USB Type C 协会规范

合集下载

TYPE C数据线规格书

TYPE C数据线规格书

TYPE C数据线规格书V1.0关键词:TYPE C、数据线摘要:本文介绍了数据线的规格,性能及测试规范。

缩略语:1范围标准适用于TYPE A TO C数据线需求规格书,未尽规格描述以TYPE C协会规范V1.1为准。

2编写依据3数据线正常工作和存储条件3.1数据线应能在下列条件下正常工作:3.1.1 工作环境温度:-20℃~+55℃;(仅作单体验证目的,与整机匹配时以整机试验环境为准);3.1.2 相对湿度:5%~95%;3.1.3 大气压力:86 kPa~106kPa;3.1.4 数据线的存储温度:-40℃~+85℃;4数据线主要参数4.1数据线连线规格详细尺寸以及工艺要求以3D图档为准1、type C金属插头,要求必须是整体拉伸成型,不能是折弯成型,不接受接缝;2、金属插头部分,要求做不锈钢原色,表面喷砂处理: 50u”~150u”MA TT NICKEL PLATING OVER ALL3、保证至少3A通流能力整条线缆产品详细规格(BOM清单, 包括端子图纸2D & 可拆解版本的3D)要有确认才能认可(认证时必须提供以上文件)。

4.2线材主体信息:4.2.1外观5V/3A A plug TO C plug, cover式,白色半雾面,素材细咬花处理,MT110064.2.2主体结构导体材质规格如下:材质:镀锡铜绝缘材质NON-PVC,须满足5.2章节测试性能要求4.2.3关键尺寸4.2.3.1USB2.0 B plug参考协会规范4.2.3.2TYPE C plug1.红圈标示尺寸为重点尺寸,其余尺寸依据协会规范要求2.各组件BOM LIST原材料信息需明确到具体牌号3.应满足TYPE C 2.0规格4.2.3.3镀层厚度测试区域规定关于镀层测试区域和方法:TYPE C/A :TYPE C/A 产生接触的关键区域为PIN 针头部触点,因此镀层工艺为考虑成本一般只覆盖PIN 针触点位置,其他区域为flash Au,所以镀层的量测范围定义在PIN 针触点弧顶的最高处镀层厚度为在触点弧顶最高点0.5mm 的范围内进行测量,同一触点在0.5mm 范围内测量三次取平均值0.5mm4.2.4线序Table 4-13 DFP CC Current Source to Resistor pull-up to Resistor pull-up to5技术要求5.1线材外观要求5.1.1线材外观要求如下:未尽事宜参考《终端数据线检验通用操作指导书》5.2线材性能要求Test conditionTemperature:15℃to 35℃Air pressure :86 to106 kPaRelative humidity:25% to 85%5.3安全性要求USB数据线的安全性能应能满足CCEE规定要求。

USB3.TypeC数据线设计规范标准

USB3.TypeC数据线设计规范标准

4.1 Type-C插头外形尺寸设计要求4.2Type-C系列产品的设计要求4.2.1 Type-C数据线产品种类:铁壳宽度8.25mm 铁壳厚度 2.4mm5.0 Type-C 系列线缆的设计要求:5.2 Type-C TO Legacy线材线规要求5.3.2对绞线设计6.0 Type-C系列数据线对eMARK的选用设计7.0 Type-C系列数据线对上拉和下拉电阻的选用设计8.0 Type-C数据线外观要求如下:外观金属插头/pin脚检查1、参照样品和PDM图纸检验,线缆两端插头的结构外型(型号)要求与样品一致;2、插头不允许氧化/生锈、残缺、变形;3、用干布(无尘布)能擦除的脏污,允许;用干布(无尘布)不能擦除的脏污,不允许;【注:金属插头脏污不良超出1%(不良数/样本数)时,提交不合格电子流确认】4、插头上不允许有油渍;5、划痕L≤2mm,W≤0.1mm,用手触摸无深度感,允收一条;6、USB A公插头不允许有溢胶的现象;7、USB A公插头的连接器PIN脚不允许氧化/生锈、翘高、变形、PIN脚陷/断裂不良;8、金属插头(USBA公以及MICRO B公)与注塑部分匹配正常,不允许歪斜,夹角90o±2.5o 色差检验整体数据线是否存在色差,色差问题须参照样品进行检验。

标签检查1、标签上的印刷图案和字体要求与样品一致,并清晰可辨;2、数据线上的标签不允许破损、折皱、起膜;3、插头上的铭牌在槽偏移的最大尺寸不允许超过0.25mm;4、旗舰标签对折粘贴后的歪斜程度≤1mm;注塑部位1、注塑部位(USB A公外膜、DC插头外膜、磁环外膜)不允许缺胶、破损;2、合模线(毛边)H≤0.2mm;3、水口位(毛边)在不刺手的前提下, H≤1mm,可接收;4、压痕L≤5mm,W≤0.2mm,USB A公外膜每面允收一条,DC外膜允收一条;5、点状压痕D≤1.5mm,USB A公外膜每面允收一条,DC外膜允收一条;线材外观1、线材不允许有破损、漏铜;2、线材上不允许有脏污;3、点状压痕D≤2.5mm,DS≥25mm,允收6个;4、线状压痕L≤5mm,W≤1mm,DS≥25mm,允收3条;扎带下的压痕允许;5、有感刮伤:L≤5mm,W≤1mm,DS≥25mm,允收2条;无感刮伤:L≤30mm,W≤1mm,DS≥30mm,允收3条;。

聊聊TYPEC数据线的铜丝规格怎么选择

聊聊TYPEC数据线的铜丝规格怎么选择

聊聊TYPEC数据线的铜丝规格怎么选择⾃从TYPE C数据线开始跑3A,5A电流以后,铜丝规格如何选择来满⾜电流和功率的问题就开始经常有⼈问到,今天我们就⼀起聊聊TYPE C数据线的铜丝规格怎么选择,USB数据线,最基本的电器参数就是电阻,压降,电压等,其实被客⼈问最多的当然就是对应数据线可以承受多少的电流,⽤多⼤的导体⽐较划算,今天我们就⼀起聊聊。

