橡胶知识培训资料(上)

合集下载

培训复习资料-炼胶密炼

培训复习资料-炼胶密炼

密炼中心职工培训复习资料一、胶料生产用主要原材料品种及作用1、生胶胶料生产的主体材料。

按来源不同分包括天然胶(NR)、合成胶(SR)及再生胶等。

1.1 NR:由橡胶树上割取胶乳后经过一定加工工艺制造而成,主要有10#和20#标准胶(SMR10、SMR20、STR20等),生产时控制胶料的门尼粘度(83±10)。

复合NR:在NR中加入3%左右的其它物质,如炭黑、丁苯胶、硬脂酸等,目前我们使用的是用97%STR20+2.5%丁苯胶+0.5%硬脂酸的复合胶。

1.2 SR:通过人工化学合成方法生产,具有不同性能的橡胶。

一般综合性能不如NR。

主要有高顺式顺丁胶BR9000、丁苯胶SBR1500、异戊胶IR、低顺式顺丁胶INTEN50、溴化丁基胶BIIR、氯化丁基胶CIIR等。

1.3 再生胶:通过一定的脱硫工艺将废旧硫化胶降解返原为可再次使用的生胶。

2、填充补强剂作用:主要是提高胶料的物理机械性能,降低胶料成本等。

2.1 炭黑:胶料用的主要填充补强剂,主要有N115、N121、N326、N375、N660等。

炭黑牌号代表意义N代表正常硫化速度,第一位数字表示炭黑的粒径范围,后两位数字表示同一粒径范围的炭黑结构度高低。

2.2 白炭黑:增加胶料的抗撕裂性能,降低滚动阻力、生热,增加橡胶与钢丝的粘合力等。

2.3 碳酸钙:主要是增加胶料的体积,降低成本,而对胶料物性基本没有影响。

3、软化剂与增塑剂作用:主要是湿润橡胶大分子,增加分子间润滑,达到降低胶料的粘度,改进加工性能,降低生产能耗等。

主要有:芳烃油、氧化沥青、增塑剂FS-200。

4、防老剂作用:使橡胶具有抵抗各种条件(热、氧、臭氧、紫外线、盐水等)的作用,保持胶料的性能。

分物理和化学防老剂两种。

化学防老剂:4020(6PPD),RD,3100(DTPD);物理防老剂:B型微晶蜡,白色颗粒。

5、硫化剂作用:使胶料由线形结构的混炼胶交联形成具有空间网状结构的硫化胶,达到提高胶料的硬度、强度、弹性等物理性能。

橡胶制品基本常识

橡胶制品基本常识

第一部分:橡胶基本知识橡胶是经过提取橡胶树、橡胶草等植物的胶乳,加工后制成的拥有弹性、绝缘性、不透水和空气的资料。

高弹性的高分子化合物。

分为天然橡胶与合成橡胶二种。

天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶则由各样单体经聚合反响而得。

橡胶制品宽泛应用于工业或生活各方面。

橡胶按原料分为天然橡胶和合成橡胶。

按形态分为块状生胶、乳胶、液体橡胶和粉末橡胶。

乳胶为橡胶的胶体状水分别体;液体橡胶为橡胶的低聚物,未硫化前一般为黏稠的液体;粉末橡胶是将乳胶加工成粉末状,以利配料和加工制作。

20世纪 60 年月开发的热塑性橡胶,无需化学硫化,而采纳热塑性塑料的加工方法成形。

橡胶按使用又分为通用型和特种型两类。

是绝缘体,不简单导电,但假如沾水或不一样的温度的话,有可能变为导体。

导电是对于物质内部分子或离子的电子的传导简单状况。

一、橡胶制品的用途,不一样橡胶制品的优弊端介绍1、天然橡胶NR(Natural Rubber)由橡胶树收集胶乳制成,是异戊二烯的聚合物 .拥有很好的耐磨性、很高的弹性、扯断强度及伸长率。

在空气中易老化,遇热变粘 ,在矿物油或汽油中易膨胀和溶解 ,耐碱但不耐强酸。

长处:弹性好,耐酸碱。

弊端:不耐候,不耐油 (可耐植物油 ) 是制作胶带、胶管、胶鞋的原料,并合用于制作减震零件、在汽车刹车油、乙醇等带氢氧根的液体中使用的制品。

2、丁苯胶SBR(Styrene Butadiene Copolymer)丁二烯与苯乙烯之共聚合物,与天然胶比较,质量平均,异物少,拥有更好耐磨性及耐老化性,但机械强度则较弱,可与天然胶掺合使用。

长处 :低成本的非抗油性材质,优异的抗水性 ,硬度70 以下具优异弹力 ,高硬度时具较差的压缩性。

弊端:不建议使用强酸、臭氧、油类、油酯和脂肪及大部份的碳氢化合物之中。

宽泛用于轮胎业、鞋业、布业及输送带行业等。

3、丁基橡胶IIR(Butyl Rubber)为异丁烯与少许异戊二烯聚合而成, 因甲基的立体阻碍分子的运动比其余聚合物少, 故气体透过性较少 ,对热、日光、臭氧之抵挡性大 ,电器绝缘性佳;对极性容剂抵挡大 ,一般使用温度范围为 -54-110 ℃。

