10年数学中考图形变换

合集下载

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点
中考数学知识点:平移定义知识点
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。

(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。

(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。

(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。

中考数学复习专题四几何变换压轴题试题(2)

中考数学复习专题四几何变换压轴题试题(2)

中考数学复习专题四几何变换压轴题试题(2)类型一图形的旋转变换几何图形的旋转变换是近年来中考中的常考点,多与三角形、四边形相结合.解决旋转变换问题,首先要明确旋转中心、旋转方向和旋转角,关键是找出旋转前后的对应点,利用旋转前后两图形全等等性质解题.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE,DF于点M,N,求证:MN=AC;(2)如图2,将∠EDF以点D为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC相交于点G,P.连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【分析】 (1)连接BD,由∠BAD=60°,得到△ABD为等边三角形,进而证明点E是AB的中点,再根据相似三角形的性质解答;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,然后根据旋转的性质解题.1.(20__·潍坊)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=2.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)图1 图22.(20__·成都)如图1,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图2,当点F落在AC上时(F不与C重合),若BC=4,tan C=3,求AE的长;②如图3,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.类型二图形的翻折变换几何图形的翻折变换也是近年来中考中的常考点,多与三角形、四边形相结合.翻折变换的实质是对称,翻折部分的两图形全等,找出对应边、对应角,再结合勾股定理、相似的性质与判定解题.(20__·苏州)如图,在△ABC中,AB=10,∠B=60°,点D,E分别在AB,BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为____.【分析】作DF⊥B′E于点F,B′G⊥AD于点G,由∠B=60°,BD=BE,得到△BDE是等边三角形,由对称的性质得到△B′DE也是等边三角形,从而GD=B′F,然后利用勾股定理求解.、3.(20__·安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30 cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.图1 图24.如图,在矩形ABCD中,点E在边CD上,将矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.类型三图形的相似图形的相似常以三角形、四边形为背景,与旋转、翻折、动点相结合,考查三角形相似的性质及判定,难度较大,是中考中常考的几何压轴题.与动点相关的相似三角形,要根据动点的运动情况讨论相似三角形的对应边、对应角,进而判定相似三角形,再利用相似三角形的性质解题.(20__·青岛)如图,在矩形ABCD中,AB=6 cm,BC=8 cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6) ,解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式.【分析】 (1)根据勾股定理求出AC的值,然后分类讨论:当AP=PO时,求出t的值;当AP=AO时,求出t的值;(2)过点E作EH⊥AC于点H,过点Q作QM⊥AC于点M,过点D作DN⊥AC于点N,交QF于点G,分别用t表示出EH,DN,DG,再利用面积的和差计算即可.5.(20__·常德)如图,Rt△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于点M.求证:①GM=2MC;②AG2=AF·AC.图1 图2参考答案【例1】 (1)如图,连接BD,设BD交AC于点O,∵在菱形ABCD中,∠D AB=60°,AD=AB,∴△ABD为等边三角形.∵DE⊥AB,∴点E为AB的中点.∵AE∥CD,∴==.同理=.∴M,N是线段AC的三等分点,∴MN=AC.(2)∵AB∥CD,∠BAD=60°,∴∠ADC=120°.∵∠ADE=∠CDF=30°,∴∠EDF=60°.当∠EDF顺时针旋转时,由旋转的性质知,∠EDG=∠FDP,∠GDP=∠EDF=60°.∵DE=DF=,∠DEG=∠DFP=90°,∴△DEG≌△DFP,∴DG=DP,∴△DGP是等边三角形.则S△DGP=DG2.由DG2=3,又∵DG>0,解得DG=2.∴cos∠EDG===,∴∠EDG=60°.∴当顺时针旋转60°时,△DGP的面积是3.同理,当逆时针旋转60°时,△DGP的面积也是3.综上所述,当∠EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积是3.【变式训练】1.解:(1)当CC′=时,四边形MCND′为菱形.理由:由平移的性质得CD∥C′D′,DE∥D′E′.∵△ABC为等边三角形,∴∠B=∠ACB=60°,∴∠ACC′=180°-60°=120°.∵CN是∠ACC′的角平分线,∴∠NCC′=60°.∵AB∥DE,DE∥D′E′,∴AB∥D′E′,∴∠D′E′C′=∠B=60°,∴∠D′E′C′=∠NCC′,∴D′E′∥CN.∴四边形MCND′为平行四边形.∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,∴△MCE′和△NCC′为等边三角形,故MC=CE′,NC=CC′.又E′C′=2,CC′=,∴CE′=CC′=,∴MC=CN,∴四边形MCND′为菱形.(2)①AD′=BE′.理由:当α≠180°时,由旋转的性质得∠ACD′=∠BCE′.由(1)知AC=BC,CD′=CE′,∴△ACD′≌△BCE′,∴AD′=BE′.当α=180°时,AD′=AC+CD′,BE′=BC+CE′,即AD′=BE′.综上可知,AD′=BE′.②连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当A,C,P三点共线时AP最大,如图所示.此时,AP=AC+CP.在△D′CE′中,由P为D′E′中点,得AP⊥D′E′,PD′=,∴CP=3,∴AP=6+3=9.在Rt△APD′中,由勾股定理得AD′===2.2.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH.∵∠BHD=∠AHC=90°,DH=CH,∴△BHD≌△AHC,∴BD=AC.(2)①在Rt△AHC中,∵tan C=3,∴=3.设CH=_,则BH=AH=3_,∴BC=BH+CH=4_=4,∴_=1,∴AH=3,CH=1.由旋转的性质知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,==1,∴△EHA∽△FHC,∴∠EAH=∠C,∴tan∠EAH=tan C=3.如图,过点H作HP⊥AE于点P,则HP=3AP,AE=2AP.在Rt△AHP中,AP2+HP2=AH2,即AP2+(3AP)2=9.∴AP=,∴AE=.②由①知,△AEH和△FHC都为等腰三角形,设AH交CG于点Q,∴∠GAH=∠HCG,∴△AGQ∽△CHQ,∴=,∴=,∠AGQ=∠CHQ=90°.∵∠AQC=∠GQH,∴△AQC∽△GQH.又∵旋转角为30°,∴∠EHA=∠FHC=120°,∴∠QAG=30°,∴====2.【例2】如图,作DF⊥B′E于点F,B′G⊥AD于点G,∵∠B=60°,BD=BE=4,∴△BDE是边长为4的等边三角形.∵将△BDE沿DE所在的直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2.∵B′D=4,∴B′G==2.∵AB=10,∴AG=10-6=4,∴AB′==2.故答案为2.【变式训练】3.40或4.(1)证明:由折叠的性质知,DG=FG,ED=EF,∠AED=∠AEF,∵FG∥CD,∴∠FGE=∠AED,∴∠FGE=∠AEF,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形.(2)解:设DE=_,根据折叠的性质,EF=DE=_,EC=8-_,在Rt△EFC中,FC2+EC2=EF2,即42+(8-_)2=_2.解得_=5,CE=8-_=3.∴=.【例3】(1)∵在矩形ABCD中,AB=6 cm,BC=8 cm,∴AC=10 cm.①当AP=PO时,如图,过点P作PM⊥AO,∴AM=AO=.∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴=,∴AP=t=.②当AP=AO时,t=5.∵0<t<6,∴t=或t=5均符合题意,∴当t=或t=5时,△AOP是等腰三角形.(2)如图,过点E作EH⊥AC于点H,过点Q作QM⊥AC于点M,过点D作DN⊥AC于点N,交QF于点G,∵四边形ABCD是矩形,∴AD∥BC,∴∠PAO=∠ECO.∵点O是对角线AC的中点,∴AO=CO.又∵∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t.∵△CEH∽△CAB,∴=,∴EH=.∵S△ADC=AD·DC=DN·AC,∴DN==.∵QM∥DN,∴△CQM∽△CDN,∴=,即=.∴QM=,∴DG=-=.∵FQ∥AC,∴△DFQ∽△DOC,∴==,∴FQ=,∴S=S△OEC+S△OCD-S△DFQ=OC·EH+OC·DN-DG·FQ=-t2+t+12,即S与t的函数关系式为S=-t2+t+12.【变式训练】5.证明:(1)在Rt△ABE和Rt△DBE中,∴△ABE≌△DBE.(2)①如图,过点G作GH∥AD交BC于H,∵AG=BG,∴BH=DH.∵BD=4DC,设DC=1,则BD=4,∴BH=DH=2.∵GH∥AD,∴==,∴GM=2MC.②如图,过点C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=.由①知GM=2MC,∴AG=2NC.∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴=.∵AB=2AG,∴=,∴2CN·AG=AF·AC,∴AG2=AF·AC.。