在TYPE C数据线的数据线⾥⾯,涉及到电流传输的PIN⾓定义为VBUS和GND,我们再⼀起回顾下USB Type-C脚位说明,然后再回到这个主题以上信号按照功能主要可以分为5类:第⼀类:Power有关的信号,包括a)VBUS,USB线缆的bus power(和我们通常意义上VBUS保持⼀致)。

b)VCONN(只有在插头上才会有该信号),⽤于向插头供电(由此可以推测出有些插头中可能会有电路)。

c)GND,接地第⼆类:USB 2.0数据线,D+/D-,它们在插头端只有⼀对,和旧的USB 2.0规范⼀致。

但为了⽀持正反随意插。

在插座端定义了两组,这样插座端可以根据实际情况进⾏合适的mapping。

第三类:USB3.1数据线,TX+/-和RX+/-,⽤于⾼速的数据传输。

插头和插座端都有两组,⽤于⽀持正反随意插。

第四类:⽤于Configuration的信号,对插头来说,只有⼀个CC,对插座来说,有两个CC1和CC2。

第五类:扩展功能所需的信号,具体使⽤场景由相应的扩展功能决定。

⼀个电源的电压经过⼀段线路或其他部件的传送电压有⼀部分就会被消耗从⽽降低,这降低的部分就是这段线路的电压降,测量电源起点处的电压与终点处的电压,两者之差就是电压降.举个简单的例⼦,例如变电站的输出电压是220V,⽽你家的电压是215V,那么从变电站到你家的这段电路的电压降就是220V-215V=5V.电压降应该这样解释:电线本⾝存在电阻,当电流沿导线流动时,必须施加⼀个电压来克服这个电阻,否则电流就不能通过;在同样⼀根电线上,通过的电流越⼤,需要来克服这个电阻的电压就越⾼(V=I*R),克服这个电阻的电压对于供电电源来说,就是造成了“电压降”(送过去的电压降低了),⽤电量越⼤(I 加⼤)电压降也就越⼤,导线电阻率越⼤、导线截⾯积越⼩、导线越长(R 加⼤)电压降也越⼤.从以上可以看出,衡量电压降⽐单纯的电流靠谱稳定和更加全⾯。

TYPE C数据线规格书之欧阳物创编

TYPE C数据线规格书之欧阳物创编

TYPE C数据线规格书V1.0关键词:TYPE C、数据线摘要:本文介绍了数据线的规格,性能及测试规范。

缩略语:1范围标准适用于TYPE A TO C数据线需求规格书,未尽规格描述以TYPE C协会规范V1.1为准。

2编写依据3数据线正常工作和存储条件3.1数据线应能在下列条件下正常工作:3.1.1 工作环境温度:20℃~+55℃;(仅作单体验证目的,与整机匹配时以整机试验环境为准);3.1.2 相对湿度:5%~95%;3.1.3 大气压力:86 kPa~106kPa;3.1.4 数据线的存储温度:40℃~+85℃;4数据线主要参数4.1数据线连线规格详细尺寸以及工艺要求以3D图档为准1、type C金属插头,要求必须是整体拉伸成型,不能是折弯成型,不接受接缝;2、金属插头部分,要求做不锈钢原色,表面喷砂处理: 50u”~150u” MATT NICKEL PLATING OVER ALL3、保证至少3A通流能力整条线缆产品详细规格(BOM清单, 包括端子图纸2D & 可拆解版本的3D)要有确认才能认可(认证时必须提供以上文件)。

4.2线材主体信息:4.2.1外观5V/3A A plug TO C plug, cover式,白色半雾面,素材细咬花处理,MT110064.2.2主体结构导体材质规格如下:材质:镀锡铜绝缘材质NONPVC,须满足5.2章节测试性能要求4.2.3关键尺寸4.2.3.1USB2.0 B plug参考协会规范4.2.3.2TYPEC plug1.红圈标示尺寸为重点尺寸,其余尺寸依据协会规范要求2.各组件BOM LIST原材料信息需明确到具体牌号3.应满足TYPE C 2.0规格4.2.3.3镀层厚度测试区域规定关于镀层测试区域和方法:TYPE C/A:TYPE C/A产生接触的关键区域为PIN针头部触点,因此镀层工艺为考虑成本一般只覆盖PIN针触点位置,其他区域为flash Au,所以镀层的量测范围定义在PIN针触点弧顶的最高处4.2.4线序Table 320 USB TypeC to USB 2.0 AM Wiring USB TypeC Plug USB 2.0 AM Pin Signal Name Pin Signal NameA1, B1, A12, B12 GND 4 GND A4, B4, A9, B9 VBUS 1 VBUS A5 CC A6 Dp1 3 D+ A7 Dn12D−Shell Shield Shell Shield Notes:1. Pin A5 (CC) of the USB TypeC plug shall be connected to VBUS through a resistor Rp. See Section 4.5.3.2.2 and Table 413 for the functional description and value of Rp. 2. Contacts B6 and B7 should not be present in the USB TypeC plug.3. All VBUS pins shall be connected together within the USB TypeC plug. Bypass capacitors are not required for the VBUS pins at this cable.4. All Ground return pins shall be connected together within the USB TypeC plug.5. All USB TypeC plug pins that are not listed in this table shall be open (not connected).Table 413 DFP CC Termination (Rp) Requirements DFP AdvertisementCurrent Source to 1.7 – 5.5 V Resistor pullup to 4.75 – 5.5 V Resistor pullup to 3.3 V ± 5% Default USB Power 80 μA ± 20% 56 kΩ ± 20% (Note 1) 36 kΩ ± 20% 1.5 A @ 5 V 180 μA ± 8% 22 kΩ ± 5% 12 kΩ ± 5% 3.0 A @ 5 V 330 μA ± 8% 10 kΩ ± 5% 4.7 kΩ ± 5% Notes:1. For Rp when implemented in the USB TypeC plug on a USB TypeC to USB 3.1 StandardA Cable Assembly, a USB TypeC to USB2.0 StandardA Cable Assembly, a USB TypeC to USB 2.0 MicroB Receptacle Adapter Assembly or a USB TypeC captive cable connected to a USB host, a value of 56 kΩ ± 5% shall be used, in order to provide tolerance to IR drop on VBUS and GND in the cable assembly.镀层厚度为在触点弧顶最高点0.5mm 的范围内进行测量,同一触点在0.5mm 范围内测量三次取平均值0.5mm5技术要求5.1线材外观要求5.1.1线材外观要求如下:未尽事宜参考《终端数据线检验通用操作指导书》5.2线材性能要求Test conditionTemperature:15℃ to 35℃Air pressure :86 to106 kPa Relative humidity:25% to 85%5.3安全性要求USB数据线的安全性能应能满足CCEE规定要求。

TYPEC数据线规格书

TYPEC数据线规格书

关键词:TYPE C数据线摘要:本文介绍了数据线的规格,性能及测试规范。

缩略语:1范围标准适用于TYPE A TO C数据线需求规格书,未尽规格描述以TYPE C协会规范V1.1 为准。

3.1数据线应能在下列条件下正常工作:3.1.1 工作环境温度:-20 C〜+55C;(仅作单体验证目的,与整机匹配时以整机试验环境为准);3.1.2 相对湿度:5%〜95%3.1.3 大气压力:86 kPa 〜106kPa;3.1.4 数据线的存储温度:-40。

〜+85C;4 数据线主要参数4.1数据线连线规格详细尺寸以及工艺要求以3D图档为准1、type C金属插头,要求必须是整体拉伸成型,不能是折弯成型,不接受接缝;2、金属插头部分,要求做不锈钢原色,表面喷砂处理:50u” ~150u” MATTNICKELPLATING OVER ALL3、保证至少3A通流能力整条线缆产品详细规格(BOM青单,包括端子图纸2D &可拆解版本的3D)要有确认才能认可(认证时必须提供以上文件)。