橡胶成分及分类常识资料

橡胶成分及分类常识资料

SVENSK STANDARDSS-ISO 4650:2005Fastställd 2005-10-07Utgåva 2ICS 83.060Språk: engelskaPublicerad: november 2005Gummi – Identifikation – IR-spektrometermetod(ISO 4650:2005, IDT)Rubber – Identification – Infrared spectrometricmethod (ISO 4650:2005, IDT)Den internationella standarden ISO 4650:2005 gäller som svensk standard. Detta dokument innehåller den officiella engelska versionen av ISO 4650:2005.Denna standard ersätter SS-ISO 4650, utgåva 1.The International Standard ISO 4650:2005 has the status of a Swedish Standard. This document contains the official English version of ISO 4650:2005.This standard supersedes the Swedish Standard SS-ISO 4650, edition 1.Upplysningar om sakinnehållet i standarden lämnas av SIS, Swedish Standards Institute,telefon 08 - 555 520 00.Standarder kan beställas hos SIS Förlag AB som även lämnar allmänna upplysningar om svensk ochutländsk standard.Postadress: SIS Förlag AB, 118 80 STOCKHOLMTelefon: 08 - 555 523 10. Telefax: 08 - 555 523 11SS-ISO 4650:2005Contents PageForeword (v)1Scope (1)2Normative references (1)3Principle (1)4Types of rubber (1)4.1General (1)4.2Exceptions for blends (3)4.3Reference spectra (3)5Reagents (3)6Apparatus (4)7Procedure (5)7.1Procedure for raw rubber films moulded or cast from solution (5)7.2Procedure for raw rubbers, vulcanizates and films obtained from pyrolysate (5)7.3Procedure for vulcanized rubber film obtained after evaporation of the solution solvent (6)8Interpretation of spectra (7)8.1Reference spectra (7)8.2Tables of diagnostic absorptions (8)9Test report (8)Annex A (informative) Absorption characteristics and reference spectra (9)Table A.1 — Types of rubber and corresponding reference spectra (10)Table A.2 — Acrylic rubber (ACM) (11)Table A.3 — Chloropolyethylene (CM) (12)Table A.4 — Chlorosulfonylpolyethylene (CSM) (13)Table A.6 — Fluorocarbon rubber (FKM) (15)Table A.7 — Polychloromethyloxirane (CO) (16)Table A.8 — Copolymer of ethylene oxide and chloromethyloxirane (ECO) (17)Table A.9 — Polydimethylsiloxane (MQ) (18)Table A.10 — Butadiene rubber (BR) (19)Table A.11 — Chloroprene rubber (CR) (21)Table A.12 — Isobutene-isoprene rubber (IIR) (22)Table A.13 — Bromo-isobutene-isoprene rubber (BIIR) (23)Table A.14 — Natural rubber (NR) (24)Table A.15 — Isoprene rubber (IR) (25)Table A.16 — Acrylonitrile-butadiene rubber (NBR) (27)Table A.17 — Hydrogenated acrylonitrile-butadiene rubber (HNBR) (28)Table A.18 — Carboxylic-acrylonitrile-butadiene rubber (XNBR) (29)Table A.19 — Styrene butadiene rubber (SBR) (30)SS-ISO 4650:2005Table A.21 — Block copolymer of styrene and butadiene (TPS-SBS) (34)Table A.22 — Polystyrene-poly(ethylene-butylene)-polystyrene (TPS-SEBS) (35)Table A.23 — Block copolymer of styrene and isoprene (TPS-SIS) (36)Table A.24 — Polystyrene-poly(ethylene-propylene)-polystyrene (TPS-SEPS) (37)Table A.25 — Syndiotactic poly(1,2-butadiene) (TPZ) (38)Table A.26 — Copolyester TPE with a soft segment with ester and ether linkages (TPC-EE) (39)Bibliography (40)ForewordISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.ISO 4650 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products, Subcommittee SC 2, Testing and analysis.This second edition cancels and replaces the first edition (ISO 4650:1984), which has been technically revised.Rubber — Identification — Infrared spectrometric method1 ScopeThis International Standard specifies a method for the identification of rubbers, including thermoplastic elastomers, either in the raw state or in the form of vulcanized or unvulcanized mixes. The method is based on infrared spectrometric examination using the transmission technique.The method comprises examination of polymers by their pyrolysis products (pyrolysates), or by films cast from solution or obtained by moulding (for raw rubbers only).Typical spectra are given in Annex A.The principle of the method implies that sample preparation and analysis of the infrared spectra are carried out by experienced personnel and that the equipment used for the production of spectra is operated in accordance with the manufacturer's instructions for optimum performance. Details of the operation of infrared spectrometers are not included in this International Standard.The method specified is a qualitative method only.2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.ISO 1407, Rubber — Determination of solvent extractISO 18064, Thermoplastic elastomers — Nomenclature and abbreviated terms3 PrincipleThe extractable material is first extracted from a test sample of the rubber and the rubber then prepared under precise conditions for spectroscopy in the form of raw polymer film, vulcanizate pyrolysate or vulcanizate film. The IR spectrum is recorded and then interpreted by comparison with a set of typical reference spectra. 4 Types of rubber4.1 GeneralThe method is applicable to rubbers in the raw state and, if compounded, in both the vulcanized and unvulcanized states. It is applicable to the following types of rubber occurring either alone or in a binary mixture when the proportion of the minor component is, in general, not less than 10 % to 20 % by mass of the mixture (see, however, exceptions in 4.2).4.1.1 M group4.1.1.1 Acrylic rubber (ACM): Copolymer of ethyl acrylate (or other acrylates) and a small amount of a monomer which facilitates vulcanization.4.1.1.2 Chloropolyethylene (CM) and chlorosulfonylpolyethylene (CSM): The method will not differentiate CM from CSM, and it will not differentiate between different types of CSM.4.1.1.3Ethylene-propylene copolymer (EP M) and ethylene-propylene-diene terpolymer (EP DM):The method will not differentiate between the two types of polymer. However, examination of the spectrum gives some information about the ethylene-to-propylene ratio.4.1.1.4Fluorocarbon rubber (FKM): Examination of the pyrolysate may give some information about the different grades of fluorocarbon rubber present.4.1.2 O group4.1.2.1P olychloromethyloxirane (CO): Copolymer of ethylene oxide and chloromethyloxirane (ECO) and terpolymers. Examination of the pyrolysate will not differentiate between different types of CO.4.1.3 Q group 4.1.3.1 P olydimethylsiloxane (MQ), polymethylphenylsiloxane (PMQ) and polymethyl-fluorosiloxane (FMQ): Examination of the pyrolysate