中考数学复习 第六章图形与变换 第35课 用坐标表示图形变换课件

中考数学复习 第六章图形与变换 第35课 用坐标表示图形变换课件
2.图形变换前后的关系 比较变化后的图形与原图形的关系,一般是从橫、纵坐标的
关系着手,尤其要抓住关键点的横、纵坐标的变化.
基础自测
1.(2011·河南)如图,将一朵小花放置在平面直角坐标系中第三象
限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它
向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对
探究提高 在平面直角坐标系或网格中求面积,有一定的规律,常以
填空或选择题的形式出现,一般的做法是将难以求解的图形 分割成易求解面积的图形,即构图法.
知能迁移4 已知点A(-1,4),B(2,2),C(4,-1),则△ABC的 面积是___2_.5___.
解析:如图:S△ABC=5×5- 1×2×3=25-22.5=2.5
显然,点P的极坐标与它的坐标存在一一对应关系.例如:
点P的坐标为(1,1),则其极坐标为 [ , 45°]. 2
若点Q的极坐标为[4,60°],则点Q的坐标为( A )
A.(2, 2 3 )
B.(2,-2 3)
C.(2 3 , 2 )
D.(2,2)
题型三 求轴对称、旋转对称对应点的坐标
【例 3】 如图,在边长为1的正方形网格中,将△ABC向右平移两
12×2a、×2a-
1 2
a×、42a=3a2.
(m>0,
n>0且m≠n),试运用构图m法2+求1出6n这2 三9m角2+形4的n2 面积.m2+n2
解:构造△ABC如图(3)所示(未在试卷上画出相应图形 不1×扣2分m)×,2Sn△=AB1C2=mn3m-×2m4nn--312×mnm-×24mnn-=125×m3nm. ×2n- 2
探究提高 本题利用数形结合的方法确定点P的坐标,在阅读理解的

