人教版七年级数学上册《2.1 第2课时 单项式》同步练习(含答案)

合集下载

人教版数学七年级上册 第2章2.1---2.2期末复习题含答案

人教版数学七年级上册 第2章2.1---2.2期末复习题含答案

2.1整式一.选择题1.单项式﹣的次数是()A.﹣6B.﹣C.2D.32.在下列式子,﹣4x,π,,0.81,,0中,单项式共有()A.5个B.6个C.7个D.8个3.下列说法:①最小的正整数是1;②倒数是它本身的数是1;③(﹣5)2=﹣52;④若|a|=﹣a,则a<0;⑤2πx2﹣xy+y2是三次三项式.其中错误的有()A.2个B.3个C.4个D.5个4.下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个5.下列式子:4ab3c,,m2+1,3a﹣b,0,中,单项式的个数是()A.2 个B.3个C.4个D.5个6.下列说法错误的是()A.﹣x2y﹣35xy3是四次二项式B.是多项式C.﹣2m的次数是1D.的系数是7.下列说法中正确的是()A.a的指数是0B.a没有系数C.是单项式D.﹣32x2y3的次数是78.下面叙述不正确的是()A.整式包括单项式和多项式B.0不是单项式C.﹣x+y2+6是多项式也是整式D.﹣x+y2+6是二次三项式9.下列说法正确的有()个(1),都是单项式;(2)多项式2x﹣xy+y+4是五次四项式;(3)多项式3mn﹣2xy﹣5m﹣7有四项,分别为3mn,﹣2xy,﹣5m,7;(4)2x是7次单项式;(5)单项式a的指数和系数均为1.A.1B.2C.3D.410.如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如:x3+3xy2+4xyz+2y3是3次齐次多项式,若a x+3b2﹣6ab3c2是齐次多项式,则x的值为()A.﹣1B.0C.1D.2二.填空题11.若多项式(m+4)x3+x n﹣1﹣5x﹣6是关于x的二次三项式,则m+n﹣(x﹣2)2的最大值为.12.在﹣0.3x2y,0,,﹣2abc2,﹣y,,﹣ab2﹣中单项式的有个.13.若多项式3x2y|m+1|﹣(2﹣m)y2﹣1是关于x,y的五次三项式,则常数m的值是.14.多项式3x2y﹣5xy+2的次数是.15.若与﹣3ab3﹣n的和为单项式,则m+n=.三.解答题16.若(m﹣2)x n y是四次单项式,求m、n应满足的条件.17.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?.18.指出下列多项式的项和次数,并说明它们是几次几项式,(1)x4﹣x2﹣1;(2)﹣3a2﹣3b2+1;(3)﹣2x6+xy﹣x2y5﹣2xy3+1.19.已知下列式子:①;②﹣5.8ab3;③;④a2﹣ab﹣2b2;⑤x+;⑥;⑦a.(1)其中哪些是单项式?分别指出它们的系数和次数;(2)其中哪些是多项式?分别指出它们的项和次数;(3)其中哪些是整式?参考答案与试题解析一.选择题1.【解答】解:单项式﹣的次数是2+1=3.故选:D.2.【解答】解:,﹣4x,π,,0.81,,0中,单项式有:,﹣4x,π,0.81,0共5个.故选:A.3.【解答】解:①最小的正整数是1,正确,不合题意;②倒数是它本身的数是±1,故此选项错误,符合题意;③(﹣5)2=﹣52,应为(﹣5)2=52,故此选项错误,符合题意;④若|a|=﹣a,则a≤0,故此选项错误,符合题意;⑤2πx2﹣xy+y2是二次三项式,不是三次三项式,故此选项错误,符合题意;故选:C.4.【解答】解:①m;②x+5=7;③2x+3y;④;⑤中,整式有①m;③2x+3y;④,共3个.故选:C.5.【解答】解:根据单项式的定义可知,只有代数式4ab3c,,0三个单项式.故选:B.6.【解答】解:A.﹣x2y﹣35xy3是四次二项式,此选项正确;B.是多项式,此选项正确;C.﹣2m的次数是1,此选项正确;D.的系数是,此选项错误;故选:D.7.【解答】解:A、a的指数是1,故此选项错误;B、a的系数为1,故此选项错误;C、﹣是单项式,正确;D、﹣32x2y3的次数是5,故此选项错误.故选:C.8.【解答】解:A、单项式和多项式统称为整式,故本选项叙述正确;B、数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,所以0属于单项式,故本选项叙述错误;C、单项式和多项式统称为整式,所以﹣x+y2+6是多项式也是整式,故本选项叙述正确;D、﹣x+y2+6是二次三项式,故本选项叙述正确;故选:B.9.【解答】解:(1)不是整式,是多项式,此说法错误;(2)多项式2x﹣xy+y+4的是二次四项式,此说法错误;(3)多项式3mn﹣2xy﹣5m﹣7有四项,分别为3mn,﹣2xy,﹣5m,﹣7,此说法错误;(4)2x是1次单项式,此说法错误;(5)单项式a的指数和系数均为1,此说法正确;故选:A.10.【解答】解:由题意,得x+3+2=6,解得x=1.故选:C.二.填空题(共5小题)11.【解答】解:∵多项式(m+4)x3+x n﹣1﹣5x﹣6是关于x的二次三项式,∴m+4=0,n﹣1=2,解得m=﹣4,n=3,又∵(x﹣2)2≥0,∴m+n﹣(x﹣2)2的最大值为﹣4+3﹣0=﹣1,故答案为:﹣1.12.【解答】解:在﹣0.3x2y,0,,﹣2abc2,﹣y,,﹣ab2﹣中单项式为:﹣0.3x2y,0,﹣2abc2,﹣y,共4个.故答案为:4.13.【解答】解:∵3x2y|m+1|﹣(2﹣m)y2﹣1是关于x、y的五次三项式,∴|m+1|=3,﹣(2﹣m)≠0,解得:m=﹣4.故答案为:﹣4.14.【解答】解:∵多项式3x2y﹣5xy+2中的最高次项为3x2y,其次数是3,∴多项式3x2y﹣5xy+2的次数是3.故答案为:3.15.【解答】解:∵与﹣3ab3﹣n的和为单项式,∴2m﹣5=1,n+1=3﹣n,解得:m=3,n=1.故m+n=4.故答案为:4.三.解答题(共4小题)16.【解答】解:∵(m﹣2)x n y是四次单项式,∴m﹣2≠0,n+1=4,解得:m≠2,n=3.17.【解答】解:,的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:;多项式有:;整式有:.18.【解答】解:(1)x4﹣x2﹣1的项是x4,﹣x2,﹣1,次数是4,是四次三项式;(2)﹣3a2﹣3b2+1的项是﹣3a2,﹣3b2,1,次数是2,是二次三项式;(3)﹣2x6+x5y2﹣x2y5﹣2xy3+1的项是﹣2x6,x5y2,﹣x2y5,﹣2xy3,1,次数是7,是七次五项式.19.【解答】解析(1)①、②、⑦是单项式,系数分别为﹣5.8、1,次数分别是3、4、1.(2)④、⑥是多项式,④的项分别是 a 2、﹣ab 、﹣2b 2,次数为2,⑥的项分别为2m 2n ,﹣n ,,次数为3.(3)①、②、④、⑥、⑦是整式,2.2《整式的加减》姓名: 班级: 等级:一.选择题(每小题4分,共32分) 题号 选项1.下列算式正确的是( ) A.B.2222a a a -=--C. 3243a a a =+D.a a a =-222.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.-3的次数是0D.25xyz 是三次单项式 3.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B.52n m 不是整式C.单项式-x 3y 2的系数是-1D.3x 2-y +5xy 2是二次三项式 4.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.y 的次数是0D.25xyz 是三次单项式5.如果单项式-x a+1y 3与y b x 2是同类项,那么a,b 的值分别为( ) A.a=2,b=3 B.a=1,b=2 C.a=1,b=3D.a=2,b=26.若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( )A.三次多项式B.四次多项式C.七次多项式D.四次七项式 7.当x 分别取2和-2时,多项式x 5+2x 3-5的值( ) A.互为相反数 B.互为倒数 C.相等 D.异号不等8.有一列式子,按一定规律排列成3a ,﹣9a 2,27a 3,﹣81a 4,243a 5,….当n 为正整数时,第n 个式子为( ) A .3n a n B .(﹣1)n 3n a nC .(﹣1)n+13n a nD .﹣3n ﹣1a n二.填空题(每小题4分,共32分) 9.计算:﹣a ﹣(﹣a+2a )= . 10.a 3b 2c 的系数是 ,次数是 ;11.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是 。