will differentiate PMQ from MQ.4.1.4 R group4.1.4.1 Butadiene rubber (BR): Examination of the pyrolysate will not differentiate between butadiene rubbers having different isomer ratios. However, examination of a raw rubber film gives some information about the isomer ratio.4.1.4.2 Chloroprene rubber (CR): The method will not differentiate between the different types of CR.4.1.4.3 Isobutene-isoprene rubber (IIR) and halogenated isobutene-isoprene rubbers (BIIR and CIIR): Under the conditions used for the method, it is not possible to differentiate between IIR, BIIR, CIIR and polyisobutene.4.1.4.4 Natural rubber (NR) and synthetic isoprene rubber (IR): Natural rubber (1,4-cis -polyisoprene), gutta percha, balata (1,4-trans -polyisoprene) and synthetic isoprene rubber, whatever their microstructure, (1,4-cis , 1,4-trans or 3,4-) are included.4.1.4.4.1 Examination of a rubber film will differentiate between 1,4-cis , 1,4-trans and 3,4-polyisoprenes; for non-extracted rubbers, it will differentiate natural rubber from 1,4-cis synthetic isoprene rubber, and 1,4-trans natural polyisoprenes from their synthetic counterparts. Examination of the pyrolysate film obtained from a vulcanizate provides no information on the microstructure of the polyisoprene or its origin, whether natural or synthetic.4.1.4.5 Acrylonitrile-butadiene rubber (NBR): The method will differentiate carboxylic acrylonitrile-butadiene rubbers (XNBRs) from hydrogenated acrylonitrile-butadiene rubbers (HNBRs). Associations of butadiene copolymers and PVC are included. Examination of the pyrolysate film gives some information about the acrylonitrile content.4.1.4.6 Styrene-butadiene rubber (SBR): The method will differentiate D -methylstyrene-butadiene rubbers from styrene-butadiene rubbers. Copolymers of styrene and butadiene, as well as of their substituted derivatives (e.g. D -methylstyrene), are included. Examination of a pyrolysate will not differentiate emulsion-polymerized rubbers from solution-polymerized rubbers. However, examination of a spectrum gives some information about the monomer ratio.SS-ISO 4650:20054.1.4.7P olynorbornene.4.1.5 T group4.1.5.1P olysulfiderubbers.4.1.6 U group4.1.6.1 P olyester urethane (AU) and polyether urethane (EU): The method covers only millable polyurethanes.4.1.7 TP E group4.1.7.1 As defined in ISO 18064.4.2 Exceptions for blends4.2.1 Analysis of a blend of ethylene-propylene rubber with other rubbers presents difficulties when its ethylene-propylene content is below 40 %.4.2.2 The method will not differentiate between blends of ethylene-propylene rubber with chlorinated polyethylene and/or chloro-sulfonated polyethylene.4.2.3 Analysis of a blend of natural and/or synthetic polyisoprene and chloroprene rubber may present difficulties, and identification of the minor component may only be possible when the content is equal to or greater than 30 % in the blend.4.2.4 The method will not differentiate NBR from NBR/BR blends or NBR blends, nor will it differentiate SBR from SBR/BR blends or SBR blends.4.2.5 The presence of high quantities of sulfur in a vulcanizate may affect some characteristic bands.4.2.6 The method will not differentiate NBR/PVC blends from blends of NBR with other halogenated polymers or additives.4.3 Reference spectraTables of absorption characteristics and reference spectra from 4 000 cm–1 to 600 cm–1 for typical rubbers are given in Annex A.5 Reagents5.1 Nitrogen, in pressurized cylinders.5.2 Extraction solvents, chosen to achieve maximum extraction (alternative solvents may be used on condition that it can be shown that they do not interfere with the interpretation of the infrared spectrum):5.2.1 Methanol.5.2.2 Acetone.5.3 Solvents for rubber dissolution and film preparation, water-free and free from residues (see ISO 1407):5.3.1 Chloroform.SS-ISO 4650:20055.3.2 1,2-dichlorobenzene.5.4 Sodiumsulfate, anhydrous.5.5 Universal pH-indicator paper.6 Apparatus6.1 Extractionapparatus.The apparatus specified in ISO 1407 is satisfactory.6.2P yrolysis apparatus (see Figure 1), comprising a glass tube A having inward projections to preventthe sample from falling to the bottom of the tube, and a lateral condenser tube. The tube A has a standard ground-glass joint B that carries a small glass adductor tube. A collecting tube C is placed under the condenser tube. A thermoregulated electric furnace D accommodates an aluminium block E with holes for oneor more tubes A.KeyA glass tube for sampleB ground-glassjointC collectingtubeD thermoregulated electric furnaceE aluminium block, bored to hold tubesF thermocoupleFigure 1 — Temperature-controlled pyrolysis apparatusSS-ISO 4650:20056.3 Capillarypipettes.6.4 Oven, capable of being maintained at 200 °C r 5 °C.6.5 Waterbath.6.6 Polished potassium bromide salt plates.6.7 Filteraid, e.g. diatomaceous earth or similar.6.8 Infrared spectrometer, of either the Fourier transform or dispersive type, with a wavenumber range of 4 000 cm–1 to 600 cm 1 and a spectral resolution of 4 cm–1 or higher.7P rocedure7.1 Procedure for raw rubber films moulded or cast from solution7.1.1 Using a suitable solvent (see 5.2), extract the extractable material from a test sample of 2 g to 5 g in accordance with the procedure given in ISO 1407.7.1.2 Dissolve a sufficient amount of the extracted rubber in a suitable solvent (see 5.3), at room temperature or under reflux, to give a concentrated solution.7.1.3 Place a few drops of the concentrated solution on a potassium bromide salt plate (6.6) and allow the solvent to evaporate.7.1.4 Films of raw rubber of a suitable thickness may also be obtained by moulding.7.1.5 Record the spectrum from 4 000 cm–1 to 600 cm–1 using the infrared spectrometer (6.8).7.1.6 After recording the spectrum, verify that no solvent absorption bands are present and check that the bands of the spectrum are neither off-scale nor too low. If these conditions are not met, repeat the preparation procedure on a fresh test sample and record a new spectrum.7.1.7 A test for halogens may be carried out as described in 7.2.1.4.7.2 Procedure for raw rubbers, vulcanizates and films obtained from pyrolysateNOTE The methods described in 7.2.1 and 7.2.2 may give different relative absorbances for the polymers in a given blend.7.2.1 