人教版中考数学第一轮复习第七章图形与变换

人教版中考数学第一轮复习第七章图形与变换

第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。

初中数学图与图形的变换精讲

初中数学图与图形的变换精讲

图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。

中考数学图形的变换试题

中考数学图形的变换试题

第五单元图形的认识第29课图形的轴对称1.①直角三角形②线段③平行四边形④梯形⑤角⑥等腰三角形上述图形中,不是轴对称图形的有()A.②⑤ B.③⑤ C.③④ D.①③④2.将A、B、C、D、E、F、G、H、I、J这十个字母竖立在镜子前,在镜子中看到的像能与原字母相同的有()个.A.3 B.4 C.5 D.63.如图,下列图案是几家银行的标志,其中是轴对称图形的有()个A.1个 B.2个 C.3个 D.4个4.下图中,不是轴对称图形的是().A. B. C. D.5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如下图示,则电子表的实际时刻是()A.10:51 B.10:21 C.15:01 D.12:016.已知:下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,与其他三个..不同的是()A.① B.② C.③ D.④7.如图,△ABC与△A1B1C1关于直线对称,将向右平移得到△A2B2C2.由此得出下列判断:(1)AB//A2B2;(2)∠A=∠A2;(3)AB= A2B2.其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(2)(3)8.已知点P1(a,3)和P2(4,b)关于轴对称,则(a+b)2006的值为()A.1 B.-1 C. 72006D.-72006第7题图第9题图8.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. ∠=∠+∠A 12B. 212∠=∠+∠AC. 3212∠=∠+∠AD. )21(23∠+∠=∠A10.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4B .6C .8D .10第10题图11.如图,给出了一个轴对称图形的一半,其中直线l 为这个图形的对称轴,请你画出这个图形的另一半(不用写作法,但要保留作图痕迹). 解:第11题图12.某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案.第12题图第30课 图形的平移和旋转1.下列现象(1)沿笔直轨道前进的地铁(2)电脑读牒时运动的光盘(3)挂钟的钟摆运动(4)传送带上传送的物体(5)空中飞舞的雪花(6)汽车在急刹时向前滑动(7)转动的幸运大转盘(8)起飞后飞向空中过程的飞机,中属于平移的是 ,属于旋转的是 . 2.如图ΔABC绕A 旋转20︒后成为ΔADE , 且AD 平分BC ,ΔACF 的面积为22.5cm ,ΔADE 中DE边上的高为1.25cm,则∠AC = , ΔADE 的面积为 ,CF= , DE= .3.下列图形均可以由“基本图案”通过变换得到. (填序号)(1)通过平移变换但不能通过旋转变换得到的图案是 ;(2)可以通过旋转变换但不能通过平移变换得到的图案是 ; (3)既可以由平移变换, 也可以由旋转变换得到的图案是 .① ② ③ ④ ⑤ 4.下列说法正确的是( )A .旋转改变图形的形状和大小B .平移改变图形的位置C . 图形可以向某方向旋转一定距离D .由平移得到的图形也一定可由旋转得到. 5.下列各图中可看成由下半部分图形顺时针旋转90°而形成的图形的是 ( )A BCD6.已知直线l 过点(-2,0)、(0,1),如果把l 向上平移2个单位,得到直线 l 1,则l 1的表达式为( )A .y =21x+1 B . y =21x -1 C .y = ―21x ―1 D .y = ―21x+17.在平面直角坐标系中,A 点的坐标为(3,4),将OA 绕原点O 逆时针旋转90︒得到OA 1则点A 1的坐标为( )B ACDEFA .(-4,3) B.(-3,4) C.(3,-4) D.(4,-3) 8.请你用一个圆,一个三角形,一条线段,设计一个中心对称图形,并说明你所摆出的图案的含义.9.已知,图A 、图B 分别是正方形网格上的两个中心对称图形,网格中最小的正方形面积为一个平方单位,则图A 的面积为 ,图B 的面积为 ; 你能在图C 的网格上画出一个面积为8个平方单位的中心对称图形吗?图A 图B 图C 10.如图,△ABC 中,AD 是中线,△ACD 旋转后能与△EBD 重合①旋转中心是哪一点?②旋转了多少度?③如果M 是AC 的中点,那么经过上述旋 转后,点M 转到了什么位置?12.在等腰三角形ABC中,∠C=90,BC=2,如果以AC 的中心O 为旋转中心,将这个三角形旋转1800,点B 落在B 1处,求点B1与点B(原来的位置处)的距离.13.如图,点O 是矩形ABCD 的对称中心,过O 点任作直线l,过B 作BE ⊥l 于E .过D 作DF ⊥l于F ,求证:BE=DF .EDABCMOFEDCBA第31课 图形的相似1.如图,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形( )A .4对B .5对C .6对D .7对E D CBAOE DCBAOEDCBA第1题图第2题图第3题图2.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于D 、E ,若AD=4,BD=2,则DE:BC 的值为( ) A .15 B .2 C .23 D .323.如图,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点O ,若DOE S ∆=9,则AOB S ∆等于( )A .18B .27C .36D .454.如图,△ABC 中,AE ⊥BC 于E ,D 为AB 边上一点,如果BD=2AD ,CD=8,sin∠BCD=34,那么AE 的值为( ) A .3 B .6 C .7.2 D .9第4题图 第5题图第6题图5.如图,梯形ABCD 的对角线交于点O ,有以下四个结论:①△AOB ∽△COD ;②△AOD ∽△ACB ;③DOC S ∆:AOD S ∆ =DC:AB ;④AOD S ∆=BOC S ∆,其中始终正确的有( )A .1个B .2个C .3个D .4个6.如图,要使△ACD ∽△ABC ,只需添加条件 (只要写出一个合适的条件即可).7.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )6米的点A 处,沿DA 所在直线行走14米到点B 时,人影长度变长 米OBDCA DCBAA DB /B MC第7题图 第8题图 第9题图8.