人教版数学七年级上册 第2章2.1 ---2.2基础练习含答案

人教版数学七年级上册 第2章2.1 ---2.2基础练习含答案

人教版数学七年级上册第2章2.1 ---2.2基础练习含答案2.1整式一.选择题1.若代数式2x|m|﹣(m+3)x+7是关于x的三次二项式,那么m的值为()A.﹣3B.3C.±3D.02.若(a﹣2)x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣1 3.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.14.下列说法正确的是()A.2x2﹣2x+35是五次三项式B.不是单项式C.的系数是D.﹣22xab2的次数是65.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣1 6.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式7.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是38.单项式﹣x2y的系数和次数分别是()A.﹣1和2B.﹣1和3C.0和2D.0和39.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个10.下列说法正确的是()A.是单项式B.﹣πx的系数为﹣1C.﹣3是单项式D.﹣27a2b的次数是10二.填空题11.多项式3x2y﹣7x4y2﹣xy4﹣10是次项式.12.把多项式5xy﹣3x3y2﹣8+x2y3按x的降幂排列为.13.单项式﹣8x2y5的系数是,次数是.14.单项式的系数是,多项式xy2﹣2xy﹣1的次数是,二次项是.15.单项式的系数是;次数是.多项式3x2y﹣xy3+5xy﹣1是次多项式.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.多项式a2x3+ax2﹣4x3+2x2+x+1是关于x的二次三项式,求a2++a的值.18.若关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,求a、b的值,并写出此三项式.19.已知关于x.y的多项式(m﹣1)x3y﹣(n+4)x3y n﹣1+6xy﹣2.(1)当m,n满足什么条件时.此多项式是四次三项式?(2)当m,n满足什么条件时.此多项式是三次三项式?参考答案与试题解析一.选择题1.【解答】解:由题意得:|m|=3,且m+3=0,解得:m=﹣3,故选:A.2.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.3.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.4.【解答】解:A、2x2﹣2x+35是二次三项式,原说法错误,故此选项不符合题意;B、不是单项式,原说法正确,故此选项符合题意;C、﹣πxy2的系数是﹣π,原说法错误,故此选项不符合题意;D、﹣22xab2的次数是4,原说法错误,故此选项不符合题意;故选:B.5.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.6.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.7.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.8.【解答】解:单项式﹣x2y的系数和次数分别是:﹣1,3.故选:B.9.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.10.【解答】解:A、是多项式,原说法错误,故此选项不符合题意;B、﹣πx的系数为﹣π,原说法错误,故此选项不符合题意;C、﹣3是单项式,原说法正确,故此选项符合题意;D、﹣27a2b的次数是3,原说法错误,故此选项不符合题意;故选:C.二.填空题(共5小题)11.【解答】解:多项式3x2y﹣7x4y2﹣xy4﹣10是六次四项式;故答案为:六、四.12.【解答】解:多项式5xy﹣3x3y2﹣8+x2y3的各项为5xy,﹣3x3y2,﹣8,x2y3,按x的降幂排列为:﹣3x3y2+x2y3﹣5xy﹣8.故答案为:﹣3x3y2+x2y3﹣5xy﹣8.13.【解答】解:根据单项式系数、次数的定义,单项式﹣8x2y5的数字因数是﹣8,所有字母的指数和为2+5=7.故答案为:﹣8,7.14.【解答】解:的系数是﹣,多项式xy2﹣2xy﹣1的次数是3,二次项是﹣2xy;故答案为:﹣,3,﹣2xy.15.【解答】解:单项式的系数是:﹣;次数是:3.多项式3x2y﹣xy3+5xy﹣1是四次多项式.故答案为:﹣,3,四.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:∵a2x3+ax2﹣4x3+2x2+x+1是关于x的二次多项式,∴,解得:a=2,∴a2++a=22++2=.18.【解答】解:∵关于x、y的多项式(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2是一个四次三项式,∴2﹣b=0,a+1=4,解得:a=3,b=2,∴此三项式为:(a﹣4)x a y+(4﹣a)x a﹣1y+(2﹣b)xy a﹣2+5a a﹣3y2=﹣x3y+x2y+5y2.19.【解答】解:(1)①依题意得:n﹣1=1,且m﹣1﹣n﹣4≠0,解得n=2,m≠7;②依题意得:m﹣1=0,n﹣1=1,解得n=2,m=1;③依题意得:n+4=0,且m﹣1≠02.2整式的加减一.选择题1.下列选项中,不是同类项的是()A.42和π3B.n3和33n3C.3xy和﹣xy D.﹣2x2y和xy2 2.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.43.下列各式中,错误的是()A.a+b=b+a B.C.a+(﹣a)=0D.0+(﹣a)=04.下列运算中,正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣3y)=﹣2x+3yC.2(a+b)=2a+b D.5x2﹣2x2=3x25.下列运算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣0.25ab+ab=06.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣47.化简2a﹣a的结果是()A.3a B.2a C.a D.﹣a8.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)9.下列各式计算正确的是()A.m+n=mn B.2m﹣(﹣3m)=5mC.3m2﹣m=2m2D.=m﹣2n10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm二.填空题11.已知单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,则m﹣n=.12.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.13.添括号:﹣x﹣1=﹣().14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若单项式2x2a+b y2与的和是单项式,则a﹣b=.三.解答题16.化简求值(﹣x2+4x﹣5)﹣2(x2+2x﹣3),其中x=2.17.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.18.先化简,再求值:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b,其中a=﹣2,b=.19.数学老师给出这样一个题目:□﹣2×△=﹣x2+2x.(1)若“□”与“△”相等,求“△”(用含有x的代数式表示)(2)若“□”为﹣3x2﹣2x+6,当x=1时,请你求出“△”的值.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A.42和π3都是数字,是同类项;B.n3和33n3所含字母相同且相同字母指数相同,是同类项;C.3xy和﹣xy所含字母相同且相同字母指数相同,是同类项;D.2x2y和xy2所含字母相同,但相同字母指数不相同,不是同类项;故选:D.2.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.3.【解答】解:A、a+b=b+a,正确,不合题意;B、,正确,不合题意;C、a+(﹣a)=0,正确,不合题意;D、0+(﹣a)=﹣a,原式计算错误,符合题意.故选:D.4.【解答】解:A、﹣(a﹣b)=﹣a+b,故此选项错误;B、﹣2(x﹣3y)=﹣2x+6y,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、5x2﹣2x2=3x2,正确.故选:D.5.【解答】解:A.2a+3a=5a,故本选项不合题意;B.3a﹣a=2a,故本选项不合题意;C.2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.6.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.7.【解答】解:2a﹣a=(2﹣1)a=a.故选:C.8.【解答】解:A、原式=﹣a﹣2,故本选项变形错误.B、原式=﹣a+,故本选项变形错误.C、原式=﹣(a﹣1),故本选项变形正确.D、原式=﹣(a﹣1),故本选项变形错误.故选:C.9.【解答】解:A、m+n,不是同类项,无法合并,故此选项错误;B、2m﹣(﹣3m)=5m,正确;C、3m2﹣m,不是同类项,无法合并,故此选项错误;D、=m,故此选项错误;故选:B.10.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.二.填空题(共5小题)11.【解答】解:∵单项式﹣a n b3与单项式﹣2a2b m﹣2是同类项,∴n=2,m﹣2=3,解得:m=5,∴m﹣n=5﹣2=3,故答案为:3.12.【解答】解:(x+2)+(y﹣2xy)=x+y﹣2xy+2∵x+y=3,xy=2,∴原式=3﹣4+2=1.故答案为:1.13.【解答】解:﹣x﹣1=﹣(x+1).故答案为:x+1.14.【解答】解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.【解答】解:由题意得:,解得:,则a﹣b=0,故答案为:0.三.解答题(共4小题)16.【解答】解:原式=﹣x2+4x﹣5﹣2x2﹣4x+6=﹣3x2+1,当x=2时,原式=﹣3×22+1=﹣12+1=﹣11.17.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.18.【解答】解:2ab2﹣[a3b+2(ab2﹣a3b)]﹣5a3b=2ab2﹣a3b﹣2(ab2﹣a3b)﹣5a3b=2ab2﹣a3b﹣2ab2+a3b﹣5a3b=﹣5a3b,当a=﹣2,b=时,原式=﹣5×(﹣2)3×=8.19.【解答】解:(1)由题意得:□﹣2×△=﹣x2+2x,∴﹣△=﹣x2+2x,∴△=x2﹣2x。