Preferred method: Temperature-controlled pyrolysis in a stream of nitrogen7.2.1.1 Extract a 2 g to 5 g test sample in accordance with the procedure given in ISO 1407.7.2.1.2 Depending on the nature of the composition of the unknown vulcanizate and of the type of apparatus used, place 0,5 g to 2 g of the extracted, dried test sample in the pyrolysis tube A (see Figure 1).7.2.1.3 Introduce a small quantity of sodium sulfate in the collector tube C to absorb water formed in the pyrolysis.7.2.1.4 Carry out a test for halogen, for instance by placing a strip of moistened indicator paper (5.5) across the mouth of the collecting tube. An acid colour, pH 1 to pH 2, indicates the presence of halogen. Residues of halogenated additives present in the vulcanizate may cause interference. Other suitable halogen-detection methods may also be used.SS-ISO 4650:20057.2.1.5 Bring the electric furnace D to 525 °C r50 °C and hold within this temperature range. This temperature range is recommended to obtain rapid pyrolysis without excessive degradation or carbonization.A temperature of 475 °C is advised, however, to obtain the maximum quantity of pyrolysate for NR, IR, BR, SBR, IIR, BIIR and CIIR.7.2.1.6 Pass a slow stream of nitrogen (5.1) through the pyrolysis tube A and introduce the tube containing the prepared test sample into a hole in the aluminium block E. Nitrogen serves to displace air, prevent oxidation and facilitate transfer of the pyrolysis products into the collecting tube C. Maintain the nitrogen flow at 10 cm3/min r 2 cm3/min.7.2.1.7 Continue the heating to complete distillation, i.e. for about 15 min.7.2.1.8 Place a few drops of the homogenized pyrolysate between two potassium bromide salt plates and mount the cell in the infrared spectrometer. Run the spectrum immediately after pyrolysis to avoid oxidation. 7.2.1.9 Record the infrared spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in 7.1.6.7.2.2 Alternative method: Gas flame pyrolysis7.2.2.1 Rapid pyrolysis may be performed in a test tube in place of the procedures described in 7.2.1.2, 7.2.1.3, 7.2.1.5, 7.2.1.6 and 7.2.1.7.7.3 Procedure for vulcanized rubber film obtained after evaporation of the solution solvent NOTE The methods described in 7.3.1 and 7.3.2 may give different relative absorbances for the polymers in a given blend. The films obtained by the method described in 7.3.2 may contain a higher proportion of the thermally less stable polymer.7.3.1 Dissolution of vulcanizate7.3.1.1 Prepare a test sample of about 2 g (or 6 g if the presence of chloroprene rubber is suspected) (see 7.3.1.2 and 7.3.1.3) and proceed with the extraction as described in ISO 1407.7.3.1.2 Pyrolyse approximately 1 g of the prepared test sample and carry out a halogen test as described in 7.2.1.4.7.3.1.3 If no chloroprene rubber is present, place 1 g of the test sample prepared in 7.3.1.1 and 50 cm3 ofa solvent appropriate to the rubber type (see 5.3) (1,2-dichlorobenzene is suggested) in a 100 cm3 flask fitted with a reflux condenser. If chloroprene rubber is present, place approximately 5 g of the test sample prepared in 7.3.1.1 with 200 cm3 of solvent in a 500 cm3 flask fitted with a reflux condenser.Heat the contents until the test sample has dissolved.The time required for adequate dissolution varies depending on the rubber, e.g. 3 h to 4 h for NR; 12 h for CR. To reduce the risk of altering the molecular structure of the rubber, do not exceed 12 h heating.7.3.1.4 If the rubber does not contain carbon black, centrifuge to eliminate mineral fillers.7.3.1.5 If the rubber contains carbon black, add 10 g to 20 g of filter aid (6.7) and filter through filter paper. Should the filtrate contain carbon black, repeat the filtration with more filter aid.NOTE Acrylonitrile-butadiene rubber (NBR) may be retained on the filter paper.7.3.1.6 Concentrate the centrifuged or filtered solution to a small volume under a stream of nitrogen (5.1) or reduced pressure.7.3.1.7 Evaporate a few drops of the concentrated solution on a potassium bromide salt plate.7.3.1.8 Record the infrared spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in 7.1.6.7.3.2 Mild thermal degradation of vulcanizates7.3.2.1 This technique shall not be used on blends which may contain chloroprene rubber.7.3.2.2 Prepare a test sample of 2 g as described in 7.2.1.17.3.2.3 Place the prepared test sample in a test tube capped with glass wool and heat for about 10 min in an oven (6.4) regulated at 200 °C r 5 °C (a temperature of 180 °C is advised for NR, IR, BR, SBR, IIR, BIIR and CIIR rubbers).7.3.2.4 Allow the test sample to cool, transfer to a 100 cm3 flask fitted with a reflux condenser and add 50 cm3 of chloroform (5.3.1) to the flask. Place the flask in a hot water bath.7.3.2.5 Allow the flask and contents to remain for about 30 min in the water bath, with the solvent refluxing, to dissolve the degraded rubber.7.3.2.6 Filter the mixture obtained in 7.3.2.5 through filter paper to remove any undissolved vulcanizate and fillers. Should carbon black be released from the vulcanizate, add a small amount of filter aid (6.7) to the solution before filtering.7.3.2.7 When it is suspected that the filtrate obtained in 7.3.2.6 contains material other than rubber which might interfere in the interpretation of the final spectrum, precipitate the polymer from the filtrate obtained in 7.3.2.6 using methanol. Filter off the recovered polymer and redissolve it in chloroform (5.3.1).7.3.2.8 Evaporate a few drops of the chloroform solution on a potassium bromide salt plate (6.6) to give a film thickness suitable for the production of an analytical spectrum.7.3.2.9 Record the spectrum from 4 000 cm–1 to 600 cm–1, performing the same checks as described in7.1.6.8 Interpretation of spectra8.1 Reference spectra8.1.1 Due to the existence of different spectral presentation modes, it may be necessary to prepare a set of reference spectra on the same infrared spectrometer as is used to analyse the unknown samples.8.1.2 Reference spectra shall be produced from test samples of known composition, following the procedure used for unknown samples.8.1.3 Spectra of mixtures are not given in Annex A because of the multiplicity of polymer combinations and proportions. Each laboratory should prepare