溶于水的沉淀物,从而实现脱氮效果。

2.2 气浮法:将污水中的氮元素转化成气态,通过气浮设备将气态氮排出,从而实现脱氮效果。

2.3 膜分离法:利用特殊的膜材料,将污水中的氮元素与其他物质分离,从而实现脱氮效果。

3. 吸附脱氮工艺3.1 活性炭吸附法:利用活性炭的大比表面积和吸附性能,将污水中的氮元素吸附到活性炭表面,从而实现脱氮效果。

3.2 生物负载吸附法:将具有高氮吸附能力的微生物负载在特定的载体上,通过微生物的代谢作用将污水中的氮元素吸附和转化为无害物质。

4. 电化学脱氮工艺4.1 电解法:通过电解污水,利用电极上的化学反应将污水中的氮元素转化为氮气释放,从而实现脱氮效果。

4.2 电化学氧化法:利用电化学氧化反应将污水中的氮元素氧化为无害物质,从而实现脱氮效果。

5. 植物脱氮工艺5.1 水生植物法:利用水生植物的吸收作用,将污水中的氮元素吸收并转化为植物组织中的有机物。

5.2 人工湿地法:通过构建人工湿地,利用湿地植物和微生物的共同作用,将污水中的氮元素去除和转化。

总结:污水处理工艺脱氮是一项关键的环境保护工作。

通过生物脱氮工艺、物化脱氮工艺、吸附脱氮工艺、电化学脱氮工艺和植物脱氮工艺等不同方法,可以有效去除污水中的氮元素,减少对水体的污染。

污水处理工艺中如何进行脱氮除磷?

污水处理工艺中如何进行脱氮除磷?

污水处理工艺中如何进行脱氮除磷?氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。

生物脱氮分为三步:1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。

在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。

2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。

为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。

3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。

这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。

生物除磷原理所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。

而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。

可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。

首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。

然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。

脱氮除磷工艺1、传统A²/O 法即厌氧→缺氧→好氧活性污泥法。

污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。

原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。

巴颠甫同步脱氮除磷工艺定义

巴颠甫同步脱氮除磷工艺定义

巴颠甫同步脱氮除磷工艺定义
以巴颠甫同步脱氮除磷工艺
巴颠甫同步脱氮除磷工艺,是一种高效的污水处理技术,可以同时去除污水中的氮和磷,达到了环境保护和资源利用的双重目的。

该工艺的原理是通过生物处理和化学处理相结合的方式,将污水中的氮和磷转化为固体物质,从而达到去除的效果。

该工艺主要分为生物脱氮和化学除磷两个环节。

在生物脱氮环节中,通过加入特定的微生物,将污水中的氮转化为氨气和亚硝酸盐,再通过加入硝化细菌将氨气和亚硝酸盐转化为硝酸盐。

在化学除磷环节中,通过加入化学药剂,将硝酸盐和磷酸盐反应生成固体物质,从而达到去除氮和磷的效果。

该工艺的优点在于处理效果好,可以达到较高的去除率,同时也具有节能、环保、稳定等特点。

此外,该工艺还可以适应不同的水质特性和处理要求,可以灵活调整操作参数,以达到最佳的处理效果。

使用巴颠甫同步脱氮除磷工艺需要注意的问题包括,加药量的控制、微生物的管理、操作参数的优化等。

在实际应用中,需要根据具体情况进行调整和优化,以达到最佳的处理效果。

巴颠甫同步脱氮除磷工艺是一种高效的污水处理技术,可以同时去除污水中的氮和磷,达到环境保护和资源利用的双重目的。

在实际
应用中,需要注意操作参数的优化和微生物管理等问题,以达到最佳的处理效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