4.2线材主体信息:4.2.1外观5V/3A A plug TO C plug, cover 式,白色半雾面,素材细咬花处理,MT110064.2.2主体结构绝缘材质NON-PV,C 须满足5.2 章节测试性能要求4.2.3 关键尺寸4.2.3.1 USB2.0 B plug参考协会规范4.2.3.2 TYPE C plug1. 红圈标示尺寸为重点尺寸,其余尺寸依据协会规范要求2. 各组件BOM LIST原材料信息需明确到具体牌号3. 应满足TYPE C 2.0 规格4.2.3.3 镀层厚度测试区域规定关于镀层测试区域和方法:TYPE C/A:TYPE C/A 产生接触的关键区域为PIN 针头部触点,因此镀层工艺为考虑成本一般只覆盖PIN 针触点位置,其他区域为flash Au, 所以镀层的量测范围定义在PIN 针触点弧顶的最高处1. Pin A5 (CC) of the USB Type-C plug shall be conn ected to VBUS through a resistor Rp. See Section 4.5.322 and Table 4-13 forthe functional descripti on and value of Rp.2. Con tacts B6 and B7 should not be prese nt in the USBType-C plug.3. All VBUSpins shall be connected together within the USBType-C plug. Bypass capacitors are not required for the VBUSpins at this cable.4. All Ground retur n pins shall be conn ected together withi n theUSB Type-C plug.5. All USBType-C plug pins that are not listed in this table shall be ope n (not conn ected).技术要求5.1 线材外观要求5.1.15.2 线材性能要求Test con diti onTemperature : 15°C to 35 °CAir pressure : 86 to106 kPaUSB数据线的安全性能应能满足CCEE规定要求。