its own set from test samples of known composition.8.1.4 Small, but unavoidable, variations in experimental conditions and instrument characteristics may give rise to slight differences in spectra. Spectra produced at different times may not be identical in terms of peak height and absorbance.8.1.5 In all cases, spectra shall be interpreted bearing in mind the result of the test for halogen.8.1.6 The comparison between test spectra and reference spectra shall take into account the wavenumbers of the bands, how many bands are present, their relative intensity and their form. Any unexpected bands shall also be interpreted. It is essential that all the bands be examined, irrespective of their number.8.2 Tables of diagnostic absorptions8.2.1 The tables of diagnostic absorption bands given in Annex A shall be used only in conjunction with reference spectra. Their purpose is to indicate the principal absorption bands.8.2.2 The tables complement the reference spectra by drawing attention to absorption bands which are absent, permitting the elimination of certain rubbers when ambiguity could otherwise arise.8.2.3 Diagnostic absorption bands are classified by increasing wavenumber. A diagnostic absorption band is one whose features are recognized by an experienced analyst as being of significance in rubber identification. These features, associated with certain compositional or structural characteristics of the pyrolysates and films, are reproducible in the sense that they are not seriously influenced by moderate variations in the conditions of pyrolysis or of dissolution.9 Test reportThe test report shall include the following particulars:a) a reference to this International Standard;b) all details required for the complete identification of the sample;c) the method used;d) identification of the rubber(s) in the sample;e) the date of the test.Annex A(informative)Absorption characteristics and reference spectraA.1 GeneralA.1.1This annex provides tables of absorption characteristics and figures showing reference spectra for pyrolysates and films.A.1.2 Comparisons between sample spectra and reference spectra will have to take into account the position of the bands, how many there are, their relative intensity and their shape.A.1.3 It is essential that all the bands in a spectrum be examined, with no restrictions on the zone which is searched for characteristic bands.A.2 Tables of absorption characteristics and figures showing reference spectraA.2.1 In order to ease the task of the user of this International Standard, the scale chosen for the presentation of the spectra is designed to show clearly the specific absorption bands.A.2.2 Table A.1 indicates which figures correspond to the reference spectra for which types of rubber.Table A.1 — Types of rubber and corresponding reference spectraFigure numberTable number Symbol for rubberType of rubberRaw polymer film VulcanizatepyrolysateM groupA.2A.3A.4A.5A.6ACM CM CSM EPDM FKMAcrylic rubber Chloropolyethylene ChlorosulfonylpolyethyleneEthylene-propylene-diene terpolymer Fluorocarbon rubberA.1A.3A.5A.7A.9A.2A.4A.6A.8A.10O groupA.7A.8CO ECOPolychloromethyloxiraneCopolymer of ethylene oxide and chloromethyloxiraneA.11A.13A.12Q groupA.9 MQ Polydimethylsiloxane A.14 A.15R groupA.10A.11A.12A.13A.14A.15A.16A.17A.18A.19A.20BRCR IIR BIIR NR IRNBR HNBR XNBR SBR E-SBRS-SBRHSBRButadiene rubber high-cis BR high-trans BR low-cis BRChloroprene rubber Isobutene-isoprene rubber Bromo-isobutene-isoprene rubber Natural rubberSynthetic isoprene rubber high-cis IR high-trans IRAcrylonitrile-butadiene rubberHydrogenated acrylonitrile-butadiene rubber Carboxylic-acrylonitrile-butadiene rubber Styrene-butadiene rubber Emulsion-polymerized SBR23,5 % styrene E-SBEhigh-styrene E-SBE Solution-polymerized SBR high-vinyl S-SBR high-styrene S-SBRHydrogenated styrene-butadiene rubberA.16A.18A.19A.20A.22A.24A.26A.28A.30A.32A.34A.36A.37A.39A.40A.41A.42A.17A.21A.23A.25A.27A.29A.31A.33A.35A.38TFE groupA.21A.22A.23A.24A.25A.26TPS-SBS TPS-SEBS TPS-SIS TPS-SEPS TPZ TPC-EEBlock copolymer of styrene and butadiene Polystyrene-poly(ethylene-butylene)-polystyrene Block copolymer of styrene and isoprene Polystyrene-poly(ethylene-propylene)-polystyrene Syndiotactic poly(1,2-butadiene)Copolyester TPE with a soft segment with ester and etherlinkagesA.43A.44A.45A.46A.47A.48Table A.2 — Acrylic rubber (ACM)Figure A.1 — Acrylic rubber — Raw polymerFigure A.2 — Acrylic rubber — VulcanizateTable A.3 — Chloropolyethylene (CM)Figure A.3 — Chloropolyethylene — Raw polymerFigure A.4 — Chloropolyethylene — VulcanizateTable A.4 — Chlorosulfonylpolyethylene (CSM)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group720— CH2—720— CH2 — 1 160 — SO2Cl 700 to 800 Unsaturation 1 260 800 to 1 000 Unsaturation 1 370 — SO2Cl1 460 — CH2 —Figure A.5 — Chlorosulfonylpolyethylene — Raw polymerFigure A.6 — Chlorosulfonylpolyethylene — VulcanizateTable A.5 — Ethylene-propylene-diene terpolymer (EPDM)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group720— CH2 — 720— CH2 —800 to 1 000 Unsaturation 1 370 — CH3 1 370 — CH31 460 — CH2 — 1 460 — CH2 —Figure A.7 — Ethylene-propylene-diene terpolymer — Raw polymerFigure A.8 — Ethylene-propylene-diene terpolymer — VulcanizateTable A.6 — Fluorocarbon rubber (FKM)Figure A.9 — Fluorocarbon rubber — Raw polymerFigure A.10 — Fluorocarbon rubber — VulcanizateTable A.7 — Polychloromethyloxirane (CO)Figure A.11 — Polychloromethyloxirane — Raw polymerFigure A.12 — Polychloromethyloxirane — VulcanizateTable A.8 — Copolymer of ethylene oxide and chloromethyloxirane (ECO)Figure A.13 — Copolymer of ethylene oxide and chloromethyloxirane — Raw polymerTable A.9 — Polydimethylsiloxane (MQ)Figure A.14 — Polydimethylsiloxane — Raw polymerFigure A.15 — Polydimethylsiloxane — VulcanizateTable A.10 — Butadiene rubber (BR)Film (raw polymer) Pyrolysate (vulcanizate)Wave numbercm–1Functional groupWave numbercm–1Functional group700Aromatic740 — CH = CH — (cis) 740 — CH = CH — (cis) 910 — CH = CH2 (vinyl) 910 — CH = CH2 (vinyl) 970 — CH = CH — (trans) 970 — CH = CH — (trans) 1 000 — CH = CH — (cis) 990 — CH = CH2CH2 = CH — 1 370 — CH31 650 ! C = C3 010 = CH —Figure A.16 — Butadiene rubber (high-cis BR) — Raw polymerFigure A.17 — Butadiene rubber (high-cis BR) — Vulcanizate。

