《数字信号处理》实验
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告

《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
《数字信号处理》实验

《数字信号处理》实验一、实验要求1.上机期间不允许玩游戏。
若发现,以实验不通过记分。
实验不通过者,本课程成绩记为0分。
2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。
上机期间认真独立完成实验内容,不能相互抄袭。
3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。
否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不可。
4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。
二、实验内容1.利用傅立叶级数展开的方法,自由生成所需的x(t);2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。
三、实验工具可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。
四、实验时间、地点12月16日晚上(在计算中心E楼202、205机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。
2011年8月30日。
数字信号处理实验

FG 708S信号源
►功能按键(改变输出波形) ►Fstep/衰减按键(使用衰减项改变输出衰减) ►幅度旋钮 (幅度微调) ►大旋钮(改变各功能项的取值) ►当使用幅度微调旋钮无法使信号幅度进一步
减小时,可将信号源输出衰减设置为20dB或 40dB。
示波器简介
►手动示波器自检测 ►观察信号波形 ►测量信号幅度
Ext Bus
FG-506信号源
► Mode/Func(模式 /函数) ► Range/Attn(频率范围粗调/衰减) ► Frequency (频率微调) ► Amplitude (幅度微调) ► 注意:实验中需要用信号源产生的信号应满足峰峰
值小于1V的条件,否则实验板将无法正常对其处理, 甚至影响电路板正常运行,导致实验不能顺利完成。 ► 当使用幅度微调旋钮无法使信号幅度进一步减小时, 可将信号源输出衰减设置为20dB或40dB。
实验安排
► 两人一组合作完成实验,第一次实验选定的实验桌 和实验设备,以后的实验应继续选用;
► 不得随意调换实验时间,如遇特殊情况需调换时间, 应提前向指导教师说明;
► 实验经过指导教师检查并允许后才可离开,离开前 应将实验桌上的器材收拾整齐;
► 最后完成实验的三组同学负责打扫卫生。
实验内容及考核方法
实验电路板JTAG插座 <==>
带JTAG插头的仿真盒 <==>
JTAG电缆(USB电缆) <==>
USB
PC机端口(USB端口)
电缆
USB电缆和仿真盒之间的接插口是有方向的!
JTAG
► 连接正确后,再给DSP电路板加电 !
仿真盒
► 拆除仿真连接时,先给DSP硬件
数字信号处理实验报告

数字信号处理实验报告实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。
2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容(1)在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,用DFT分析上述各信号的频谱结构,选取不同的采样频率和截取长度,试分析频谱发生的变化。
实验内容(2)设x(n)=cos(0.48*π*n)+ cos(0.52*π*n),对其进行以下频谱分析:10点DFT,64点DFT,及在10点序列后补零至64点的DFT 试分析这三种频谱的特点。
四、实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。
2.复习FFT算法原理和基本思想。
3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验程序和结果实验1内容(1)N=L/T+1;t=0:T:L;a=48;D1=2*pi/(N*T); % 求出频率分辨率k1=floor((-(N-1)/2):((N-1)/2)); % 求对称于零频率的FFT位置向量%%%%%%%%%%%%%%%%%%%%%%%%%figure(1),x1=cos(100*pi*a*t);y1=T*fftshift(fft(x1));%虽然原来是周期信号,但做了截断后,仍可当作非周期信号。
subplot(2,1,1),plot(t,x1);title('正弦信号');subplot(2,1,2),plot(k1*D1,abs(y1));title('正弦信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(2), x2=exp(-a*t);y2=T*fftshift(fft(x2));%有限长(长度为N)离散时间信号x1的dft 再乘T 来近似模拟信号的频谱,长度为Nsubplot(2,1,1),plot(t,x2);title('指数信号');subplot(2,1,2),plot(k1*D1,abs(y2));title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(3), x3=x1.*x2;y3=T*fftshift(fft(x3))subplot(2,1,1),plot(t,x3);title('两信号相乘');subplot(2,1,2),plot(k1*D1,abs(y3));title('两信号相乘频谱');0.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.140.160.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.0005 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-2000200040006000800000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51指数信号-8000-6000-4000-20000200040006000800000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-20000200040006000800000.0050.010.015两信号相乘频谱T=0.002 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-2000-1500-1000-50050010001500200000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51-2000-1500-1000-500050010001500200000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-2000-1500-1000-500050010001500200000.0050.010.015两信号相乘频谱T=0.001 L=0.180.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-1000100020003000400000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.180.51指数信号-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.001 L=0.120.020.040.060.080.10.12-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.12-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱实验1内容(2)>> N=10;n=1:NT=1x1=cos(0.48*pi*n*T)+cos(0.52*pi*n*T)X1=fft(x1,10)k=1:N;w=2*pi*k/10subplot(3,2,1);stem(n,x1);axis([0,10,-3,3]);title('信号x(n)');subplot(3,2,2);stem(w/pi,abs(X1));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2=100;n2=1:N2T=1x1=cos(0.48*pi*[1:10]*T)+cos(0.52*pi*[1:10]*T)x2=[x1,zeros(1,90)]X2=fft(x2,N2)k2=1:N2;w2=2*pi*k2/100subplot(3,2,3);stem(x2);axis([0,100,-3,3]);title('信号x(n)补零');subplot(3,2,4);plot(w2/pi,abs(X2));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N3=100;n3=1:N3T=1x3=cos(0.48*pi*n3*T)+cos(0.52*pi*n3*T)X3=fft(x3,100)k3=1:N3;w3=2*pi*k3/100subplot(3,2,5);stem(n3,x3);axis([0,100,-3,3]);title('信号x(n)');subplot(3,2,6);stem(w3/pi,abs(X3));axis([0,1,0,10]);title('DFTx(n)');n =1 2 3 4 5 6 7 8 9 10 T =1510-202信号x(n)0.510510DFTx(n)50100信号x(n)补零0.510510DFTx(n)50100信号x(n)DFTx(n)实验二 卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。
数字信号处理实验