人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案

人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案

2.1整式一.选择题1.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3B.2,3C.3,2D.3,﹣2 2.单项式﹣4πab2的次数是()A.﹣4B.2C.3D.4 3.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1C.6,2D.﹣6,2 4.下列说法,正确的是()A.23x2是五次单项式B.2πR2的系数是2C.0是单项式D.a3b的系数是05.下列关于多项式x2+3x﹣2的说法,其中错误的是()A.是二次三项式B.最高次项的系数是1C.一次项系数是3D.常数项是26.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.下列说法正确的是()A.多项式ab+c是二次三项式B.5不是单项式C.单项式﹣x3y2z的系数是﹣1,次数是6D.多项式2x2+3y的次数是38.在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个B.4个C.3个D.2个9.下列说法正确的是()A.﹣1不是单项式B.2πr3+的次数是3C.的次数是3D.的系数是10.下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是1,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为二.填空题11.多项式﹣x3y2+xy﹣2的常数项是,它的项数是,它的次数是.12.单项式﹣x2y的系数是;多项式2x2y﹣xy的次数是.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.下列代数式:﹣6x2y、、﹣、a、、、﹣x2+2x﹣1中,单项式有个.15.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三.解答题16.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.17.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.2.【解答】解:单项式﹣4πab2的次数是3.故选:C.3.【解答】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.4.【解答】解:A、23x2是二次单项式,故A选项错误;B、2πR2的系数是2π,故B选项错误;C、0是单项式,故C选项正确;D、a3b的系数是1,故D选项错误.故选:C.5.【解答】解:A、多项式x2+3x﹣2是二次三项式,正确,不合题意;B、多项式x2+3x﹣2的最高次项的系数是1,正确,不合题意;C、多项式x2+3x﹣2的一次项系数是3,正确,不合题意;D、多项式x2+3x﹣2的常数项是﹣2,原式错误,符合题意.故选:D.6.【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.【解答】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、单项式﹣x3y2z的系数是﹣1,次数是6,故此选项正确;D、多项式2x2+3y的次数是2,故此选项错误.故选:C.8.【解答】解:式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式有:0,﹣2a,﹣3x2y3,共3个.故选:C.9.【解答】解:A、﹣1是单项式,错误;B、2πr3+的次数是4,错误;C、的次数是3,正确;D、﹣的系数是﹣,错误;故选:C.10.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,故这个选项错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,故这个选项错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,故这个选项错误;D、单项式﹣的次数是2,系数为﹣,符合单项式系数、次数的定义,故这个选项正确;故选:D.二.填空题(共5小题)11.【解答】解:多项式﹣x3y2+xy﹣2的常数项是:﹣2,它的项数是:3,它的次数是:5.故答案为:﹣2,3,5.12.【解答】解:单项式﹣x2y的系数是:﹣;多项式2x2y﹣xy的次数是:3.故答案为:﹣,3.13.【解答】解:单项式的系数是﹣,次数是4,则m=﹣,n=4,所以:2mn=2×(﹣)×4=﹣,故答案为:﹣.14.【解答】解:根据单项式的定义,可以得到:﹣6x2y、、﹣、a是单项式,共4个.故答案为:4.15.【解答】解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三.解答题(共4小题)16.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.17.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列运算正确的是()A.3a2+a3=a5B.3a2b﹣5ab2=﹣2abC.3ab﹣ab=2D.3a+2a=5a2.若﹣4x2y和23x m y n是同类项,则m,n的值分别是()A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0 3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.15.下列计算中,正确的是()A.a3﹣a2=a B.5a﹣7a=﹣2C.2a3+3a2=5a5D.a2b﹣ba2=﹣a2b6.下列运算正确的是()A.5a2﹣3a2=2B.x2+x2=x4C.3a+2b=5ab D.7ab﹣6ba=ab 7.下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a+(b﹣c﹣d)=a﹣b+c+dC.a﹣(b﹣c﹣d)=a﹣b+c+dD.2a﹣[2a﹣(﹣2a)]=08.若单项式与﹣y2n x3的和仍是单项式,则(mn)2021的值为()A.﹣1B.C.D.19.已知与3xy4+b的和是单项式,那么a、b的值分别是()A.B.C.D.10.已知2x2y3a与﹣4x2a y1+b是同类项,则b a的值为()A.2B.﹣2C.1D.﹣1二.填空题11.若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.12.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.单项式x﹣|a﹣1|y与是同类项,则b a=.15.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.三.解答题16.合并同类项:5m+2n﹣m﹣3n.17.化简(1)5xy﹣2y2﹣3xy﹣4y2.(2)2(2a﹣3b)﹣3(2b﹣3a).18.多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.19.小红做一道题:已知两个多项式A,B,其中A=y2+ay﹣1,计算B﹣2A她误将B﹣2A 写成2B﹣A,结果答案是3y2+5ay﹣4y﹣1.(1)求多项式B;(2)若a为常数,要使得B中不含一次项,则a的值为多少?参考答案与试题解析一.选择题1.【解答】解:3a2与a3、3a2b与5ab2都不是同类项,不能合并,故选项A、B错误;3ab﹣ab=2≠2ab,故选项C错误;3a+2a=5a,合并正确.故选:D.2.【解答】解:∵﹣4x2y和23x m y n是同类项,∴m=2,n=1,故选:A.3.【解答】解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.【解答】解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.5.【解答】解:A、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;B、5a﹣7a=﹣2a,故本选项不合题意;C、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意.故选:D.6.【解答】解:A、5a2﹣3a2=2a2,故本选项不合题意;B、x2+x2=2x2,故本选项不合题意;C、3a和2b不是同类项,所以不能合并,故本选项不合题意;D、7ab﹣6ba=ab,故本选项符合题意.故选:D.7.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c;B、a+(b﹣c﹣d)=a+b﹣c﹣d;C、a﹣(b﹣c﹣d)=a﹣b+c+d;D、2a﹣[2a﹣(﹣2a)]=2a﹣(2a+2a)=2a﹣2a﹣2a=﹣2a;故选:C.8.【解答】解:依题意得:,解得:,∴(mn)2021=()2021=﹣1.故选:A.9.【解答】解:∵与3xy4+b的和是单项式,∴与3xy4+b是同类项.∴.∴a=2,b=﹣1.故选:B.10.【解答】解:根据题意可得:,解得:,所以b a的值=21=2,故选:A.二.填空题11.【解答】解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.12.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.13.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=11=1,故答案为:1.15.【解答】解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.三.解答题16.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.17.【解答】解:(1)原式=5xy﹣3xy﹣4y2﹣2y2=2xy﹣6y2.(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.18.【解答】解:(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3+mnx2+2nx+8n=3x4+(3m﹣n)x3+(6+mn)x2+(2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,2n﹣24=0,解得:n=12,m=4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3+4x2+2x﹣8)﹣2(3x﹣12)=3x3+12x2+6x﹣24﹣6x+24=3x3+12x2.19.【解答】解:(1)∵2B﹣A=3y2+5ay﹣4y﹣1,A=y2+ay﹣1,∴2B=3y2+5ay﹣4y﹣1+y2+ay﹣1=4y2+6ay﹣4y﹣2,∴B=2y2+3ay﹣2y﹣1。