硅橡胶培训资料讲解

硅橡胶培训资料讲解
补加抑制剂,慢干型B剂 补加硅胶专用稀释剂
丝印标签胶
• 工具:网板传,传送带,烘道
• 工艺:1.A/B按比例混合均匀

2.用网板印刷在布料上

3.过烘道固化

丝印标签胶
• 问题点及解决方案
问题点
难固化 附着力
难过网 表面平整度

原因 布料影响PT硫化 布料表面太光滑
黏度太大 流平性差
解决方案
补加PT 底涂处理
某些化学品 、 高透气性以及生理惰性。 广泛应用于航空 、 电气 、 电子 、 化工 、 汽车 、 机械
等工业以及医疗卫生和日常生活。
四、加成型液体硅橡胶分类
种类 标签胶
钻石胶 按键胶 奶嘴奶瓶胶 医疗制品胶 硅凝胶 点胶
典型产品及典型工艺
模压成型:BQ-1054A/B 丝网印刷:BQ-6000A/B
标签胶介绍
BQ-1054A/B BQ-6000A/B BQ-1034A/B
• 配比
外观
黏度
固化条件 成型工艺
A:B=10:1 A:B=10:1 A:B=10:1 A:乳白半透明 A:乳白半透明 A:乳白半透明 B:无色透明 B:乳白半透明 B:乳白半透明
A:10万mpa.s B:1000mpa.s 180℃/10-30S 模压成型
SH-9560 SH-9570
半透 明
250±20
290±20
1.17±0.02 1.19±0.02
60±2
70±2
≥7.5
≥7
≥250
≥200
≥18
≥18
3.5±0.2
3.4±0.2
SH-9580
310±30 1.21±0.02