USB_3_1连接器协会规范

USB_3_1连接器协会规范

5.3 Connector Mating InterfacesThis section defines the connector mating interfaces, including the connector interface drawings, pin assignments, and descriptions.5.3.1 USB 3.1 Standard-A Connector5.3.1.1 Interface DefinitionFigure 5-1 and Figure 5-2 show the USB 3.1 Standard-A receptacle and required ground springmating areas, respectively. Figure 5-4 shows the Standard-A plug interface dimensions forUSB 3.1. Only the dimensions that govern the mating interoperability are specified. All REFdimensions are informative.The Universal Serial Bus Power Delivery Specifiation defines the mechanical and electricalrequirements for the Insertion Detect feature to support cold socket capability. It may beimplemented in a Standard-A receptacle or a PD Standard-A receptacle. Implementation is vendor-specific. The Insertion Detect feature shall be implemented for cold socket Standard-A applications and is optional for all other Standard-A implementations. See the Universal Serial Bus PowerDelivery Specifiation for complete Insertion Detect requirements. Example connectorconfigurations including Insertion Detect features are shown in Figure 5-3.Although the USB 3.1 Standard-A connector has basically the same form factor as the USB 2.0Standard-A connector, it has significant differences inside. Below are the key features and design areas that need attention:•In addition to the Vbus, D-, D+, and GND pins that are required for USB 2.0, the USB 3.1 Standard-A connector includes five more pins: two differential signal pairs plus one ground(GND_DRAIN). The two added differential signal pairs are for SuperSpeed data transfer,supporting dual simplex SuperSpeed signaling. The added GND_DRAIN pin is for drain wiretermination and managing EMI, RFI, and signal integrity.•The contact areas of the five SuperSpeed pins are located towards the front of the receptacle as blades, while the four USB 2.0 pins towards the back of the receptacle as beams or springs.Accordingly, in the plug, the SuperSpeed contacts are beams located behind the USB 2.0blades. In other words, the USB 3.1 Standard-A connector has a two-tier contact system.•The tiered-contact approach within the Standard-A connector form factor results in less contact area as compared to the USB 2.0 Standard-A connector. The connector interface dimensionstake into consideration contact mating requirements between the USB 3.1 Standard-Areceptacle and USB 3.1 Standard-A plug, the USB 3.1 Standard-A receptacle and USB 2.0Standard-A plugs, and the USB 2.0 Standard-A receptacles and USB 3.1 Standard-A plug.•The connector interface definition avoids shorting between the SuperSpeed and USB 2.0 pins during insertion when plugging a USB 2.0 Standard-A plug into a USB 3.1 Standard-Areceptacle or a USB 3.1 Standard-A plug into a USB 2.0 Standard-A receptacle.•There may be some increase in the USB 3.1 Standard-A receptacle connector depth (into a system board) to support the two-tiered-contacts as compared to the USB 2.0 Standard-Areceptacle.•Drawings for stacked USB 3.1 Standard-A receptacles are not shown in this specification.They are allowed as long as they meet all the electrical and mechanical requirements defined inthis specification. When designing a stacked USB 3.1 Standard-A receptacle, efforts need to bemade to minimize impedance discontinuity of the top connector in the stack because of its long electrical path. Attention to the high speed electrical design of USB 3.1 Standard-A connectors is required. In addition to minimizing the connector impedance discontinuities, crosstalkbetween the SuperSpeed differential signal pairs and USB 2.0 D+/D- pair should also beminimized.•The receptacle connector should have a back-shield to ensure that the receptacle connector is fully enclosed. The USB 3.1 receptacle should also make good contact to the PCB ground by providing sufficient number of ground tabs to ensure a low impedance path to PCB ground.The USB 3.1 receptacle connector should have a robust mating interface to the shield of the USB 3.1 plug when it is inserted. Previous versions of this specification required providing a grounding spring tab in the middle of the side closest to the USB SuperSpeed signal contacts and grounding springs on both sides of the shell for USB 3.0 Standard-A receptacles. New designs shall have three grounding spring tabs on the side closest to the USB SuperSpeed signal contacts, two grounding spring tabs on the side opposite the USB SuperSpeed signal contacts, and a grounding spring on both sides of the shell of the USB 3.1 Standard-A receptacle. See Figure 5-2.Continued on next pageContinued on next pageFigure 5-1. USB 3.1 Standard-A Receptacle Interface DimensionsContinued on next page TOP VIEW (SIDE NEAREST SUPERSPEED CONTACTS)Figure 5-2. Example USB 3.1 Standard-A Receptacle with Grounding Springs and Requiredcontact zones on the Standard-A Plug.EMI contact zones BOTTOM VIEW (SIDE OPPOSITE SUPERSPEED CONTACTS)Insertion detect pinsDetect circuit is closed after amating part is insertedDetect circuitSpring fingers on the side ofreceptacle shell are EMI functionalFigure 5-3. Example USB 3.1 Standard-A Mid-Mount Receptacles with Insertion DetectContinued on next pageContinued on next pageFigure 5-4. USB 3.1 Standard-A Plug Interface Dimensions5.3.1.2 USB 3.1 Standard-A Reference FootprintsThis specification does not define standard footprints. Any footprint may be used as long as all mechanical and electrical requirements are met. Example footprints are provided for reference only.Figure 5-5 shows through-hole example footprints for the USB 3.1 Standard-A receptacle with a back-shield. Pin numbers are marked.Figure 5-6 shows an example footprint for a mid-mount standard mount (mounted on the top of the PCB) Standard-A receptacle that includes Insertion Detect.Figure 5-7 shows an example mid-mount reverse mount (mounted on the bottom of the PCB) with Insertion Detect. The reverse mount configuration locates the SuperSpeed signals between the USB 2.0 signals and the PCB edge, making the SuperSpeed signal routing more challenging.See Section 5.6.1.2 for target characteristic impedance.Continued on next page5-14Continued on next page5-15Back-Shield5-165-17Figure 5-6. Example Footprint for the USB 3.1 Standard-A Receptacle - Mid-Mount StandardMount Through-Hole with Insertion Detect5-18Figure 5-7. Example Footprint for the USB 3.1 Standard-A Receptacle - Mid-Mount ReverseMount Through-Hole with Insertion Detect5.3.1.3 Pin Assignments and DescriptionThe usage and assignments of the nine pins in the USB 3.1 Standard-A connector are defined in Table 5-2.Table 5-2. USB 3.1 Standard-A Connector Pin AssignmentsPin Number1Signal Name2Description Mating Sequence31 VBUS Power Third2 D- USB 2.0 differential pair Fourth3 D+4 GND Ground for power return Third5 StdA_SSRX- SuperSpeed receiver differentialpair Last6 StdA_SSRX+7 GND_DRAIN Ground for signal return8 StdA_SSTX- SuperSpeed transmitterdifferential pair9 StdA_SSTX+124, 13 INSERTIONDETECT Receptacle only. Detectsinsertion of a plug into thereceptacle. Optional except forcold socket