矩形ABCD 中,M 是BC 边上且与B 、C 不重合的点,点P 是射线AM 上的点,若以A 、P 、D 为顶点的三角形与△ABM 相似,则这样的点有 个.9.如图,△ABC 与△DEF 是位似图形,相似比为2:3,已知AB=4,则DE 的长等于 .10.如图,AC ⊥AB ,BE ⊥AB ,AB=10,AC=2,用一块三角尺进行如下操作,将直角顶点P 在线段AB 上滑动,一直角边始终经过点C ,另一直角边与BE 相交于点D ,若BD=8,则AP 的长为 .11.在方格纸中,每个小格的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在如图5×5的方格纸中,以A 、B 为顶点作格点三角形,与△ACB 相似(相似比不能为1),则另一个顶点C 的坐标为 米.第10题图第11题图第12题图12.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积为S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,…,S n (n 为正整数),那么第8个正方形的面积S 8= .13.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD ,E 为垂足,连结AE ,图中有无相似三角形?若有,请写出,并对其中一对加以证明,若没有,请证明理由.ABxyOMNBOA OEFDCBAECBAIJHGF E D C BAEDCBAA(3,0)xy14.如图,PAB 、PCD 是⊙O 的两条割线,AB 是⊙O 的直径,AC ∥OD ,求证:(1)CD= (先填后证);(2)若PA PC =56,试求AB AD的第32课 锐角三角函数(解直角三角形)1.已知α为锐角,且54cos =α,则sin tan αα+= .2.在Rt △ABC 中,∠C =90°,32tan =A ,AC =4,则BC = . 3.已知:如图,在△ABC 中,∠A =30°,31tan =B ,10=BC ,则AB 的长为 .4.一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图).上午9时行至C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里.(结果保留根号)5.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .1(第9题)6.如图,在平面直角坐标系中,已知点A(3,0),点B(0,-4)则cos OAB∠等 于( )A.34 B.34- C.35 D.45 7.︒+︒60sin 160cos ·1tan 30︒的值是( )A .23-3B .334C .2-332+D .233-18.在△ABC 中∠C=900,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且22440c ac a -+=,则sin cos A A +的值( )OPDCBAACB(0,-4)A .2B .13+.122+ D.32+ 9.在直角三角形中,各边的长度都扩大原来的m 倍,则锐角A 的各三角函数值( )A .都扩大到m 倍B .都扩大到(m+1)倍C .不变D .不能确定10.如图,两条宽度都是1的纸条,交叉重叠放在一起,则重叠部分的面积为( ) A .1sin α B .sin α C.1cos αD.cos α 11.沿坡角为30°的斜面前进100米,则上升的高度为( )A . mB .5033.50 m D .50m12.计算:2sin 60tan30sin 45︒︒︒⋅+13.计算:sin30cos60tan 45tan 60tan30︒︒︒︒︒+--⋅ 第10题图14.如下图所示,在△ABC 中,∠C =90°,D 是AC 边上一点,且5==DB AD ,3=CD ,求CBD ∠tan 和A sin .15.某片绿地的形状如图,其中60A ︒∠=,AB ⊥BC ,AD ⊥CD ,AB=200米,CD=100米,求AD ,BC 的长.16.某校的教室A 位于工地O 的正方向,且OA=200米,一部拖拉机从O 点出发,以每秒5米的速度沿北偏西53︒方向行驶,沿拖拉机的噪声污染半径为130米,试问教室A 是否在拖拉机噪声污染范围内?若不在,请说明理由,若在,求出教室A 受污染的时间有几秒?(已知sin 530.8︒= sin 370.6︒= tan 370.75︒=)331003 BCD第33课 图形的变换与坐标的关系1.在直角坐标系中,点P (-5,8)关于x 轴对称点P 1的坐标是 ;点P (-5,8)关于y 轴对称点P 2的坐标是 ;点P (-5,8)关于原点对称点P 3 的坐标是 .2.设点M (x , y )在第三象限,x =2,5+y =3,则点M 关于原点对称的点N 的坐标是 .3.若点A (m ,3)在函数y=5x+3的图像上,则点A 关于原点对称的点B 的坐标是 .4.若点A 关于y 轴对称的点的坐标是(3,-2), 那么点A 关于x 轴对称的点C 的坐标是 .5.若点P 关于原点对称的点P 1的坐标是(2,2),那么点P 关于x 轴对称的点P 2的坐标是 .6.若点P (m , n )其中m>0、n>0关于原点对称的点P 1的坐标是 ,关于x 轴对称的点P 2的点的坐标是 ,关于y 轴对称的点P 3的坐标是 ,关于直线y=x 对称的点P 4的坐标是 ;关于直线y=-x 对称的点P 5的坐标是 ;7.若点A (b a -,3)与点B (42-a ,-3)关于原点对称, 则a= ,b= .8.若直线y=-x +3的图像与抛物线y=x 2-3x -12的交点坐标是 ,它们关于y 轴对称的点的坐标是 .9.若直线y=3x +2的图像与直线y=-x+2的交点坐标是A,则点A 关于y 轴对称点B 的坐标是 .10.已知,点A (a +2 , b -4)与点A (-b ,-3a )关于原点对称,则20061+a ×2007b= .11.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将△ABO绕点O 按顺时针方向旋转135,则点A 、B 的对应点A 1、B 1的坐标分别是A 1( , ),B 1( , ).12.在△ABC 中A(3,-1)、B(2,-1)、C(0,2) ,若将△ABC 绕点C 顺时针旋转90后得到△A 1B 1C 1,则点A 1的对应点的坐标是 . 13.已知,点P (x , y )的坐标满足3-x +5+y =0,则点P 关于y 轴对称的点P 1在( )A.第一象限B.第二象限C.第三象限D.第四象限14.设M(x , y) 点在第三象限,且x =3,y =2,则M 点关于y 轴的对称点的坐标是( )A.(3,2)B.