人教版七年级上 整式的加减整章同步练习和测试卷

人教版七年级上 整式的加减整章同步练习和测试卷

2.1.1单项式◆随堂检测1、 用代数式表示:(1)边长为a 的正方形周长为 ,面积为 .(2)设n 为整数,则奇数可表示为 ,偶数可表示为 .(3)拿158元钱去买钢笔,买了单价为5元的钢笔x 支,则剩下的钱为 元.(4)某人骑自行车m 小时行驶了48千米,则平均每小时的车速是 千米/时.2、用单项式填空,并指出它们的系数和次数.(1)每包书有10册,n 包书有 册.(2)一个长方体的长宽高分别是y x x ,,,则它的体积是 .(3)一台电脑原价a 元,现在按8折出售,这台电脑现在的售价为 .(4)半径为r 的圆的面积是 .3、填空:(1)单项式y x 22的的系数是 ,次数是 ;(2)单项式232a π-的系数是 ,次数是 ; (3)单项式3π的系数是 ,次数是 ; (4)单项式8的系数是 ,次数是 .◆典例分析我们知道;)(2024828642;1223)62(642;622)42(42=⨯+=+++=⨯+=++=⨯+=+ n 2642++++ 的结果会是多少呢? 分析:对于规律题,首先要观察后一个等式与前一个等式不一样的地方是什么,其实这个过程就是发现规律的过程,再者就是准确地表示出规律.解:n 2642++++ )1(2)22(+=⨯+=n n n n ◆课下作业●拓展提高1、用代数式表示:(1)如果a 个同学在2h 内共搬了b 块砖,则平均每人每小时搬 块砖.(2)产量由a 千克增长10%,就达到 千克.(3)1千克绿豆发芽后重量增加6倍,m 千克的绿豆可发成 千克绿豆.(4)每件x 元的上衣,降价20%后售价为 .(5)葡萄每千克p 元,买10千克以上按9折优惠,买13千克应支付 元钱.2、写出一个单项式,并写出它的系数和次数分别是什么.3、给代数式b a 32+赋予一定的实际意义为 .4、下列代数式的书写中,正确的是( )A 、211⨯aB 、a ÷3C 、ab 411 D 、)(2n m +5、某工厂第一个月生产汽车a 台,平均每月的增长率是x%.(1)用代数式表示第3个月生产汽车的辆数;(2)当a=10000,x=5时,求前三个月生产汽车的总辆数.6、写出下列各单项式的系数和次数: (1)y x 243-; (2)532bc a .●体验中招1、(2009年,广州)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_____,第n 个“广”字中的棋子个数是____2、(2009年,武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 ___________ 个小圆.参考答案第1个图形 第2个图形 第3个图形 第4个图形…随堂检测1、(1)mx n n a a 48)4(;5158)3(;2,12)2(;,42-+ 2、;,次数是系数是110,10)1(n ;,次数是系数是)(31,22y x .2,)4(18.08.032,次数是系数是;,次数是元,系数是)(ππr a3、(1)2,3;(2)232,π-;(3)3,3ππ;(4)8,8. 拓展提高1、(1);2a b (2)%);101(+a (3)m 7;(4);%80x ⋅(5)p 13109⋅. 2、略,答案不唯一.3、略,答案不唯一.4、D. 211⨯a 应该写成a 23,a ÷3应写成a 3;ab 411应写出ab 45 . 5、(1)2%)1(x a +; (2)当5,10000==x a 时,前三个月的总产量是 =+⨯++⨯+2%)51(10000%)51(100001000031525(台)6、(1)系数是43-,次数是3;(2)系数是53 ,次数是4. 体验中招1、1+2×7=15(个),1+2(n+2).2、4+6×7=46(个)2.1.2 多项式◆随堂检测1、 下列代数式中,哪些是单项式,哪些是多项式? 2,3121,1238,,0,32,32,1,152322y x b a xy y x m b a a bc y x -+------π 2、多项式623522233-++-b b a b a a 的最高次项是 ,四次项系数是 ,常数项是 .3、多项式325256--+-z y x y x x 是 次 项式,每一项的系数分别是 , 六次项是 .4、列式表示:(1)比x 小2的数是 ;(2)x 的四分之三减y 的差是 ;(3)设礼堂里座位的行数为a ,并且行数是每行座位数的32,礼堂里共有座位 个; (4)一钢管的外径为R,内径为r ,长为a ,则该钢管的体积为 .◆典例分析若8)1(2++--x kx x k k 是关于x 的一次多项式,求k 的值.分析:题中给出的多项式从形式上看是二次多项式,但题中说明的是一次多项式,这就要求二次项的系数必须为零,即0)1(=-k k ,求出k 值,并检验所求k 值是否满足题意.解:由题意得,0)1(=-k k ,∴10==k k 或当0=k 时,原多项式=8+x ,是一次多项式;当1=k 时,原多项式=8,不是一次多项式.∴0=k◆课下作业●拓展提高1、若a,b 表示两个有理数,则它们的平方和可表示为 ,和的平方可表示为 ,倒数的和可表示为 ,差的相反数可表示为 .2、一个两位数,个位数字是a,十位数字式b ,则这个两位数可表示为 .3、已知单项式y x 26的次数等于单项式22y x m -的次数,则=m .4、若多项式2)1(3)1(234-+-+--x b x x a x 不含3x 和x 项,则a= ,b= .5、四次单项式y xn m m 3)(--的系数为3-,求m,n 的值.6、m 为何值时22)2(y x m m +33xy -时六次二项式?●体验中招1、(2009年,山西)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .2、(2009年,荆门)如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).参考答案随堂检测1、 单项式有:;,0,1,152m y x --π 多项式有:.2,3121,1238,32232y x b a xy y x b a -+---- 2、6,2,3523--b b a 和 3、八次四项式,2-、1、﹣1、﹣3,y x x 562和-4、)(;23;43;222r R a a a y x x -⋅--πBD A (P )C(1) (2) (3) …… ……拓展提高1、a b b a b a b a -+++,11,)(,2222、a b +103、由123=+=m m 得,4、由⎩⎨⎧=+=-0101b a 得,⎩⎨⎧-==11b a5、由题意得⎩⎨⎧==∴⎩⎨⎧-=-=+-963413n m n m m6、由题意得224026222=∴⎩⎨⎧-≠=∴⎩⎨⎧≠+=+m m m m m体验中招1、n n ++)1(22、由于150242009 =÷,所以在B 点;34+n2.2.1整式的加减◆随堂检测1、下列是同类项的是( )A 、223xy y x -与B 、c ab bc a 2222-与C 、yx xy 54与 D、222与x2、填空:(1)=-t t 3210( )t ; (2)=+22155a a ()2a ; (3)=-2263mn mn ( )2mn .3、下列各题的合并同类项正确吗?若不正确,请说明理由.(1)xy y x 752=+; (2)56=-ab ab ;(3)y x yx y x 33398=-; (4)422853x x x =+.4、若单项式2363y x y x m n --与是同类项,则n m 32+的值是 .5、合并同类项(1)228.010x x -; (2)xy xy xy 32-+-;(3)14325--+-a b b a ; (4)x x x x x 365345322++--+.◆典例分析求多项式22543222-+-++-x x x x x 的值,其中31=x 分析:在求多项式的值时,先将多项式中的同类项合并,然后再代入求值,这样可以简化运算.但部分同学会直接代入求值,当未知数的值较复杂时,计算量会非常大.我们习惯上“先化简,再求值”. 解:22543222-+-++-x x x x x2)54()213(2--+++-=x x2--=x当31=x 时,原式=37231-=-- ◆课下作业●拓展提高1、 合并同类项(1)5433222-+--xy y x xy y x ; (2)ab b a ab b a ab 634864622222--+++-;(3))(4)(2)()(522b a b a b a b a +++-+-+.2、若两个单项式6253243b a b a n m -与的和仍为单项式,则m= , n= .3、设m 为正整数,n m n m b a b a 44218++-与是同类项,则满足条件的m 的值有( )个 A 、1个 B 、2个 C 、3个 D 、无数个4、有一列单项式,.,20,19,,4,3,2,2019432 x x x x x x ---(1)根据你发现的规律,写出第100个,第101个,第102个单项式;(2)你能进一步写出第n 个单项式吗?5、求代数式的值:222232253b ab a b ab a ---+-,其中3,21-==b a●体验中招1、(2009年,烟台)若n m y x y x 3253与+的和是单项式,则=n m .(原题中式求m n ,现改为n m )2、(2009年,长春)计算:=-a a 25 .参考答案随堂检测1、 C2、 3,20,22--3、 (1)不正确,不是同类项不能合并;(2)不正确,正确答案是ab 5;(3)不正确,正确答案是y x 3-;(4)不正确,正确答案是28x .4、由题意得2732,5,6=+∴==n m n m5、(1)原式=22.9x ;(2)原式=xy xy 2)321(-=-+-;(3)原式=11)32()45(+-=-+-+-b a b a ;(4)原式=42264)53()35(62323+-+=+-+-+x x x x x x拓展提高1、(1)原式=55)43()32(22-+-=-+-+-xy y x xy y x(2)原式=3838)44()66(3322+=+++-+-ab ab b a ab(3)原式=)(3)(2))(41())(35(22b a b a b a b a +++-=++-++-2、5,3==n m3、D4、(1)第100个,第101个,第102个单项式分别是102101100102,101,100x x x -(2)第n 个单项式是n n nx ⋅-)1(5、222232253b ab a b ab a ---+- 22226)32()15()23(bab a b ab a --=-+--+-= 当3,21-==b a 时,原式=41)3()3(216)21(22=---⨯⨯- 体验中招 1、 由题意得,4)2(,2,22=-==-=n m n m 则2、 3a2.2.2整式的加减◆随堂检测1、 判断正误:(1)z y x z y x -+-=-+-2)2( ( )(2)z y x z y x 36)33(2-+-=+-- ( )(3)c b a c b a 22)(2+-=+-+ ( )2、去括号 :(1))(d c b a +--+; (2))42(32z y x -+;(3))4(215c b a --; (4))]3(2[32z y x y x ----.3、计算: (1))54()23(y x y x ++-; (2))102()65(b a b a ---;(3))5(32ab ab ab ---; (4))()3(42222mn n m mn n m ---.4、一个多项式加上1452-+x x 得2862+-x x ,则这个多项式是 . ◆典例分析计算:)21(6)3212(22+--+-x x x x 分析:本题有两个地方易错:① 6和括号里的每一项都要相乘,部分学生往往只和第一项相乘;②去括号时,不知道什么时候要变号什么时候不变号,这就说明去括号的法则没有理解.