applications. See the Universal Serial Bus PowerDelivery Specifiation for details.SecondShell Shield Connector metal shell FirstNote 1: Note 1: Pin numbers not included in this table do not have contacts present.Note 2: Tx and Rx are defined from the host perspective.Note 3: The mating sequence assumes support of INSERTION DETECT.Note 4: Pin 12, if present, shall be connected to Shield.The physical location of the pins in the connector is illustrated in Figure 5-1 to Figure 5-7. Pins 1 to 4 are referred to as the USB 2.0 pins, while pins 5 to 9 are referred to as the SuperSpeed pins. See the Universal Serial Bus Power Delivery Specifiation for location of pins 12 and 13.5-195-205.3.1.4 USB 3.1 Standard-A Connector Color CodingSince both the USB 2.0 Standard-A and USB 3.1 Standard-A receptacles may co-exist on a host, color coding is recommended for the USB 3.1 Standard-A connector (receptacle and plug) housings to help users distinguish it from the USB 2.0 Standard-A connector.Blue (Pantone 300C) is the recommended color for the USB 3.1 Standard-A receptacle and plug plastic housings. When the recommended color is used, connector manufacturers and systemintegrators should make sure that the blue-colored receptacle housing is visible to users. Figure 5-8 illustrates the color coding recommendation for the USB 3.1 Standard-A connector.Figure 5-8. Illustration of Color Coding Recommendation for USB 3.1Standard-A Connector5.3.2USB 3.1 Standard-B Connector5.3.2.1Interface DefinitionFigure 5-9, Figure 5-10, and Figure 5-11 show the USB Standard-B receptacle dimensions, the USB Standard-B plug dimensions, and a USB Standard-B receptacle reference footprint, respectively. See Section 5.6.1.2 for target characteristic impedance.5-21Continued on next page5-22Figure 5-9. USB 3.1 Standard-B Receptacle Interface Dimensions5-23Figure 5-10. USB 3.1 Standard-B Plug Interface DimensionsFigure 5-11. Reference Footprint for the USB 3.1 Standard-B ReceptacleThe USB 3.1 Standard-B receptacle interfaces have two portions: the USB 2.0 interface and the SuperSpeed interface. The USB 2.0 interface consists of pins 1 to 4, while the SuperSpeed interface consists of pins 5 to 9.When a USB 2.0 Standard-B plug is inserted into the USB 3.1 Standard-B receptacle, only the USB 2.0 interface is engaged and the link will not take advantage of the Enhanced SuperSpeed capability. Since the USB 3.1 SuperSpeed portion is visibly not mated when a USB 2.0 Standard-B plug is inserted in the USB 3.1 Standard-B receptacle, users have the visual feedback that the cable plug is not matched with the receptacle. Only when a USB 3.1 Standard-B plug is inserted into the USB 3.1 Standard-B receptacle, is the interface completely visibly engaged.5.3.2.2 Pin Assignments and DescriptionThe usage and assignments of the nine pins in the USB 3.1 Standard-B connector are defined in Table 5-3.Table 5-3. USB 3.1 Standard-B Connector Pin AssignmentsPin Number Signal Name Description Mating Sequence1 VBUS Power Second2 D- USB 2.0 differential pair Third or beyond3 D+4 GND Ground for power return Second5 StdB_SSTX- SuperSpeed transmitterdifferential pair Third or beyond6 StdB_SSTX+7 GND_DRAIN Ground for signal return8 StdB_SSRX- SuperSpeed receiver differentialpair9 StdB_SSRX+Shell Shield Connector metal shell FirstNote: Tx and Rx are defined from the device perspective.The physical location of the pins in the connector is illustrated in Figure 5-9 to Figure 5-11.5.3.3 USB 3.1 Micro Connector Family5.3.3.1 Interfaces DefinitionThe USB 3.1 Micro connector family consists of the USB 3.1 Micro-B receptacle, USB 3.1Micro-AB receptacle, USB 3.1 Micro-B plug, and USB 3.1 Micro-A plug. Figure 5-12 and Figure 5-13 show the USB 3.1 Micro family receptacle and plug interface dimensions, respectively. Only dimensions that govern the mating interoperability are specified.The USB 3.1 Micro connector family has the following characteristics:•The USB 3.1 Micro-B connector may be considered a combination of USB 2.0 Micro-B interface and the USB 3.1 SuperSpeed contacts. The USB 3.1 Micro-B receptacle accepts aUSB 2.0 Micro-B plug, maintaining backward compatibility.•The USB 3.1 Micro-B connector maintains the same connector height and contact pitch as the USB 2.0 Micro-B connector.•The USB 3.1 Micro-B connector uses the same latch design as the USB 2.0 Micro-B connector.•The USB 3.1 Micro-AB receptacle is identical to the USB 3.1 Micro-B receptacle except for a keying difference in the connector shell outline.•The USB 3.1 Micro-A plug is similar to the USB 3.1 Micro-B plug with different keying and ID pin connections. The Universal Serial Bus Power Delivery Specifiation discusses the ID pin connections.There is no required footprint for the USB 3.1 Micro connector family. Figure 5-14 showsreference Micro-B and -AB connector footprints.Continued on next pageFigure 5-12. USB 3.1 Micro-B and -AB Receptacles Interface DimensionsContinued on next pageContinued on next pageFigure 5-13. USB 3.1 Micro-B and Micro-A Plug Interface DimensionsContinued on next pageFigure 5-14. Reference Footprint for the USB 3.1 Micro-B or Micro-AB Receptacle5.3.3.2 Pin Assignments and DescriptionTable 5-4 and Table 5-5 show the pin assignments for the USB 3.1 Micro connector family.Table 5-4. USB 3.1 Micro-B Connector Pin AssignmentsPin Number Signal Name Description Mating Sequence1 VBUS Power Second2 D- USB 2.0 differential pair Last3 D+4 ID OTG identification5 GND Ground for power return Second6 MicB_SSTX- SuperSpeed transmitterdifferential pair Last7 MicB_SSTX+8 GND_DRAIN Ground for SuperSpeed signalreturnSecond9 MicB_SSRX- SuperSpeed receiver differentialpair Last10 MicB_SSRX+Shell Shield Connector metal shell FirstNote: Tx and Rx are defined from the device perspective.Table 5-5. USB 3.1 Micro-AB/-A Connector Pin AssignmentsPin Number Signal Name Description Mating Sequence1 VBUS Power Second2 D- USB 2.0 differential pair Last3 D+4 ID OTG identification5 GND Ground for power return Second6 MicA_SSTX- SuperSpeed receiver differentialpair Last7 MicA_SSTX+8 GND_DRAIN Ground for SuperSpeed signalreturnSecond9 MicA_SSRX- SuperSpeed transmitterdifferential pair Last10 MicA_SSRX+Shell Shield Connector metal shell FirstNote: Tx and Rx are defined when an OTG device serves as a host.The physical location of the pins in the connector is illustrated in Figure 5-12 to Figure 5-14.5.4 Cable Construction and Wire AssignmentsThis section discusses the USB 3.1 cables, including cable construction, wire assignments, and wire gauges. The performance requirements are specified in Section 5.6.1.5.4.1 Cable ConstructionFigure 5-15 illustrates a USB 3.1 cable cross-section. There are three groups of wires: D+/D-signal pair (typically unshielded twisted pair (UTP)), Enhanced SuperSpeed signal pairs (typically Shielded Differential Pair (SDP), twisted, twinax, or coaxial signal pairs), and power and ground wires.Figure 5-15. Illustration of a USB 3.1 Cable Cross-Section The D+/D- signal pair is intended to transmit the USB 2.0 signaling while the EnhancedSuperSpeed signal pairs are used for SuperSpeed; the shield is needed for the