炼胶工艺培训资料

炼胶工艺培训资料

炼胶工艺培训资料引言:炼胶工艺是一项关键性、复杂性较高的生产工艺,广泛应用于橡胶制品生产中。

本文将深入讨论炼胶工艺的基本原理、工艺流程以及常见问题解决方案,旨在帮助读者全面了解炼胶工艺,提高生产效率和产品质量。

概述:为了满足市场需求和提高橡胶制品的性能,炼胶工艺被广泛应用于橡胶行业。

炼胶过程主要包括炼胶机的选择、原料的配合、炼胶机的操作和质量控制。

在炼胶过程中,橡胶原料的分散性、塑性和耐磨性得到了显著提高,从而保证了橡胶制品的质量和性能。

正文内容:1.炼胶机的选择1.1炼胶机的种类1.2选择适合的炼胶机的关键因素1.3主要炼胶机的性能指标2.原料的配合2.1橡胶原料的种类和特性2.2橡胶配方设计的基本原则2.3各种填充剂和助剂的选择与使用3.炼胶机的操作3.1炼胶机的工作原理3.2炼胶机的操作步骤和注意事项3.3炼胶过程中的常见问题及解决方案4.质量控制4.1炼胶过程中的监测指标和方法4.2质量控制的关键环节4.3炼胶工艺的优化和改进5.常见问题解决方案5.1炼胶过程中的胶温控制问题及解决方案5.2炼胶过程中的混炼时间控制问题及解决方案5.3炼胶过程中的添加剂配比问题及解决方案5.4炼胶过程中的胶料污染问题及解决方案5.5炼胶过程中的能耗控制和环保问题解决方案总结:炼胶工艺是橡胶制品生产中至关重要的一环,正确的炼胶工艺可以有效提高产品质量和生产效率。

本文详细介绍了炼胶工艺的基本原理、工艺流程和常见问题解决方案。

希望通过本文的学习,读者能够全面了解和掌握炼胶工艺,提高自身的技术水平和工作效率。

同时,也希望橡胶行业可以通过不断学习和创新,不断优化改进炼胶工艺,推动整个行业的可持续发展。

汽车中的有机高分子材料--橡胶 PPT

汽车中的有机高分子材料--橡胶 PPT

认识橡胶的性能与结构 思考与交流
针对天然橡胶结构上的问题,你能如何改进呢?
线型结构
官能团:碳 碳双键;易 被氧化
认识橡胶的性能与结构 橡胶的硫化
硫原子
天然橡胶模型
硫化橡胶模型
认识橡胶的性能与结构
为什么说体型结构能增加橡胶的弹性呢?
线







认识橡胶的性能与结构 硫化程度不同的橡胶制品
合成橡胶
高强度 耐磨 柔韧
骨架材料
尼龙66,又称锦纶,是聚己内酰胺纤维。其结构具有高 度的链状性,相对分子质量分布窄;且分子中有—CO— 、—NH—基团,可以在分子间或分子内形成氢键结合, 具 有高度的柔韧性。
认识轮胎的结构
轮胎
橡胶 丁苯橡胶、顺丁橡胶、氯丁橡胶
补强剂:使轮胎更加耐磨
主体材料
添加剂
硫化剂:线性大分子通过与硫发生化学反
天然橡胶资源量有限,且质 量不均匀,并含有杂质,所以 合成结构相同的聚异戊二烯, 是化学家们长期梦寐以求的事
合成橡胶
合成橡胶
工业上可以以石油、天然气为原料,以二烯烃和烯烃为 单体,合成橡胶。请你以乙烯和甲烷为原料(无机试剂 任选),设计合成聚异戊二烯 已知:
合成橡胶
原料
初级目标产物
CH4 CH2 CH2
取X2 光照 代
卤代烃
H2O 一定
条件
浓硫酸 △
KMnO4(H+)
HX △ 醇
NaOH水△
O2/Cu △ H2/催△
醛 O2/催△
羧酸
浓硫酸△
可逆
1、H+△ 可逆
2、NaOH△完全

水解

德山气硅培训资料(硅橡胶)

德山气硅培训资料(硅橡胶)

疏水性更易被加入硅橡胶,混合时间短。 • 压缩性产品更易被加入,性能不会降低。 • 气相硅加入后,电阻率高于沉淀硅。疏水性产品电阻率高于亲水性产
品。 • 耐水性方面,疏水性气硅性能最好。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
德山气硅培训资料(硅橡胶)
硅橡胶生产工艺
气硅在硅橡胶内的应用
气硅在硅橡胶内的作积越大,抗撕裂性越好(硅油对抗撕裂性帮助 很大,但随着BET的增加效果减小,因此小比表面积的产品与硅油的 配合最好,如QS-10),但添加量过大时,性能反而下降。
• 硅橡胶的拉伸强度在BET为200时效果最好,添加量过大,性能下降。 • 绍尔-A硬度随着气硅添加量的增加呈线性关系增加。 • 断裂延长率与气硅的加入量呈反比 • 疏水性产品增加:绍尔-A硬度降低,拉伸强度增加,抗撕裂性增加。