(-3,-2)C.(-3,2)D.(3,-2) 15.点M (-3,1)绕原点旋转60 后的坐标是( )A.(-3,-1)B.(3,1)C.(3,-1)D.(-3,-1)或(0,2)16.如图1,在平面直角坐标系中, △ABC 为等边三角形, 其中点A 、B 、C 的坐标分别为(3,1)、(3,3),(3-3,2),现以y 轴为对称轴作△ABC 的对称图形,得△A 1B 1C 1,再以x 轴为对称轴作的对称图形,得△A 2B 2C 2 ⑴直接写出A 2 、B 2两点的坐标;⑵是否能通过一次旋转将△ABC 旋转到△A 2B 2C 2的位置?你若认为能,请直接写出绕哪一点旋转多少度;你若认为不能, 请作出否定的回答(不必说明理由); ⑶设当△ABC 的位置发生变化时,△A 2B 2C 2、△A 1B 1C 1与△ABC 之间的对称关系始终保持不变:①当△ABC 向下平移多少个单位时,A 1B 1C 1与A 2B 2C 2完全重合?并直接写出此时C 点的坐标;②将△ABC 绕点A 顺时针针旋转αº(0≤α≤180),使△A 1B 1C 1与A 2B 2C 2完全重合,此时α的值为多少?点C 的坐标又是什么?C2B2A2B1A1C1A BCOyx第五单元 图形的变换检测卷(满分100分,时间60分钟)一.填空题(每题3分,共36分)1.如图,四边形ABCD 是正方形,△ADE 旋转后能与△ABF 重合,则(1)旋转中心是 , 按 方向旋转了 度;(2)若连结EF ,那么△AEF 是 三角形.2.如图,把两个大小完全相同的矩形拼成“L ”形,则∠FAC = ,∠FCA= .第1题图 第2题图 第3题图3.如图,△ABC 绕点C 旋转到△'''C B A ,且''B A 与AC 垂直,则∠'A = (填写角度)4.如图,ABCD 是一张矩形纸片,点O 为矩形对角线的交点.直线MN 经过点O 交AD 于M ,交BC 于N .先沿直线MN 剪开,并将直角梯形MNCD 绕点O 旋转 度后,恰与直角梯形NMAB 完全重合;再将重合后的直角梯形MNCD 以直线MN 为轴翻转后所得到的图形是下列中的 .(填写正确图形的代号)5.已知653zy x ==,且623+=z y ,则__________,==y x . 6.如图,D 、E 、F 分别是△ABC 各边的中点,则△DEF 与△ABC 面积的比是 .第4题图 第6题图 第7题图7.如图,四边形ABCD 与四边形EFGH 相似,则∠H = .8.要把一个三角形的面积扩大到原来面积的4倍,而它的形状不变,那么它的边长要扩大到原来的 倍.9.如图,已知两座高度相等的建筑物AB 、CD 的水平距离BC =60米,在建筑物CD 上有一铁塔PD ,在塔顶P 处观察建筑物的底部B 和顶部A ,分别测得俯角45,30αβ︒︒==,建筑物AB 的高等于 .(计算过程和结果一律不取近似值)第9题图 第10题图 第11题图 第12题图 10.如图,AD ∥EF ∥BC,则图的相似三角形共有 对.11.如图,正方形ABCD 中,E 是AD 的中点,BM ⊥CE,AB=6,则BM= .180︒12.如图,ΔABC 中,∠A=∠DBC, BC=,S ΔB CD ∶S ΔA B C =2∶3,则CD= .二.选择题(每题4分,共36分)13.下面四个图案中,既包含图形的旋转,又有图形的轴对称的设计是( )A B C D14.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .51 B .41 C .31 D .103 15.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED BC ⊥,则CE 的长是( )A.10315-B.1053-C. 535-D. 20103-第14题图 第15题图 第21题图16.以下现象:(1)水管里水的流动(2)打针时针管的移动(3)射出的子弹(4)火车在笔直的铁轨上行驶,其中是平移的是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)17.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ).A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格 18.下列判断中,正确的是( ).A .两个平行四边形一定相似B .两个矩形一定相似C .两个菱形一定相似D .两个正方形一定相似19.把一个矩形对折成两个相同的小矩形,如果这两个小矩形与原矩形相似,那么原矩形的长与宽的比值是( ).图(2)图(1)M NN M 图1 图2A. B. C. D.20.一个三角形的两边之比为a:b=3:1,则这两边上的高的比h a:h b为( ) A.3:1 B.1:3 C.9:1 D.1:921.如图,在平行四边形ABCD中,E为BC边上的点,若BE:EC=4:5,AE交BD于F,则BF:FD等于()A.4:5 B.3:5 C.4:9 D.3:8三.解答题(22~24题,每题6分,25题10分)22.在旷野上,一个人骑着马从A到B,半路上他必须在河边饮马一次,如图,他应该如何来选择饮马点P,才能使所走的路程AP+PB最短呢?23.如图网格中有一个四边形和两个三角形(各少一边).(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的个数,这个整体图形至少旋转多少度与自身重合?24.如图,某船在A处测得灯塔B在北偏东30°方向,现该船从A处出发以每小时24海里的速度向正北方向航行15分钟到达C处,在C处测得灯塔B在北偏东45°的方向,求A到灯塔B的距离(结果取准确值)25.如图,等腰梯形ABCD中,AD//BC,AD=3cm,BC=7cm, ∠B=60°,P为下底BC上一点,不与BC重合,连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)求证:△ABP∽△PCE(2)求等腰梯形的腰AB的长(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长,如果不存在,请说明理由.空间与图形综合检测卷(一)(总分100分,时间60分钟)一.选择题(每题3分)1.如图是由几个相同的小正方形搭成的集合体的三种视图则搭成这个几何体的小正方形的个数为()A .3B .4C .5D .6 俯视图 主视图 左视图 2.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40 ,则∠DCF 等于( ) A .80 B .50 C .40 D .203.如图,B 是线段AC 的中点,过C 点的直线l 与AC 成60的角.在直线l 上取一点,使得∠APB=30 则满足条件的点P的个数是( )A .3个B .2个C .1个D .不存在4.