SuperSpeeddifferential pairs for signal integrity and EMI performance. Each Enhanced SuperSpeed drain wire is connected to the system ground through the GND_DRAIN pin(s) in the connector.A metal braid is required to enclose all the wires in the USB 3.1 cable. The braid shall beterminated to the plug metal shells, as close to 360° as possible, to reduce EMI.5.4.2 Wire AssignmentsTable 5-6 defines the wire number, signal assignments of the wires.Table 5-6. Cable Wire AssignmentsWire Number Signal Name Description1 PWR Power2 D- Unshielded twist pair, negative3 D+ Unshielded twist pair, positive4 GND_PWRrt Ground for power return5 P1- Shielded differential pair 1, negative6 P1+ Shielded differential pair 1, positive7 P1_Drain Drain wire for SDP18 P2- Shielded differential pair 2, negative9 P2+ Shielded differential pair 2, positive10 P2_Drain Drain wire for SDP2Braid Shield Cable external braid to be 360°terminated on to plug metal shell5.4.3 Wire Gauges and Cable DiametersThis specification does not specify wire gauges. Table 5-7 lists typical wire gauges for reference purposes only. A large gauge wire incurs less loss, but at the cost of cable flexibility. It isrecommended to use the smallest possible wire gauges that meet the cable assembly electrical requirements.To maximize cable flexibility, all wires should be stranded and the cable outer diameter should be minimized as much as possible. A typical non-USB 3.1 Power Delivery capable cable outerdiameter may range from 3 mm to 6 mm.Table 5-7. Reference Wire GaugesWire Number Signal Name Wire Gauge (AWG)1 PWR 20-282 D- 28-343 D+ 28-344 GND_PWRrt 20-285 P1- 26-346 SP1+ 26-347 P1_Drain 28-348 P2- 26-349 P2+ 26-3410 P2_Drain 28-345.5 Cable Assemblies5.5.1 USB 3.1 Standard-A to USB 3.1 Standard-B CableAssemblyFigure 5-16 shows a USB 3.1 Standard-A to USB 3.1 Standard-B cable assembly. Due to increased wire sizes required for some PD cable implementations, the overmold dimensions for PD cables have larger maximum dimensions than the non-PD cables specified. See the Universal Serial Bus Power Delivery Specifiation for the maximum overmold dimensions of PD cable assemblies.Figure 5-16. USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly Table 5-8 defines the wire connections for the USB 3.1 Standard-A to USB 3.1 Standard-B cable assembly.Table 5-8. USB 3.1 Standard-A to USB 3.1 Standard-B Cable Assembly Wiring USB 3.1 Standard-A Plug Wire USB 3.1 Standard-B Plug Pin Number Signal Name Wire Number Signal Name Pin Number Signal Name1 VBUS 1 PWR 1 VBUS2 D- 2 D- 2 D-3 D+ 3 D+ 3 D+4 GND 4 GND_PWRrt 4 GND5 StdA_SSRX- 5 P1- 5 StdB_SSTX-6 StdA_SSRX+ 6 P1+ 6 StdB_SSTX+7 GND_DRAIN 7 and 10 P1_Drain7 GND_DRAINP2_Drain8 StdA_SSTX- 8 P2- 8 StdB_SSRX-9 StdA_SSTX+ 9 P2+ 9 StdB_SSRX+Shell Shield Braid Shield Shell Shield5.5.2 USB 3.1 Standard-A to USB 3.1 Standard-A Cable AssemblyThe USB 3.1 Standard-A to USB 3.1 Standard-A cable assembly is defined for operating system debugging and other host-to-host connection applications. Table 5-9 shows wire connections for such a cable assembly. Refer to Figure 5-16 for the USB 3.1 Standard-A plug cable overmolddimensions.Table 5-9. USB 3.1 Standard-A to USB 3.1 Standard-A Cable Assembly Wiring USB 3.1 Standard-A Plug #1 Wire USB 3.1 Standard-A Plug #2 Pin Number Signal Name Wire Number Signal Name Pin Number Signal Name1 VBUS No connect 1 VBUS2 D- No connect 2 D-3 D+ No connect 3 D+4 GND 4 GND_PWRrt 4 GND5 StdA_SSRX- 5 P1- 8 StdA_SSTX-6 StdA_SSRX+ 6 P1+ 9 StdA_SSTX+7 GND_DRAIN7 GND_DRAIN 7 & 10 P1_DrainP2_Drain8 StdA_SSTX- 8 P2- 5 StdA_SSRX-9 StdA_SSTX+ 9 P2+ 6 StdA_SSRX+Shell Shield Braid Shield Shell Shield5.5.3 USB 3.1 Standard-A to USB 3.1 Micro-B Cable AssemblyFigure 5-17 shows the USB 3.1 Micro-B plug overmold dimensions for a USB 3.1 Standard-A to USB 3.1 Micro-B cable assembly. The USB 3.1 Standard-A plug overmold dimensions are found in Figure 5-16. Due to increased wire sizes required for some PD cable implementations, theovermold dimensions for PD cables have larger maximum dimensions than the non-PD cables specified. See the Universal Serial Bus Power Delivery Specifiation for the maximum overmold dimensions of PD cable assemblies.Notes:1. Any surface may have texturing up to 0.3 mm below the surface.2. A square area around the letter B may be lowered as much as 0.5 mm.3. USB authorized icon, connector type letter designation (i.e., B),color of the insulator body, and maximum dimensions are mandatory.Overmold outer configuration, color, and final shape are reference.4. Pin 4 is not connected to pin 5 inside the plug.Figure 5-17. USB 3.1 Micro-B Plug Cable Overmold DimensionsTable 5-10 shows the wire connections for the USB 3.1 Standard-A to USB 3.1 Micro-B cable assembly. Note that the ID pin in the USB 3.1 Micro-B plug shall not be connected, but left in the open condition.Table 5-10. USB 3.1 Standard-A to USB 3.1 Micro-B Cable Assembly Wiring USB 3.1 Standard-A Plug Wire USB 3.1 Micro-B PlugPin Number Signal Name Wire Number Signal Name Pin Number Signal Name1 VBUS 1 PWR 1 VBUS2 D- 2 D- 2 D-3 D+ 3 D+ 3 D+4 GND 4 GND_PWRrt5 GND5 StdA_SSRX- 5 P1-6 MicB_SSTX-6 StdA_SSRX+ 6 P1+7 MicB_SSTX+8 GND_DRAIN7 GND_DRAIN 7 and 10 P1_DrainP2_Drain8 StdA_SSTX- 8 P2- 9 MicB_SSRX-9 StdA_SSTX+ 9 P2+ 10 MicB_SSRX+4 IDShell Shield Braid Shield Shell Shield5.5.4 USB 3.1 Micro-A to USB 3.1 Micro-B Cable AssemblyFigure 5-18 shows the USB 3.1 Micro-A plug cable overmold dimensions in a USB 3.1 Micro-A to USB 3.1 Micro-B cable assembly. The USB 3.1 Micro-B plug cable overmold dimensions areshown in Figure 5-17. Due to increased wire sizes required for some PD cable implementations, the overmold dimensions for PD cables have larger maximum dimensions than the non-PD cables specified. See the Universal Serial Bus Power Delivery Specifiation for the maximum overmold dimensions of PD cable assemblies.Notes:1. Any surface may have texturing up to 0.3 mm below the surface.2. A square area around the letter A may be lowered as much as 0.5 mm.3. USB authorized icon, connector type letter designation (i.e., A),color of the insulator body, and maximum dimensions are mandatory.Overmold outer configuration, color, and final shape are reference.4. Pin 4 is connected to pin 5 inside the plug.Figure 5-18. USB 3.1 Micro-A Cable Overmold DimensionsTable 5-11 shows the wire connections for the USB 3.1 Micro-A to USB 3.1 Micro-B cable assembly. The ID pin on a USB 3.1 Micro-A plug shall be connected to the GND pin. The ID pin on a USB 3.1 Micro-B plug shall be a no-connect or connected to ground by a resistance of greater than Rb_PLUG_ID (1 MΩ minimum). See the Universal Serial Bus Power Delivery Specification for additional details regarding electrical connections to ID pins. An OTG device is required to be able to detect whether a USB 3.1 Micro-A or USB 3.1 Micro-B plug is inserted by determining if the ID pin resistance to ground is less than Ra_PLUG_ID (10 Ω maximum) or if the resistance to ground is greater than Rb_PLUG_ID. Any ID resistance less than Ra_PLUG_ID shall be treated as ID = FALSE and any resistance greater than Rb_PLUG_ID shall be treated as ID = TRUE.Table 