汽车橡胶密封条PPT培训资料

汽车橡胶密封条PPT培训资料
• 纯胶密封条
• 密实胶与海面胶复合
• 密实胶-骨架材料-海面胶三复合
• 多复合密封条
2020/10/21
13
13
3.3.2、结构示意图
• 门框密封条、行礼箱密封条和发动机盖密
封条
2020/10/21
14
14
3.3.3、结构示意图
• 导槽密封条、内外侧密封条
2020/10/21
15
15
3.3.4、结构示意图
2020/10/21
28
28
5.2.2、骨架的供应单元
• 骨架导开 • 骨架接续 • 缓冲储存 • 表面处理
2020/10/21
29
29
5.2.2.1、骨架导开
• 将成卷状或成盘状的金属带或 金属片连续
地解开 ,向下一功能单元输送
2020/10/21
30
30
5.2.2.2、骨架接续
• 据骨架的材质和结构 ,骨架接续可使用焊接、
2020/10/21
6
6
大纲
• 概述 • 基本功能 • 分类及结构示意图 • 胶料性能及成品性能 • 工艺
2020/10/21
7
7
3、分类
• 按使用部位分类 • 按应变力变化状态分类 • 按结构分类
2020/10/21
8
8
3.1.1、按使用部位分类
• 门框密封条
• 行李箱盖密封条
• 发动机盖密封条
38
5.2.6.2、表面活化
• 机械处理法 • 化学处理法 • 电化学理法
金属或塑料毛刷打磨 底涂工艺
长尾焰电晕处理
2020/10/21
39
39
5.2.6.3、胶粘剂涂布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

橡胶混炼胶的配方结构
• 生胶:也叫原胶,没添加其它成分。 • 硫化剂:能使橡胶发生硫化(交联)的化学物质。 如硫磺,过氧化物等等。 • 促进剂:能缩短硫化时间,降低硫化温度,减少 硫化剂用量,提高和改善硫化胶力学性能和化学 稳定性的化学物质。如 TT、CZ等。 • 活性剂:能增加促进剂活性,提高硫化速度和硫 化效率,改善硫化胶性能的化学物质。如ZnO 等。
1. 异戊胶 ( IR ) 异戊二烯为单体。因为结构与NR一样,所以也称为人造天然胶。 性质与NR类似。 2. 顺丁胶 ( BR ) 丁二烯 其弹性和耐低温性是通用胶中最好的,用于轮胎,耐磨制 品、耐寒制品、防震制品及塑料改性等。由于加工困难,通常与NR、 SBR并用。 3.氯丁橡胶(CR) 氯丁二烯为主要原料,通过均聚或少量其它单体共聚而成。为一 物性,耐药性,耐热性,耐候性,低燃烧与耐油性均衡的合成橡胶,但 是电绝缘性能,耐寒性能较差,生胶在贮存时不稳定。主要应用于接 著剂,传送带,耐油胶管与垫片等。 4.丁基橡胶(IIR) 异丁烯/异戊二烯的共聚物。其特点为极低的透气性。具有优良的 耐极性溶剂,耐热性与耐药性,但加工性差,硫化困难,且不易于NR, SBR等橡胶混合。 5.丁腈橡胶(NBR) 6.丁苯胶( SBR) 7. 三元乙丙胶 ( EPDM )
四、特种橡胶: 凡是具有特殊性能,专供耐热、耐寒、 耐化学腐蚀、耐油、耐溶剂、耐辐射等特 殊性能橡胶制品使用的称为特种橡胶。特 种橡胶有:硅橡胶(Q)、氟橡胶(FPM)、 聚氨酯橡胶(AU/EU)、聚硫橡胶(TR)、 聚丙烯酸酯橡胶(ACM/AEM)、氯醚橡胶 (ECO)、氯化聚乙烯橡胶(CPE)、氯 磺化聚乙烯(CSM)、丁吡橡胶(PBR) 等。
发展: 硫化法的发明。硫化是橡胶的线性大分子链通过化学交 联而构成三维网状结构的化学变化过程。
橡胶的分类
按材料来源:天然橡胶 和 合成橡胶。 按性能和用途分:通用橡胶 和 特种橡胶 。
一、天然橡胶 顾名思义,是由天然或人工种植的橡胶 树经过割胶,过滤清洗。干燥等工序加工 而成。其成分中91%~94%是橡胶烃,其 余为蛋白质、脂肪酸、灰分、糖类等非橡 胶物质。 二、合成橡胶 以石油、天然气为原料,以二烯烃和烯 烃为单体聚合而成的高分子。
橡胶知识培训
2007-12-20
1
目录
一、橡胶的定义 二、橡胶的分类简介 三、橡胶混炼胶的配方结构 四、常用橡胶种类、性质、用途 五、各橡胶的性质对比表
橡胶的定义
通俗定义: 橡胶是一种高弹性的高分子化合物(分子量一般在10万 以上),因而具有其它材料所没有的高弹性。因而也称为弹 性体。 橡胶的起源: 由热带美洲天然的哭泪树的乳液晒干,如提高拉伸强 度、耐磨性、撕裂强度和定伸应力,从而达到提 高使用性能,延长使用寿命的作用。如碳黑,白碳 黑。 • 增塑剂:也叫软化剂,降低胶料硬度用。大部分 是油类,如DOP、环氧大豆油、石蜡油等等。 • 防老剂:增强橡胶抵抗光,热,氧气,臭氧,紫 外线等破坏的物质,如 4010-NA, RD等等。 • 防焦剂:少量添加到胶料中能防止或延缓胶料在 硫化前的加工和贮存过程中发生早期硫化(焦烧) 现象的物质。 • 其它:如着色剂,分散剂,抗静电剂,阻燃剂, 发泡剂,增粘剂等。
三、通用橡胶: 凡是性能与天然橡胶相同或接近,物理 性能和加工性能较好,能广泛用于轮胎和 其它一般橡胶制品的橡胶称为通用橡胶。 通用橡胶有:天然橡胶( NR )、 丁苯橡 胶(SBR) 、丁腈橡胶(NBR) 、 顺丁 橡胶(聚丁二烯橡胶,BR ) 、 异戊橡胶 (聚异戊二烯橡胶,IR)、氯丁橡胶 (CR) 、 乙丙橡胶(EPR) 、 丁基橡胶 (IIR)。
相关文档
最新文档