解:原式=)21(6)3212(22+--+-x x x x 27383663212)366(321222222--=-+-+-=+--+-=x x x x x x x x x x◆课下作业●拓展提高1、计算:(1))(21)(312222xy y x x x xy y x ++---; (2))2(2)2(232222b a a b b a +---+-;(3))22(3)642(3b c c b a a --+--- (4)]2)34(7[322x x x x ----.2、若多项式18223-+-x x x 与多项式352323+-+x mx x 相加后不含二次项,则m= . 3、(1)已知:2,622=-=-b ab ab a ,求2222,2b a b ab a -+-的值.(2)已知6063)2(5,522-+--=-x y x y y x 求的值.4、已知22228,8y x xy B xy y x A +-=+-=,当31,21-=-=y x 时,求B A +2的值.5、求代数式中的值:{})]24(3[2522222b a ab ab b a ab ----,其中5.0,3=-=b a6、若)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关,试求a,b 的值.●体验中招1、(2009年,太原)已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( )A 、15--xB 、15+xC 、113--xD 、113+x 2、(2009年,江西)化简)12(2-+-a a 的结果是( )A 、14--aB 、14-aC 、1D 、1-参考答案随堂检测1、 错,错,对2、 (1)原式=d c b a +--; (2)原式=z y x 1262-+; (3)原式=c b a 2215+-;(4)原式=z y x y x z y x y x -++-=+---323232)32( 3、(1)原式=y x y x y x 375423+=++- (2)原式=b a b a b a 4310265+=+-- (3)原式=ab ab ab ab 4532=+-(4)原式=2222412mn n m mn n m +--22311mn n m -= 4、32132++-x x 拓展提高1、(1)原式=xy x y x xy y x x x xy y x 656561212121313131222222---=----- (2)原式=b a b a a b b a -=-+-+-3422432222(3)原式=b a b c c b a a 2666423-=--++-(4)原式335)233(3)2347(322222--=-+-=-+--=x x x x x x x x x 2、由题意得,24)82(5)3523(18223323+--+=+-++-+-x x m x x mx x x x x ∵多项式24)82(523+--+x x m x 不含2x 项 ∴4082=∴=-m m3、(1)∵2,622=-=-b ab ab a∴8)()(,4)()(2222=-+-=---b ab ab a b ab ab a ∴8,422222=-=+-b a b ab a8060535560)2(3)2(56063)2(5,52)2(222=-⨯+⨯=--+-=-+--∴=-y x y x x y x y y x 4、∵22228,8y x xy B xy y x A +-=+-=∴B A +22222222481622y xy x y x xy xy y x -+=+-++-=当31,21-=-=y x 时,原式=36149)31()31()21(24)21(22=---⨯-⨯+-. 5、{})]24(3[2522222b a ab ab b a ab ----2222222245)]243(2[5ab ab ab b a ab ab b a ab =-=+---=当5.0,3=-=b a 时,原式=35.0)3(42-=⨯-⨯ 6、∵)1532()2(22-+--+-+y x bx b y ax x16)3()22(15322222++-++-=+-+-+-+=b y x a x b y x bx b y ax x又)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关∴⎩⎨⎧=-=∴⎩⎨⎧=+=-1303022b a a b 体验中招1、A2、D第二章 整式的加减综合测试题一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .3a B .-51 C .0 D .a3 2.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .21x -3 D .21x+3 3.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=24.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( )A .3222331a ab a b --+B .322231a ab a b +-+C .322231a ab a b +-+D .322231a ab a b --+5.从25a b +减去44a b -的一半,应当得到( ). A. 4a b - B. b a - C. a b -9 D. 7b 6.减去-3m 等于5m 2-3m -5的式子是( )A .5(m 2-1)B .5m 2-6m -5C .5(m 2+1)D .-(5m 2+6m -5)7.在排成每行七天的日历表中取下一个33⨯方块.若所有日期数之和为189,则n 的值为( ) A .21 B .11 C .15 D .9 8.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A .7xy - B .7xy C .xy - D .xy二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -2y的值是 . 11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来.要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________. 13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.14.用语言说出式子a+b 2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________.三、解答题(共28分)17.(6分)化简:(1))343(4232222x y xy y xy x +---+;(2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n •个正方形组成.n=4n=3n=2n=1(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________. 19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式332332376336310a a b a b a a b a b a -+++--+2010的值.”小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b,不给出,a b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.(8分)一个三角形一边长为a+b,另一边长比这条边大•b,•第三边长比这条边小a—b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;B 卷1.(7分)已知x 2—xy=21,xy -y 2=—12,分别求式子x 2-y 2与x 2—2xy+y 2的值. 2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为)237(<<a a ,分别用代数式表示同一时刻的巴黎时间和东京时间;(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )参考答案一、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.A 8.C 二、填空题9.2,π- 10.3 11.x 3—5x 2—(4x —9) 12.3(x —y ) 13.3a+2b 14.a 与b 的平方的和 15.m=a+n —1 16.3x 2+4x —6 三、解答题17.(1)原式=xy x y xy y xy x -=-+--+2222343423; (2)原式=x x x x x x 3561510204222--=---. 18.(1)7;(2)10;(3)13;(4)3n+119.∵332332376336310a a b a b a a b a b a -+++--+2010=332(731)(66)(33)a a b a b +-+-++-+2010=2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确.20. (1) 三角形的周长为:b a b a b a b b a b a 52)()()(+=+-++++++;(2)当a =5,b =3时,周长为:25. 四、拓广探索 21.(1)—100x 100;(2)(—1)n+1x n . 22.0,4,8,12,4(n —1) (1)56;(2)4(n —1)=152,n=39. 2.1-2.2测试B 参考答案1.x 2-y 2= (x 2-xy )+(xy -y 2)=21—12=9,x2-2xy+y2= (x2-xy)—(xy-y2)=21+12=33.2.(1)巴黎时间为a+5,东京时间为a+1;(2) 巴黎时间为3:08,东京时间为23:08.3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,从而第(3)种方法绳子最长,第(2)种方法绳子最短。