除磷脱氮 DOKHAVEN污水处理厂在它1987年投入运行后已升级多次。除经济利益的驱动外,主要是因为环境标准的不断提
高。出水对磷的限制早在1995年便已非常严格,要求出水磷的浓度最高标准为1 mgP/L。这意味着原始设计不能满足 排放要求,处理工艺必须升级。因受场地限制,一种精心设计的化学方法被选择在 A段曝气池进行除磷,这是因为若 在B段曝气池实施化学除磷会影响硝化过程。一种铁盐、一种混凝剂、一种絮凝剂被结合在一起用于化学除磷,这种 方法称为“三药剂”方法。这种特殊的方法比传统化学方法能节省40%的运行费用。因此,可做到环境与经济效益上 的双赢。[KG)]
(1)
该工艺的本质是通过控制环境温度造成两类细 菌不同的增长速率,利用该动力学参数的不同造 成“分选压力” 。使用无需污泥停留(以恒化器 方式运行,其SRT=HRT)的单个CSTR反应器来实 现,在较短的HRT(即SRT)和30 ~40℃的条件下, 可有效地通过种群筛选产生大量的亚硝酸盐氧 化菌,并使硝化过程稳定地控制在亚硝化阶段,以
脱氮除磷污水处理工艺
生物法脱氮的理论基础:
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮、硝酸盐氮 等四种形态存在。其中有机氮占生活污水含氮量的 40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅 占0%~5%。因此在传统的生物处理中将
氨化菌 硝化菌
↓↓ 有机氮—→氨氮—→亚硝态氮、硝态氮
图4 ANAMMOX反应塔现场实物
ANAMMOX
随着氮素污染的加剧,除氮技术的研究和应用引起了人们的关注. 在氮素污染物的控制中,目前国内外主要采用生物脱氮技术,研究的热 点集中在如何改进传统的硝化-反硝化工艺.从微生物学的角度看,硝化 和反硝化是两个相互对立的生化反应.前者借助硝化细菌的作用,将氨氧 化为硝酸,需要氧的有效供给;而后者则是一个厌氧反应,只有在无氧 条件下,反硝化细菌才能把硝酸还原为氮气.此外,在环境中存在有机物 时,自养型硝化细菌对氧和营养物质的竞争能力劣于异养型微生物,其 生长速度很容易被异养型微生物超过,并因此而难以在硝化中发挥应有 的作用;但要使反硝化反应顺利进行,则必须为反硝化细菌提供合适的 电子供体(通常为有机物如甲醇等).最近发现,氨可直接作为电子供体进 行反硝化反应,即所谓的厌氧氨氧化(ANAMMOX,Anaerobic Ammonia Oxidation).这一重大的新发现为改进传统的生物脱氮技术提供了理论依 据.若能开发利用厌氧氨氧化进行生物脱氮,不仅可以大幅度地降低硝化 反应的充氧能耗,免去反硝化反应的外源电子供体,而且还可改善硝化 反应产酸,反硝化反应产碱而均需中和的状况.其中后两项对控制化学试 剂消耗,防止可能出现的二次污染具有重要作用.
从2006年起对出水氮的限制将由现在的TKN改为总氮控制。显然,原始设计不能满足新的要求,不得不寻求适合 该处理厂特点的新方法。SHARON和ANAMMOX这两项最新的现代技术因此成了单独处理污泥消化液的首选。根据SHARON 技术原理,带余温的污泥硝化液刚好满足中温亚硝化对温度的需要。SHARON技术除节省 1/4供氧量的特点外,还具有 低的投资费用、低的运行费用、不产生化学副产品、运行维护简单、启动容易、对高进水SS浓度不敏感、无异味等运 行优势。图3为一SHARON工艺的现场图片。
图3 SHARON工艺实际构筑物
SHARON反应器使一半的氨氮氧化至亚硝酸氮(无需 控制pH),剩余一半氨氮与转化而来的亚硝酸氮 (进水总氨氮的一半)刚好形成1∶1 ANAMMOX所需 的摩尔关系,使氨氮和亚硝酸氮自养直接转化为氮 气。与传统的硝化/反硝化过程相比, SHARON/ANAMMOX过程可使运行费用减少90%,CO2排 放量减少88%,不产生N2O 有害气体,无需有机物, 不产生剩余污泥,节省占地50%,具有显著的可持续 性与经济效益特点。图4显示了气体循环ANAMMOX反 应塔现场实物图片(利用一废弃浓缩池改建而成)。 经SHARON/ANAMMOX对污泥消化液单独进行脱氮处理 可使整个处理厂出水氮浓度下降至少5 mgN/L,与原 始设计相比出水刚好能满足未来出水标准。
↓ ←反硝化菌 氮气
生物法除磷的理论基础:
生物除磷是利用聚磷菌一类的微生物,能够过量 地,在数量上超过其生理需要,从外部环境摄取 磷,并将磷以聚合的形态储藏在体内,形成高磷 污泥,排出系统外,达到从污水中除磷的效果。
有机磷 ADP
ATP 无机磷
释放
聚磷菌
无机磷 ATPADP 有机磷 Nhomakorabea聚磷

聚磷菌
溶解质 ATP
NO2-为硝化终产物。SHARON工艺适用于含高 浓度氨(>500mg/L)废水的处理工艺,
尤其适用于具有脱氮要求的预处理或旁路处 理,如污泥消化池上清夜的处理。目前荷兰已 有两家污水处理厂采用了此工艺。
SHARON工艺主要有2个反应条件,一是碱度,
另一是温度。从式(1)中可看出1molNH+4需要1molHCO-3, 若碱度供应不足,pH会迅速下降,若降至6 4以下,反应将停止,这与传 统的硝化反应相似。另一方面温度要求25℃以上。温度是用以使亚 硝化菌占优势从而控制硝化过程。图1显示了温度对亚硝化菌和硝化 菌的最小泥龄的影响。当温度高于15℃时,亚硝化菌的最小泥龄低于 硝化菌的最小泥龄,因此在高温度条件下(图中为35℃)通过控制泥龄, 可将长泥龄的硝化菌清洗出系统,保证硝化过程停留在半硝化(NO-2) 阶段。
合成 ADP PHB
厌氧段
PHB ADP
降解 ATP 无机物
好氧段
聚磷菌的作用机理
短程硝化反硝化、厌氧氨氧化、反硝化除磷 理论的工艺:SHARON工艺、ANAMMOX工 艺、 CANON工艺、 SHARON与ANAMMOX联 合工艺、PHOREDOX工艺、BCFS工艺
中温亚硝化(SHARON)
SHARON工艺又叫短程硝化-反硝化。SHARON工艺 是荷兰Delft技术大学开发的一种新型的脱氮工艺。 其基本原理可用方程式(1)表示,即碱度充足的条件 下,污水中50%的氨氮被亚硝化菌氧化为NO2---N。 因仅一半氨氮被氧化且硝化作用仅进行到亚硝化阶 段,SHARON常又称为半硝化。 0.5NH4++0.75O2 → 0.5NO2-+H++0.5H2O
相关文档
最新文档