如图,在Rt △ABC 中∠ACB=90 ,CD ⊥AB 于点D ,已知AC=5,BC = 2那么Sin ∠ACD= ( ) A .35 B .32C .552D .25 5.如图, 小丽要制作一个圆锥模型,要求圆锥的母线长为10㎝那么小丽要制作的这个圆锥模型的侧面展开图的圆心角度数是( )A .150B .200C .180D .2406.在矩形ABCD 中,对角线AC 、BD 相交于点G 、E 为AD 的中点,连接BE 交AC于F , 连接FD.若∠BFA=90 则下列四对三角形(1)△BEA 与△ACD ;(2)△FED 与 △DEB ;(3)△CFD 与△ABG ; (4)△ADF 与△CFB .其中相似的为( )A .(1)(4)B .(1)(2)C .(2)(3)(4)D .(1)(2)(3) 7.一个三角形的两边长为3和6第三边的边长为方程(x -2)(x -4)=0 的根,则这个三角形的周长是( )A . 11B . 11或13C . 13D . 11或138.将一个正方形纸片依次按图(1)图(2)方式对折然后沿着图(3)中的虚线裁剪.最后将图(4)的纸片再展开铺平.所得到图案是( )图(1)(向上对折) 图(2)(向右对折)图(3)图(4)FOG DEC第3题图第4题图第5题图第6题图A. B. C. D.9.如图△ABC与△A1B1C1关于直线l对称.将△A1B1C1向右平移得到△A2B2C2由此得出下列判断:(1)AB=A2B2,(2)∠A=∠A2,(3)AB=A2B2其中正确的是()A .(1)(2) B.(2)(3)C .(1)(3) D.(1)(2)(3)10.如图,一块含有30 角的直角三角板ABC,在水平桌面上绕点C按顺时针旋转到△A1B1C1的位置若的BC长为15㎝,那么顶点A从开始到结束所经过的路径长为()A.10∏㎝ B.103∏㎝ C.15㎝ D.20 ∏㎝11.如图,在Rt△ABC中∠C=90 ,A C=4㎝,BC=6㎝动点P从点C沿C A,以1㎝/s的速度向点A运动.同时动点Q从点C沿CB,以2㎝/s的速度向点B运动,则运动过程中所构成的△CPQ的面积y(㎝2)与运动时间x(s)之间的函数图像大致是()12.如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50 ,∠C=60 连结OE、OF、DE、DF,则∠EDF等于()A . 45B . 55 C. 65 D .70二.填空题(每题3分)1.如图,PQ是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC的大小等于度.第1题图 第3题图 第4题图 2.将点A (3,1)绕原点顺时针旋转90到点B .则B 点的坐标是 .3.如图是由9个等边三角形拼成的六边形, 若已知中间的小等边三角形的边长是a ,则六边形的周长是 .4.如图,在直角坐标系中,右边的图案是由左边的图案经过平移得到的, 左图案中左右眼睛的坐标分别是(-4,2),(-2,2)右图案中左眼的坐标是(3,4)则右图案中右眼的坐标是 .5.如图,在△ABC 中,AC= BC= 2,∠ACB=90 ,D 是边BC 的中点,E 是AB 边上一动点, 则EC +ED 的最小值是 .6.如图, 把矩形纸片OABC 放入平面直角坐标系中,使 OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿着OB 折叠,使点A 落在点A 1的位置上.若OB=5,tan ∠BOC=21,则点A 1的坐标为 . 三.解答题1.如图, A 、D 、F 、B 在同一条直线上,AD=BF ,AE=BC , 且AE ∥BC .求证:(1)△AEF ≌△BCD ;(2)EF ∥CD .(8分)EF BCDA2. 如图,图中的小方格都是边长为1的正方形,△ABC 与△A 1B 1C 1是关于点O 为位似中心的为似图形,它们的顶点都在校正方形的顶点上. (1) 画出位似中心点O ;(2) 求出△ABC 与△A 1B 1C 1的位似比;(3) 以点O 为位似中心,再画一个△A 1B 1C 1,使得它与△ABC 的位似比等于1.5.(9分)3. 如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A 测得山腰上一点D 的仰角为30 ,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45 ,山腰点D 的俯角为60 .请你帮助他们计算出小山的高度(计算过程和结果都不去近似值).(8分)4. 如图, 在平行四边形ABCD 中,∠DAB=60,点E 、F 分别在CD 、AB 的延长线上,且AE=AD ,CF=CB .(1)求证:四边形AFCE 是平行四边形; (2)若去掉已知条件的“∠DAB=60”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(9分)5.在⊙O 的内接△ABC 中,AB +AC=12,AD ⊥BC 垂足为D ,且AD=3,设⊙O 的半径为y , AB 的长为x . (1)求y 与x 的函数关系式;(2)当AB 的长等于多少时,⊙O 的面积最大,并求出⊙O 的最大面积.(9分)6.如图,点T 在⊙O 上,延长⊙O 的直径AB 交TP 于P ,若PA=18,PT=12,PB=8.(1)求证:△PTB ∽△PAT ;(2)求证:PT 为⊙O 的切线.AB DHOED CFBAD OBCA(3)在AT 弧上是否存在一点C ,使得BT=8TC ?若存在,请证明;若不存在,请说明理由.(10分)7.如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,BC ∥OA ,OA=7,AB=4,∠COA=60 ,点P 为x 轴上的一个动点,点P 不与点O 、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当P 运动什么位置时,使得∠CPD=∠OAB ,且AB BD =85,求这时P 的坐标.(11分)8.如图,已知P 为∠AOB 的边OA 上的一点,以P 为顶点的∠MPN 的两边分别交射线OB 于M 、N 两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN 以点P 为旋转中心,PM 边与PO 重合的位置开始,按逆时针方向旋转(∠MPN 保持不变)时,M 、N 两点在射线OB 上同时以不同的速度向右平行移动.设OM=x ,ON=y (y >x >0),△POM 的面积为S .若Sin α=23、OP=2. (1)当∠MPN 旋转30(即∠OPM=30)时,求点N 移动的距离; (2)求证:△OPN ∽△PMN ; (3)写出y 与x 之间的关系式;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围. (12分)P BNM OAB OATP。