人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)

人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)

整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。

人教版数学七年级上册2.1.2《单项式》教学设计

人教版数学七年级上册2.1.2《单项式》教学设计

人教版数学七年级上册2.1.2《单项式》教学设计一. 教材分析人教版数学七年级上册2.1.2《单项式》是学生在学习了有理数、分数、整式等知识的基础上,进一步学习单项式的定义、单项式的系数、次数等概念。

本节课的内容对于学生理解和掌握整式的基本概念,以及后续学习多项式、分式等知识具有重要意义。

二. 学情分析学生在进入七年级之前,已经学习了有理数、分数等知识,具备了一定的逻辑思维能力和运算能力。

但是,对于单项式这一概念,学生可能较为陌生,需要通过具体的例子和练习来理解和掌握。

三. 教学目标1.理解单项式的定义,掌握单项式的系数、次数的确定方法。

2.能够正确判断一个式子是否为单项式。

3.能够运用单项式的知识解决实际问题。

四. 教学重难点1.单项式的定义及其系数、次数的确定。

2.判断一个式子是否为单项式。

五. 教学方法采用讲授法、案例分析法、练习法、小组合作学习法等,引导学生通过自主学习、合作交流,掌握单项式的相关知识。

六. 教学准备1.PPT课件2.小组合作学习指南七. 教学过程1.导入(5分钟)通过一个实际问题引入单项式的概念,例如:某商店进行打折活动,原价为1000元,打8折后的价格是多少?引导学生思考如何用数学式子表示这个问题。

2.呈现(15分钟)讲解单项式的定义,通过PPT展示单项式的例子,让学生直观地理解单项式的概念。

同时,讲解如何确定单项式的系数和次数。

3.操练(15分钟)让学生独立完成一些判断单项式和确定单项式系数、次数的练习题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过小组合作学习,让学生互相讨论、交流,共同解决一些关于单项式的难题。

教师参与小组讨论,给予指导。

5.拓展(5分钟)引导学生思考单项式在实际生活中的应用,例如价格折扣、比赛得分等,让学生体会数学与生活的紧密联系。

6.小结(5分钟)总结本节课所学内容,强调单项式的定义及其系数、次数的确定方法。

7.家庭作业(5分钟)布置一些关于单项式的练习题,让学生课后巩固所学知识。

七年级数学上册《单项式》同步练习题(附答案解析)

七年级数学上册《单项式》同步练习题(附答案解析)