抽样定理: 1、分别对三角波和正弦波抽样,至少给出三 个抽样频率的结果。一个满足抽样定理,一个 不满足抽样定理,另一个随意。 信号恢复 2、分别对三个抽样结果进行信号恢复。
要求:实验报告中有理论分析。 可以用信号与系统实验箱做,也可以用matlab或C 做。
实验2:FFT频谱分析实验
1、用matlab或C编程计算N点序列x(n)的N 点DFT和FFT。 2、设x(n)=R8(n),求x(n)的离散傅立叶变换, 给出幅频图像和相频图像,然后用上述程序 求16点和32点的DFT及FFT. 给出
要求:实验报告中有理论分析(要有计算量的表 示)。
实验3:IIR滤波器设计实验
1、已知通带截止频率为5KHz,通带最大衰减2dB, 阻带截止频率12KHz,阻带最小衰减30dB,按照如 上指标设计巴特沃斯低通滤波器。 2、用双线性变换法设计一个带通数字滤波器,通带 频率为20~ 30Hz,在通带内的最大衰减为0.5dB在 频率为10Hz和40Hz的最小衰减为50dB,在阻带内, 采样频率为150Hz。 要求:实验报告中有理论分析(要有双线性变换 法的变换式,说明模拟频率和数字频率的关系)。
实验4:窗函数法FIR滤波器设计实验
• 利用矩形窗、汉宁窗(Hanning)、海明窗(Hamming) 设计线性相位FIR低通滤波器,要求通带截止频率 c 4 • 求出分别对应的单位脉冲响应,并进行比较。
• 画出单位脉冲响应图形和对数幅度响应图形。
数字信号处理实验报告完整版[5篇模版]
![数字信号处理实验报告完整版[5篇模版]](https://img.taocdn.com/s3/m/7b21a71bb5daa58da0116c175f0e7cd184251866.png)
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》实验
一、实验要求
1.上机期间不允许玩游戏。
若发现,以实验不通过记分。
实验不通过者,本课程成绩记为0分。
2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。
上机期间认真独立完成实验内容,不能相互抄袭。
3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。
否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不
可。
4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。
二、实验内容
1.利用傅立叶级数展开的方法,自由生成所需的x(t);
2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);
3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);
4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两
种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出
的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;
5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种
数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的
不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。
三、实验工具
可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。
四、实验时间、地点
11月19日下午2:00(在计算中心E楼205、208机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。