5-11. USB 3.1 Micro-A to USB 3.1 Micro-B Cable Assembly WiringUSB 3.1 Micro-A Plug Wire USB 3.1 Micro-B PlugPin Number Signal Name Wire Number Signal Name Pin Number Signal Name1 VBUS 1 PWR 1 VBUS2 D- 2 D- 2 D-3 D+ 3 D+ 3 D+4 ID (see Note 1) No Connect 4 ID (see Note 2)5 GND 4 GND_PWRrt 5 GND6 MicA_SSTX- 5 P1- 9 MicB_SSRX-7 MicA_SSTX+ 6 P1+ 10 MicB_SSRX+8 GND_DRAIN8 GND_DRAIN 7 and 10 P1_DrainP2_Drain9 MicA_SSRX- 8 P2- 6 MicB_SSTX-10 MicA_SSRX+ 9 P2+ 7 MicB_SSTX+ Shell Shield Braid Shield Shell ShieldNotes:1. Connect to the GND.2. No connect or connect to ground by a resistance greater than 1 MΩ minimum.5.5.5 USB 3.1 Micro-A to USB 3.1 Standard-B Cable AssemblyA USB 3.1 Micro-A to USB 3.1 Standard-B cable assembly is also allowed. Figure 5-18 andFigure 5-16 show, respectively, the USB 3.1 Micro-A cable overmold and the USB 3.1 Standard-B cable overmold dimensions.Table 5-12 shows the wire connections for the USB 3.1 Micro-A to USB 3.1 Standard-B cableassembly.Table 5-12. USB 3.1 Micro-A to USB 3.1 Standard-B Cable Assembly WiringUSB 3.1 Micro-A Plug Wire USB 3.1 Standard-B Plug Pin Number Signal Name Wire Number Signal Name Pin Number Signal Name1 VBUS 1 PWR 1 VBUS2 D- 2 D- 2 D-3 D+ 3 D+ 3 D+4 ID (see Note 1) No Connect5 GND 4 GND_PWRrt 4 GND6 MicA_SSTX- 5 P1- 8 StdB_SSRX-7 MicA_SSTX+ 6 P1+ 9 StdB_SSRX+7 GND_DRAIN8 GND_DRAIN 7 and 10 P1_DrainP2_Drain9 MicA_SSRX- 8 P2- 5 StdB_SSTX-10 MicA_SSRX+ 9 P2+ 6 StdB_SSTX+Shell Shield Braid Shield Shell ShieldNotes:1. Connect to the GND5.5.6 USB 3.1 Icon LocationUSB 3.1 cable assemblies compliant with the USB 3.1 Connectors and Cable AssembliesCompliance Specification shall display the appropriate USB 3.1 Icon. A dimensioned drawing and allowable usage of the icon are supplied with the license from the USB-IF.The USB 3.1 Icon is embossed in a recessed area on the side of the USB 3.1 plug. This provides easy user recognition and facilitates alignment during the mating process. The USB Icon andManufacturer’s logo should not project beyond the overmold surface. The USB 3.1 compliantcable assembly is required to have the USB 3.1 Icons on the plugs at both ends, while themanufacturer’s logo is recommended. USB 3.1 receptacles should be orientated to allow the Icon on the plug to be visible during the mating process. Figure 5-19 shows a typical plug orientation.Figure 5-19. Typical Plug Orientation5.5.7 Cable Assembly LengthThis specification does not specify cable assembly lengths. A USB 3.1 cable assembly may be of any length as long as it meets all the requirements defined in this specification. The cable assembly voltage drop budget defined in Section 11.4.2 and the cable assembly loss budget defined inSection 5.6.1.3.2, limit the cable assembly length.5.6 Electrical RequirementsThis section covers the electrical requirements for USB 3.1 raw cables, mated connectors, andmated cable assemblies. USB 3.1 signals, known as Enhanced SuperSpeed are governed by this specification. The USB 2.0 signals are governed by the USB 2.0 specification, unless otherwise specified.Compliance to the USB 3.1 specification is established through normative requirements of mated connectors and mated cable assemblies.Enhanced SuperSpeed requirements supporting Gen 2 speed are specified in the frequency domain.Components and assemblies meeting Enhanced SuperSpeed Gen 2 speed electrical requirements do not require separate qualification testing for Gen 1 speed compliance.DC requirements, such as contact resistance and current carrying capability, are also specified in this section.Any informative specification for cable and connector products is for the purpose of designguidelines and manufacturing control.In conjunction with performance requirements, the required test method is referenced for theparameter stated. A list of the industry standards for DC requirements is found in the Section 5.6.2.Additional supporting test procedures are found in the USB 3.1 Connectors and Cable Assemblies Compliance Document.The requirements in the section apply to all USB 3.1 connectors and/or cable assemblies unlessspecified otherwise.5.6.1 Enhanced SuperSpeed Electrical RequirementsThe following sections outline the requirements for SuperSpeed signals.5.6.1.1 Raw CableInformative raw cable electrical performance targets are provided to help cable assemblymanufacturers manage raw cable suppliers. These targets are not part of the USB 3.1 compliance requirements. The mandatory requirements are that the mated cable assembly performancespecified in Section 5.6.1.3 and other tests specified in the USB 3.1 Connectors and CableAssemblies Compliance Document.5.6.1.1.1 Characteristic ImpedanceThe differential characteristic impedance for the SDP pairs is recommended to be90 Ω +/- 5 Ω. The single-ended characteristic impedance of coaxial Enhanced SuperSpeed signalwires is recommended to be 45 Ω +/- 3 Ω. It should be measured with a TDR in a differentialmode using a 200 ps (10%-90%) rise time.5.6.1.1.2 Intra-Pair SkewThe intra-pair skew for the SDP pairs is recommended to be less than 15 ps/m. It should bemeasured with a Time Domain Transmission (TDT) in a differential mode using a 200 ps (10%-90%) rise time with a crossing at 50% of the input voltage.5.6.1.1.3 Differential Insertion LossCable loss depends on wire gauges, plating and dielectric materials. Table 5-13 and Table 5-14show examples of average differential insertion loss for the SDP pairs for Enhanced SuperSpeed Gen 2 speed. To meet the cable assembly differential insertion loss target, support of the Gen 2 speed requires better performance from the raw cable than required for support of the Gen 1 speed.Table 5-13. SDP Differential Insertion Loss Examples for Gen 2 speedFrequency 34AWG 32AWG 30AWG 28AWG0.625 GHz -1.8 dB/m -1.4 dB/m -1.2 dB/m -1.0 dB/m1.25 GHz -2.5 dB/m -2.0 dB/m -1.7 dB/m -1.4 dB/m2.50 GHz -3.7 dB/m -2.9 dB/m -2.5 dB/m -2.1 dB/m5.00 GHz -5.5 dB/m -4.5 dB/m -3.9 dB/m -3.1 dB/m7.50 GHz -7.0 dB/m -5.9 dB/m -5.0 dB/m -4.1 dB/mTable 5-14. SDP Differential Insertion Loss Examples for Gen 2 speed with CoaxialConstructionFrequency 34AWG 32AWG 30AWG 28AWG0.625 GHz -1.6 dB/m -1.3 dB/m -1.1 dB/m -1.0 dB/m1.25 GHz -2.3 dB/m -1.8 dB/m -1.5 dB/m -1.3 dB/m2.50 GHz -3.5 dB/m -2.7 dB/m -2.3 dB/m -1.9 dB/m5.00 GHz -5.3 dB/m -4.2 dB/m -3.5 dB/m -3.1 dB/m7.50 GHz -7.2 dB/m -5.5 dB/m -4.9 dB/m -4.2 dB/m5.6.1.2 Mated Connector ImpedanceSuperSpeed signal routing on the PCB should minimize the stub length and minimize impedance discontinuities in the signal path. It is recommended that the SuperSpeed signals be routed on the opposite side of the PCB from the side the lead is inserted for through-hole implementations. It is recommended that the SuperSpeed signals be routed on the same side of the PCB as the solder pads for SMT implementations.For Enhanced SuperSpeed Gen 2 speed applications, electrical optimization is required to achieve the best performance. The PCB stack up, lead geometry, and solder pad geometry should bemodeled in three dimensions. Example ground voids under pads shown in Figure 5-20 are based on pad geometry, mounting type, and PCB stack up.。