七年级数学上册《单项式》同步练习题(附答案解析)一、选择题1、下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0. ②ab−12是单项式.③−3xy4的系数为3,次数为1.④6πx 3的系数为6,次数为4. A .0B .1C .3D .42、下列语句中,错误的( ) A .数字0也是单项式 B .单项式a -的系数与次数都是1 C .12xy 是二次单项式D .23ab -的系数是−23 3、下列代数式中,为单项式的是( ) A .5xB .aC .a+b3aD .x 2+y 24、下列各式a 2b 2,13x −1,−25,a+b 2,a 2−2ab +b 2中单项式的个数有( )A .4个B .3个C .2个D .1个5、下列代数式中,全是单项式的一组是( ) A .1a ,2,3ab B .2,a ,12abC .2a b-,1,π D .x +y ,-1,13(x -y)6、下列说法正确的是( ) A .3πxy 的系数是3B .3πxy 的次数是3C .223xy -的系数是−23D .223xy -的次数是27、下列说法中,正确的是( ) A .0.3不是单项式 B .单项式3x 3y 的次数是3 C .单项式﹣2πx 2y 3的系数是﹣2D .4次单项式2234x y -的系数是﹣348、已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2x2y B.3x2q C.2xy3D.−2xy2二、填空题9、单项式−2a2b3的系数是________,次数是_______.10、在1x ,12π,−5,a,−2x+y2中,是单项式的为_______.11、写出一个系数为−12,次数为3的单项式_______.12、单项式232x yz是______次单项式,系数是______,若(a−2)x2y|a|+1是x,y五次单项式,则a的值为_______.13、下列式子①-1,②−23a2,③16x2y,④−ab2π,⑤abc,⑥3a+b,⑦0,⑧m中,是单项式的是____________________ .(只填序号)14、单项式−ab33的系数为x,次数为y,则xy的值为________.15、若﹣(a﹣1)x2y b+1是关于字母x,y的五次单项式,且系数是﹣12,则a=_____,b=_____.16、填表:三、简答题17、一个含有字母x,y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.18、如果|a+1|+(b-2)2=0,那么单项式-x a+b y b-a的次数是多少?19、观察下列单项式:−x,3x2,−5x3,7x4,…,−37x19,39x20,…写出第n个单项式.为解决这个问题,特提供下面的解题思路:通过观察单项式的结构特征,分三步确定:先确定符号,再确定系数的绝对值,最后确定次数.(1)这组单项式系数的符号规律是________系数的绝对值规律是________;(2)这组单项式的次数的规律是________;第六个单项式是________;(3)根据上面的归纳,可以猜想第n个单项式是________;(4)请你根据猜想,写出第2019个单项式.20、分别写出下列各项的系数与次数(1)2x3;(2)−x2y;xy;(3)35x2y3.(4)−81521、观察下列单项式:−x,3x2,−5x3,7x4,⋯−37x19,39x20,…(1)根据规律,写出第99个单项式,第100个单项式,第n个单项式;(2)当x=1时,求出上述题中第1个到第100个单项式和的值.(3)当x=1时,直接写出上述题中第1个到第n个单项式和的值.(提示:n要分奇数,偶数讨论)参考答案与解析一、选择题1、A【分析】根据单项式的定义以及单项式的系数、次数定义判断即可.【详解】解:①单项式a的系数为1,次数为1,故本项错误;②ab−12不是单项式,故本项错误;③−3xy4的系数为−34,次数为2,故本项错误;④6πx3的系数为6π,次数为3,故本项错误.所以正确的个数是0.故选:A.【点睛】本题考查了单项式的系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.2、B【分析】根据单项式系数、次数的定义来求解;单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数;单独一个数字也是单项式.【详解】A:数字0也是单项式是正确的,不符合题意;B:单项式-a的系数是-1,次数都是1,不正确的,符合题意;C:12xy是二次单项式,不符合题意;D:−2ab3的系数是−23是正确的,不符合题意;故选:B.【点睛】此题考查单项式,解题关键在于掌握其定义.3、B【分析】根据单项式的定义判断即可得出答案.【详解】解:A. 5x为分式不是整式,错误;B. a是单项式,正确;C. a+b3a是分式,错误;D. x2+y2是多项式,错误;故答案选B.【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,需要特别注意的是,单独的一个数字或一个字母也是单项式.4、C【分析】根据单项式的定义进行解答即可.【详解】解:a2b2,是数与字母的积,故是单项式;1 3x−1,a+b2,a2−2ab+b2是单项式的和,故是多项式;-25是单独的一个数,故是单项式.故共有2个.故选:C.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.5、B【分析】根据单项式的定义,从独数,独字母,数与字母三种形式去判断即可.【详解】∵1a 不是单项式,2是单项式,3ab是单项式 ∴选项A 不符合题意;∵12ab 是单项式,2是单项式,a 是单项式, ∴选项B 符合题意; ∵2a b-是多项式,1是单项式,π是单项式, ∴选项C 不符合题意;∵x +y 是多项式,-1是单项式,13(x -y)是多项式, ∴选项D 不符合题意; 故选B .【点睛】本题考查了单项式的定义,熟练掌握单独的数,单独的字母,数与字母的积是单项式的三种基本表现形式是解题的关键. 6、C【分析】分析各选项中的系数或者次数,即可得出正确选项 【详解】A. 3πxy 的系数是3π,π是数字,不符合题意, B. 3πxy 的次数是2,x,y 指数都为1,不符合题意C. 223xy -的系数是−23,符合题意 D. 223xy -的次数是3,不符合题意故选C【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键. 7、D【分析】根据单项式的有关概念即可求出答案. 【详解】解:A 、0.3是单项式,故此选项错误;B 、单项式3x 3y 的次数是4,故此选项错误;C 、单项式﹣2πx 2y 3的系数是﹣2π,故此选项错误;D 、4次单项式2234x y -的系数是﹣34,故此选项正确.故选:D .【点睛】本题考查单项式的相关知识,是基础题,熟练掌握单项式的相关知识是解题关键.8、A【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:A、2x2y系数是2,次数是3,故本选项符合题意;B、3x2q系数是3,次数是3,故本选项不符合题意;C、2xy3系数是2,次数是4,故本选项不符合题意;D、−2xy2系数是-2,次数是3,故本选项不符合题意;故选:A.【点睛】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.二、填空题9、−233【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】解:单项式−2a2b3的系数是−23,次数是3,故答案为:−23,3.【点睛】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10、12π,−5,a【分析】根据单项式的定义逐个判断即可.【详解】解:在1x ,12π,−5,a,−2x+y2中,单项式有:12π,−5,a,故答案为:12π,−5,a.【点睛】本题考查了单项式,注意:表示数或数与字母的积,叫单项式.11、−12x3【分析】根据单项式的系数次数,可得答案【详解】解:系数为−12,次数为3的单项式为−12x 3, 故答案为:−12x 3.【点睛】本题考查了单项式,熟练掌握单项式的系数、次数的定义是解题的关键. 12、六 −12 -2【分析】根据单项式及其系数和次数的定义求解即可.【详解】解:单项式232x yz 是六次单项式,系数是−12,∵(a −2)x 2y |a |+1是x ,y 五次单项式, ∴|a |+1=3且a -2≠0, 解得:a =-2,故答案为:六,−12,-2.【点睛】此题主要考查了单项式,关键是掌握单项式相关定义. 13、①②③④⑦⑧【分析】根据单项式的定义进行判断即可.【详解】解:⑤中分母上含有字母,不是单项式;⑥是多项式,不是单项式; 而①②③④⑦⑧均是单项式, 故答案为:①②③④⑦⑧.【点睛】本题考查了单项式的定义:由任意个字母和数字的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式). 14、−43【分析】利用单项式的次数与系数的定义得出答案. 【详解】解:∵单项式−ab 33的系数为−13,次数为1+3=4,∴x=−13,y=4, ∴xy=−13×4=−43, 故答案为:−43.【点睛】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键. 15、32 2.【分析】直接根据单项式的概念即可求解.【详解】解:∵﹣(a ﹣1)x 2y b +1是关于字母x ,y 的五次单项式,且系数是﹣12, ∴﹣(a ﹣1)=﹣12,2+b +1=5,∴a =32,b =2. 故答案为:32,2.【点睛】此题主要考查多项式的概念,正确理解概念是解题关键. 16、见解析【分析】根据单项式系数和次数的概念求解.三、简答题 17、4x 3y 2 .【解析】首先根据题目的条件设出单项式,然后代入x 、y 的值求解即可. 【详解】解答:∵ 这一个含有字母x ,y 的五次单项式,x 的指数为3, ∴ y 的指数为2,∴ 设这个单项式为:ax 3y 2 ,∵ 当x=2,y=-1时,这个单项式的值是32, ∴ 8a=32 解得:a=4.故这个单项式为:4x 3y 2 .【点睛】本题考查了单项式的知识,了解单项式的次数和系数是解决本题的关键. 18、4【详解】试题分析:先根据非负数之和为0的特点求得a ,b 的值,再求算单项的指数和,求单项式的次数.试题解析:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是4.点睛:此题主要考查绝对值的性质和单项式次数的求法,要掌握单项式的次数是所有字母的指数的和.19、(1)(-1)n ,2n-1;(2)从1开始的连续自然数,11x 6;(3)(-1)n (2n-1)x n ;(4)-4037x 2019 【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律; (2)根据已知数据次数得出变化规律; (3)根据(1)(2)中数据规律得出即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n-1. 故答案为:(-1)n ,2n-1;(2)这组单项式的次数的规律是从1开始的连续自然数.第6个单项式为:11x 6 故答案为:从1开始的连续自然数,11x 6. (3)第n 个单项式是:(-1)n (2n-1)x n . 故答案为:(-1)n (2n-1)x n ; (4)第2019个单项式是-4037x 2019. 故答案为:-4037x 2019.【点睛】此题主要考查了单项式变化规律,得出次数与系数的变化规律是解题关键. 20、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:−815,次数:5【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可. 【详解】解:(1)2x 3的系数:2,次数:3; (2)−x 2y 系数:-1,次数:3; (3)35xy 系数:35,次数:2; (4)−815x 2y 3系数:−815,次数:5.【点睛】本题只要考查单项式的系数和次数的知识,根据其定义作答即可.21、(1)−197x99,199x100,(−1)n(2n−1)x n;(2)100;(3)n为奇数时,值为-n;n为偶数时,值为n【分析】(1)观察总结出规律:单项式的系数-1,3,-5,7,…,从1开始的连续的奇数,奇数项为负,偶数项为正,次数的规律是从1开始的连续的整数,从而可得结果;(2)将x=1代入可得−1+3−5+7+...+199,计算即可;(3)分n为奇数和n为偶数,分别将x=1代入计算即可.【详解】解:(1)由题目找出规律,可得第n个单项式为(−1)n(2n−1)x n,当n=99时,(−1)99×(2×99−1)×x99=−197x99,当n=100时,(−1)100×(2×100−1)×x100=199x100;(2)当x=1时,第1个到第100个单项式的和为:−1+3−5+7+...+199=2+2+...+2=2×50=100;(3)当n为奇数时,第1个到第n个单项式的和为:−1+3−5+7−...−(2n−1)−(2n−1)=2×n−12=-n;当n为偶数时,第1个到第n个单项式的和为:−1+3−5+7−...+(2n−1)=2×n2=n【点睛】本题考查单项式的规律,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.第11页共11页。