2013年中考几何复习之_图形的变换

2013年中考几何复习之_图形的变换

初三几何复习第二部分图形变换的内容内容轴对称平移旋转位似一轴对称•1.轴对称图形:•如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.•2. 性质:•①两个图形全等.•②对称轴垂直平分两个对应点所连的线段.•③两个对应点所连的线段平行.3、轴对称的图形实例CBA B 1C 1A 1N M(1)画出△ABC 关于直线MN 对称的△A 1B 1C 1.图形变换的内容轴对称•4 常见轴对称图形填表:图形对称轴相关性质角角平分线所在的直线角平分线上的点到这个角的两边的距离相等线段线段所在的直线和线段的垂直平分线线段垂直平分线上的点到这条线段两个端点的距离相等等腰三角形等边三角形正方形矩形菱形等腰梯形圆二、平移•1.平移定义:•如果一个图形沿某个方向平移一定的距离,这样的图形运动称为平移.•2.性质:•①平移不改变图形的形状和大小(即平移前后的两个图形全等).•②对应线段平行且相等,对应角相等.•③经过平移,两个对应点所连的线段平行且相等.•3.要点:平移两要点①方向,②距离.4、平移图形的实例:C B A C 1B 1A 1画出△ABC 向右平移6个单位后的△A 1B 1C 1图形变换的内容平移三、旋转(一)旋转1.旋转定义:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.图形变换的内容旋转•2.性质:•①旋转不改变图形的形状和大小(即旋转前后的两个图形全等).•②任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角).•③经过旋转,对应点到旋转中心的距离相等.•3.旋转三要点:旋转①中心,②方向,③角度.4、旋转图形的实例:OC 1B 1A 1画出△ABC 绕点O 向顺时针方向旋转90°后的△A 1B 1C 1C B A●图形变换的内容旋转•(二)中心对称图形:•1 定义:•如果一个图形绕一个点旋转1800后,与原来的图形能够互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.•2 性质:•①两个图形全等.•②对称中心平分两个对应点所连的线段.BA C2B2A2●O(2)画出△ABC关于点O对称的△A2B2C2.图形变换的内容旋转中心对称C图形变换的内容旋转中心对称•3 常见中心对称图形填表:图形对称中心相关性质线段线段的中点中点分这条线段为两条相等的线段平行四边形矩形菱形正方形圆2.(2009河南)下列图中,不是中心对称图形的是()A1.(2008·河南省)下列图形中,既是轴对称图形又是中心对称图形的是( ) 4中心对称图形实例D3.下列图形中是中心对称而不是轴对称的是()A.角B.等腰梯形C.等腰三角形D.平行四边形4.(2009·上海、天津)在下列图形中,既是轴对称图形,C又是中心对称图形的是()(B)(A)(D)(C)四、相似与位似1、位似的概念:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比叫做位似比。

中考数学图形旋转难?用5个模型就能搞定

中考数学图形旋转难?用5个模型就能搞定

中考数学图形旋转难?用5个模型就能搞定旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角。

旋转变换不改变图形的形状和大小通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度旋转变换前后的图形有下列性质:(1)对应点到旋转中心的距离相等,(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心。