usb,type,c,协会规范

usb,type,c,协会规范

竭诚为您提供优质文档/双击可除usb,type,c,协会规范篇一:usb3.1type-c公对公接点图usb3.1(type-c)接点图usb3.1type-c公对公接点图pin的四种类型:1、usb3.1中Rx、tx为高速pin;2、usb2.0数据pin;3、边频带信号pin;4、电源及地线pin.图表中a6,a7为usb2.0的数据pin;a8,b8为预留pin;a5,b5为配置通道或有源器件电源;配置通道的功能:1、探测usbtypec连接器端口是否插配,从而决定如何配置电源的供应;2、探测usbtypec公头连接器的方向性,从而决定采用哪侧的高速信号pin组传输信号;3、建立连接的主从关系;4、探测连接的额电流水平/大小,控制或配置电源的供应水平;5、usbpd通讯;6、给有源器件供应电源;7、功能延伸。

usbtypec连接器-公头设计指南:使用高性能的pcb基板材料。

推荐pcb厚度应该有一个公差小于或等于±10%的usb插针间距;篇二:typec数据线规格书typec数据线规格书V1.0关键词:typec、数据线摘要:本文介绍了数据线的规格,性能及测试规范。

缩略语:1范围标准适用于typeatoc数据线需求规格书,未尽规格描述以typec协会规范V1.1为准。

2编写依据3数据线正常工作和存储条件3.1数据线应能在下列条件下正常工作:3.1.1工作环境温度:-20℃~+55℃;(仅作单体验证目的,与整机匹配时以整机试验环境为准);3.1.2相对湿度:5%~95%;3.1.3大气压力:86kpa~106kpa;3.1.4数据线的存储温度:-40℃~+85℃;4数据线主要参数4.1数据线连线规格详细尺寸以及工艺要求以3d图档为准1、typec金属插头,要求必须是整体拉伸成型,不能是折弯成型,不接受接缝;2、金属插头部分,要求做不锈钢原色,表面喷砂处理:50u”~150u”mattnickelplatingoVeRall3、保证至少3a通流能力整条线缆产品详细规格(bom清单,包括端子图纸2d&可拆解版本的3d)要有确认才能认可(认证时必须提供以上文件)。

Type C协会标准规范

Type C协会标准规范

Coupling between VBus and differential USB D+/D-
≦-40dB for 0.3MHz<f≦ 30MHz, and ≦
19.12log10(f/30)-40(in dB) for 30MHz<f≦ 100MHz
Single-ended coupling between SBU_A and CC,
SBU_B and CC
Single-ended coupling between CC and D-
The limit is defined with the vertices of
(0.3MHz, -65dB), (1MHz, -55dB), (18MHz, -30dB), and (100MHz, -
25dB) in scale of log10(f)
The limit is defined with the vertices of
(0.3MHz, -80dB), (30MHz, -40dB) and (100MHz, -40dB) in scale of log10(f)
≦ 900 nH
Vbus capacitance
Group B-1 Type C connector and cable assembly mechanical tests
Cable pull out 線材吊重
協會標準 40 N Minmum, 線材組裝 需無電性斷開且線材不會
從CONN分離
Cable flex 線材柔軟
No loss of continuity during cycling
Single-ended coupling between SBU_A and SBU_B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Figure 3-1 USB Type-C Receptacle Interface DimensionsFigure 3-1 USB Type-C Receptacle Interface Dimensions, cont.Figure 3-2 Reference Design USB Type-C Plug External EMC Spring Contact ZonesFigure 3-3 USB Full-Featured Type-C Plug Interface DimensionsFigure 3-4 Reference Footprint for a USB Type-C Vertical Mount Receptacle(Informative)Figure 3-5 Reference Footprint for a USB Type-C Dual-Row SMT Right AngleReceptacle (Informative)Figure 3-6 Reference Footprint for a USB Type-C Hybrid Right-Angle Receptacle(Informative)Figure 3-7 Reference Footprint for a USB Type-C Mid-Mount Dual-Row SMT Receptacle(Informative)Figure 3-8 Reference Footprint for a USB Type-C Mid-Mount Hybrid Receptacle(Informative)This specification requires that all contacts be present in the mating interface of the USB Type-C receptacle connector, but allows the plug to include only the contacts required for USB PD and USB 2.0 functionality for applications that only support USB 2.0. The USB 2.0 Type-C plug is shown in Figure 3-9. The following design simplifications may be made when only USB 2.0 is supported:∙Only the contacts necessary to support USB PD and USB 2.0 are required in the plug.All other pin locations may be unpopulated. See Table 3-5. All contacts are required to be present in the mating interface of the USB Type-C receptacle connector.∙Unlike the USB Full-Featured Type-C plug, the internal EMC springs may be formed from the same strip as the signal, power, and ground contacts. The internal EMC springs contact the inner surface of the plug shell and mate with the receptacle EMC pads when the plug is seated in the receptacle.∙ A paddle card inside the plug may not be necessary if wires are directly attac hed to the contact pins.Figure 3-9 USB 2.0 Type-C Plug Interface Dimensions3.2.2Reference DesignsThis section provides reference designs for a few key features of the USB Type-C connector. The reference designs are provided as acceptable design examples. They are not normative.3.2.2.1Receptacle Mid-Plate (Informative)The signals between the top and bottom of the receptacle tongue are isolated by a mid-plate inside the tongue. Figure 3-10 shows a reference design of the mid-plate. It is important to pay attention to the following features of the middle plate:∙The distance between the signal contacts and the mid-plate should be accurately controlled since the variation of this distance may significantly impact impedance of the connector.∙The mid-plate in this particular design protrudes slightly beyond the front surface of the tongue. This is to protect the tongue front surface from damage caused by miss-insertion of small objects into the receptacle.∙The mid-plate is required to be directly connected to the PCB ground with at least two grounding points.∙The sides of the mid-plate mate with the plug side latches, making ground connections to reduce EMC. Proper surface finishes are necessary in the areaswhere the side latches and mid-plate connections occur.Figure 3-10 Reference Design of Receptacle Mid-Plate3.2.2.2Side Latch (informative)The side latches (retention latches) are located in the plug. Figure 3-11 shows a reference design of a blanked side latch. The plug side latches should contact the receptacle mid-plate to provide an additional ground return path.Figure 3-11 Reference Design of the Retention LatchFigure 3-12 Illustration of the Latch Soldered to the Paddle Card Ground3.2.2.3Internal EMI Springs and Pads (Informative)Figure 3-13 is a reference design of the internal EMC spring located inside the USB Full-Featured Type-C plug. Figure 3-14 is a reference design of the internal EMC spring located inside the USB 2.0 Type-C plug.Figure 3-13 Reference Design of the USB Full-Featured Type-C Plug Internal EMCSpringFigure 3-14 Reference Design of the USB 2.0 Type-C Plug Internal EMC SpringIt is critical that the internal EMC spring contacts the plug shell as close to the EMC spring mating interface as possible to minimize the length of the return path.The internal EMC pad (i.e., ground plate) shown in Figure 3-15 is inside the receptacle. It mates with the EMC spring in the plug. To provide an effective ground return, the EMC pads should have multiple connections with the receptacle shell.Figure 3-15 Reference Design of Internal EMC Pad3.2.2.4Optional External Receptacle EMC Springs (Informative)Some applications may use receptacles with EMC springs that contact the outside of the plug shell. Figure 3-16 shows a reference receptacle design with external EMC springs. The EMC spring contact landing zones for the fully mated condition are normative and defined in Section 3.2.1.Figure 3-16 Reference Design of a USB Type-C Receptacle with External EMC Springs。

相关文档
最新文档