人教版七年级上册数学同步练习2.1 第2课时 单项式

人教版七年级上册数学同步练习2.1 第2课时 单项式

第一章整式的加减2.1 整式第2课时单项式1.下列说法正确的是().A.a的系数是0 B.1y是一次单项式C.-5x的系数是5 D.0是单项式2.下列单项式书写不正确的有().①312a2b;②2x1y2;③-32x2;④-1a2b.A.1个B.2个C.3个D.4个3.“比a的32大1的数”用式子表示是().A.32a+1 B.23a+1 C.52a D.32a-14.下列式子表示不正确的是().A.m与5的积的平方记为5m2 B.a、b的平方差是a2-b2C.比m除以n的商小5的数是mn-5D.加上a等于b的数是b-a5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了()亿元.A.a‰ B.2a‰C.3a‰ D.4a‰6.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于().A.3366...4444a a a acm B cm C cm D-+-+cm7.填写下表58.若x2y n-1是五次单项式,则n=_______.9.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元.10.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.11.小明在银行存a元钱,银行的月利率为0.25%,利息税为20%,6个月后小明可得利息________元.12.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n天(n>•2,•且为整数)•应收费_______元.13.写出所有的含字母a、b、c且系数和次数都是5的单项式.14.列式表示:(1)某数x的平方的3倍与y的商;(2)比m的14多20%的数.15.某种商品进价m元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?16.观察图的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n 个图形相对应的等式.参考答案:1.D 2.C 3.A 4.A 5.B 6.C7.-5,0;-1,2;0.6,3;-75,1;45π,4;52,4 8.4 9.0.4a 10.15b a b - 11.0.012a 12.1.6+0.5(n-2) 13.5abc 3,5ab 2c 2,5ab 3c ,5a 2bc 2,•5a 2b 2c ,5a 3bc •14.(1)23x y(2)0.3m 15.m×(1+30%)×70%=0.91m (元) 16.(1)4×3+1=4•×4-3,4×4+1=4×5-3 (2)4(n -1)+1=4n -3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章整式的加减
2.1 整式
第2课时单项式1.下列说法正确的是().
A.a的系数是0 B.1
y
是一次单项式
C.-5x的系数是5 D.0是单项式2.下列单项式书写不正确的有().
①31
2
a2b;②2x1y2;③-
3
2
x2;④-1a2b.
A.1个B.2个C.3个D.4个
3.“比a的3
2
大1的数”用式子表示是().
A.3
2
a+1 B.
2
3
a+1 C.
5
2
a D.
3
2
a-1
4.下列式子表示不正确的是().
A.m与5的积的平方记为5m2 B.a、b的平方差是a2-b2
C.比m除以n的商小5的数是m
n
-5
D.加上a等于b的数是b-a
5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了()亿元.
A.a‰ B.2a‰C.3a‰ D.4a‰
6.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于().
A.
3366
...
4444
a a a a
cm B cm C cm D
-+-+
cm
7.填写下表
5
8.若x2y n-1是五次单项式,则n=_______.
9.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元.10.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.
11.小明在银行存a元钱,银行的月利率为0.25%,利息税为20%,6个月后小明可得利息________元.
12.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n天(n>•2,•且为整数)•应收费_______元.
13.写出所有的含字母a、b、c且系数和次数都是5的单项式.
14.列式表示:
(1)某数x的平方的3倍与y的商;(2)比m的1
4
多20%的数.
15.某种商品进价m元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?
16.观察图的点阵图形和与之相对应的等式,探究其中的规律:
(1)请你在④和⑤后面的横线上分别写出相对应的等式;
(2)通过猜想,写出与第n 个图形相对应的等式. 参考答案:
1.D 2.C 3.A 4.A 5.B 6.C 7.-5,0;-1,2;0.6,3;-
75,1;45π,4;52,4 8.4 9.0.4a 10.15b a b
- 11.0.012a 12.1.6+0.5(n-2) 13.5abc 3,5ab 2c 2,5ab 3c ,5a 2bc 2,•5a 2b 2c ,5a 3bc •
14.(1)2
3x y
(2)0.3m 15.m×(1+30%)×70%=0.91m (元)
16.(1)4×3+1=4•×4-3,4×4+1=4×5-3 (2)4(n -1)+1=4n -3.。

相关文档
最新文档