常见的几种模型旋转类型题目举例1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。

例1如图(1-1),设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

例2如图(2-1),P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

求正方形ABCD面积。

3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3如图,在ΔABC中,∠ACB=90°,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形变换(10湖州)24.(本小题12分)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值.(10金华)24如图,把含有30°角的三角板ABO置入平面直角坐标系中,A ,B 两点坐标分别为(3,0)和(0,3.动点P 从A点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为1 2 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线 AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动.请解答下列问题:(1)过A ,B 两点的直线解析式是 ▲ ;(2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合;(3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少?② 当t ﹦2时,是否存在着点QQ 的坐标;若不存在,请说明理由.(10台州)23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AMCKMK =+,请直接写出∠CDF 的度数和AMMK 的值.……………………………2分(10温州)24.(本题l4分)如图,在RtAABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BBl ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒. (1)当t 为何值时,AD=AB ,并求出此时DE 的长度; (2)当△DEG 与△AC B 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后的图形为A ′C ′. ①当t>53时,连结C ′C ,设四边形ACC ′A ′的面积为S ,求S 关于t 的函数关系式;②当线段A ′C ′与射线BB ,有公共点时,求t 的取值范围(写出答案即可).图1图2图3(第23题)EEE图4A(10义乌)23.如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE 并延长交射线BC 于点F .(1)如图2,当BP =BA 时,∠EBF = ▲ °,猜想∠QFC = ▲ °;(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明; (3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.(10义乌)24.如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为(x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1图2AE QP F C 图1ACB E QF P 图2(10衢州)24. (本题12分)△ABC 中,∠A=∠B=30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O(如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点B在第一象限,纵坐标是2时,求点B 的横坐标; (2) 如果抛物线2y ax bx c =++(a≠0)的对称轴经过点C ,请你探究:①当4a =,12b =-,5c =时,A ,B 两点是否都在这条抛物线上?并说明理由;② 设b=-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.(10衢州)20. (本题8分)如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直, 垂足为H ,已知AB=16厘米,4cos 5OBH ∠=.(1) 求⊙O 的半径; (2) 如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.得 分 评卷人ABO H Cl得 分 评卷人(10年宁波)(10金华) (本题12分)解:(1)333+-=x y ;………4分 (2)(0,3),29=t ;……4分(各2分)(3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵tFG OE 33==,∠=A 60°,∴FG AG60tan 0==而t AP =,∴t OP -=3,tAG AP PG 32=-=由t t 323=-得 59=t ; (1)分当点P 在线段OB 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M ∵tOE 33=,∴tBE 3333-=,∴360tan 0BE EF ==∴6921t EF EH MP -===, 又∵)6(2-=t BP在Rt △BMP 中,MP BP =⋅060cos 即6921)6(2t t -=⋅-,解得745=t . (1)分②存在﹒理由如下:∵2=t ,∴332=OE ,2=AP ,1=OP将△BEP 绕点E 顺时针方向旋转90°,得到△EC B '(如图3)∵OB ⊥EF ,∴点B '在直线EF 上,C 点坐标为(332,332-1)过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B ' 由3=='=QECE FEE B FEBE ,可得Q 的坐标为(-32,33) (1)分(图1)(图3)根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件. (1)10台州23.(12分)(1)① = ………………………………………………………………………2分② > …………………………………………………………………………………2分 (2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G , 连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°,∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分(3)∠CDF =15°,23=AMMK.……………………………(10义乌)23.解: (1)=∠EBF 30°...............................1分 Q F C ∠= 60°..................................2分 (2)QFC ∠=60°.....................................1分不妨设BPB , 如图1所示∵∠BAP=∠BAE+∠EAP=60°+∠EAP∠EAQ=∠QAP+∠EAP=60°+∠EAP∴∠BAP=∠EAQ ..........................................2分在△ABP 和△AEQ 中 AB=AE ,∠BAP=∠EAQ , AP=AQ ∴△ABP ≌△AEQ (SAS ).........................3分 ∴∠AEQ=∠ABP=90°...............................4分∴∠BEF 180180906030AEQ AEB =︒-∠-∠=︒-︒-︒=︒ ∴QFC ∠=EBF BEF ∠+∠=3030︒+︒=60°…………………………............5分(事实上当BP B 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)(3)在图1中,过点F 作FG ⊥BE 于点G∵△ABE 是等边三角形 ∴BE=AB=32,由(1)得=∠EBF 30° 在Rt △BGF 中,2B E B G ==∴BF=2cos 30B G =︒∴EF =2 (1)分∵△ABP ≌△AEQ ∴QE=BP=x ∴QF =QE +图2A BEQ P F GHEF 2x =+................2分过点Q 作QH ⊥BC ,垂足为H在Rt △QHF中,sin 602)2y Q H Q F x ==︒=+ (x >0)即y 关于x的函数关系式是:2y x =+分(10义乌)24.解:(1)对称轴:直线1x =……………………………………………………..… 1分解析式:21184y x x =-或211(1)88y x =-- (2)分顶点坐标:M (1,18-) (3)分(2)由题意得 213y y -=2221221111118484y y x x x x -=--+=3……………………………………..1分得:212111()[()]384x x x x -+-=① (2)分12122(11)3()62x x s x x -+-⨯3==+-得:1223s x x +=+ ② (3)分把②代入①并整理得:2172x x s-=(S >0) (事实上,更确切为S >66)4分当36s =时,2121142x x x x +=⎧⎨-=⎩ 解得:1268x x =⎧⎨=⎩(注:S >0或S >66不写不扣分) 把16x =代入抛物线解析式得13y = ∴点A 1(6,3) (5)分(3)存在 (1)分解法一:易知直线AB 的解析式为3342y x =-,可得直线AB 与对称轴的交点E 的坐标为31,4⎛⎫- ⎪⎝⎭∴BD =5,DE =154,DP =5-t ,DQ = t当PQ ∥A B 时,D Q D P D ED B=51554t t -=得 157t =………2分下面分两种情况讨论: 设直线PQ 与直线AB 、x 轴的交点分别为点F 、G ①当0<157t <时,如图1-1 ∵△FQE ∽△FAG ∴∠FGA =∠FEQ∴∠DPQ =∠DEB 易得△DPQ ∽△DEB ∴D Q D P D BD E=∴51554t t -= 得201577t =>∴207t =(舍去)…………………………3分② 当157<18t <3时,如图1-2∵△FQE ∽△FAG ∴∠FAG =∠FQE∵∠DQP =∠FQE ∠F AG =∠EBD∴∠DQP =∠DBE 易得△DPQ ∽△DEB∴D Q D P D BD E=∴51554t t -=, ∴207t =∴当207t =秒时,使直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似………………………………4分(注:未求出157t =能得到正确答案不扣分)解法二:可将284xx y =-向左平移一个单位得到2188xy =-,再用解法一类似的方法可求得2172x x S''-= , 1(5,3)A ', 207t =∴2172x x S-=1(6,3)A , 207t =.图1-1(10温州)(10衢州)24. (本题12分)解:(1)∵点O是AB的中点,∴12OB AB==……1分设点B的横坐标是x(x>0),则2222x+=,……1分解得12x=,22x=-(舍去).∴点B的横坐标是2.……2分(2)①当4a=,12b=-,5c=时,得21425y x=--……(*)24520y x=--.……1分以下分两种情况讨论.情况1:设点C在第一象限(如图甲),则点C的横坐标为5,tan3013O C O B=⨯︒==.……1分由此,可求得点C的坐标为(5,5),……1分点A的坐标为(5,5),∵A,B两点关于原点对称,∴点B的坐标为(5,5).将点A的横坐标代入(*)式右边,计算得5,即等于点A的纵坐标;将点B的横坐标代入(*)式右边,计算得5,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分(甲)情况2:设点C 在第四象限(如图乙),则点C 的坐标为(5,-5),点A 的坐标为(5,5),点B 的坐标为(5,5-). 经计算,A ,B 两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A ,B 两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A ,B 两点不可能都在这条抛物线上) ② 存在.m 的值是1或-1. ……2分(22()y a x m am c=--+,因为这条抛物线的对称轴经过点C ,所以-1≤m ≤1.当m=±1时,点C 在x 轴上,此时A ,B 两点都在y 轴上.因此当m=±1时,A ,B 两点不可能同时在这条抛物线上) (10年宁波)。

相关文档
最新文档