球的内切和外接问题

合集下载

内切球和外接球常见解法

内切球和外接球常见解法

内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。

在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。

以下将介绍一些常见的解法。

1. 解法一:利用勾股定理求解。

内切球和外接球都可以利用勾股定理求解。

以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。

整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。

而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。

欧拉定理是内切球和外接球求解的另一个重要工具。

欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。

对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。

利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。

点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。

对于一些优化问题,内切球和外接球也可以通过线性规划求解。

例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。

可以使用线性规划求解器求解其最优解。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

与球有关的内切、外接问题

与球有关的内切、外接问题

(2)三棱锥A-BCD,侧棱长为2 5 ,底面是边长为2 3 的等边三角形, 125
则该三棱锥外接球的体积为___6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面 BCD的中心且AO垂直于底面BCD,O′在线段AO上, O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2, AD=2 5,
(2) 三 棱 锥 A - BCD 的 四 个 面 都 是 直 角 三 角 形 , 且 侧 棱 AB 垂 直 于 底 面
BCD,BC⊥CD,AB=BC=2,且VA-BCD=
4 3
,则该三棱锥A-BCD外接
球的体积为__4___3_π__.
解析 因为AB⊥BC,BC⊥CD,构造如图所示的长方体, 则AD为三棱锥A-BCD的外接球的直径. 设外接球的半径为R. ∵VA-BCD=13×12×BC×CD×AB=16×2×CD×2=43, ∴CD=2,∴该长方体为正方体,∴AD=2 3,∴R= 3, 外接球体积为 V=43πR3=4 3π.
B,C,D都在同一球面上,则此球的体积为___3__.
解析 如图,设正四棱锥的底面中心为O1, ∴SO1垂直于底面ABCD,令外接球球心为O, ∴△ASC的外接圆就是外接球的一个轴截面圆, 外接圆的半径就是外接球的半径. 在△ASC 中,由 SA=SC= 2,AC=2,
得SA2+SC2=AC2. ∴△ASC是以AC为斜边的直角三角形. ∴A2C=1 是外接圆的半径,也是外接球的半径. 故 V 球=43π.
∴AO= AD2-OD2=4,∴OO′=4-R,
又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52,∴V 球=43πR3=1625π.
反思 感悟

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。

它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。

本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。

一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。

在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。

2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。

在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。

二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。

以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。

这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。

2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。

以正方形为例,内切圆的半径等于正方形的边长的一半。

这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。

三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。

例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。

2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。

例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。

个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。

通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。

球的内切、外接问题

球的内切、外接问题
2、三棱锥的各个棱长度均为a ,求其
6a
内切球的半径为 12
新课导入
• 例2.已知△ABC为等边三角形,边长为a.⊙O为
△ABC的外接圆,求⊙O的半径.
解:设⊙O的半径为R,连结OA,OC,
过A做三角形的高AD,点O在AD上.
A
3 AD= a OA=OB=R
2
OD=AD-OA= 3 a-R
2
O
在RtODC中OB2 =OD2 +DC2
S1S2 S2 )
球(半径为r)
S=4 r2
V= 4 r3
3
课前检测
• 二、做得对 • 1.球的体积与其表面积的数值相等,则球的半
径等于( C)
• A. 1 B.2 C.3 D.4 • 2.火星的半径约是地球的一半,地球表面积是
火星表面积的_4__倍. • 3.若一个球的体积为4 3 ,则它的表面积为
3 32
3
PE= PA2 -AE2
O
PE= 2 3 3
OA=R OE=PE-OP= 2 3 -R
3
A
在RtOAE中OA2 =OE2 +AE2
E
D
F
B
即R2 =( 2 3 -R)2 + 2
3
3
R= 3 S=4 R2 =3
2
课堂小结
解决与球有关的内切与外接问题的
关键是:
1、将多面体分割成多个三棱锥 2、通过寻找恰当的过球心的截面,把立体问 题转化为平面问题,通过解三角形求出球的 半径R.
1_2_π___. • 4.已知球的半径为 10 cm,若它的一个截面圆
的面积是36π cm2,则球心与截面圆周圆心的距 离是__8_c_m__.

球的内切、外接问题

球的内切、外接问题
例 10 若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求
P
球的表面积.
解1:作出截面图如图示. 由图可知,
3
AD
a,
2
2
3
AO AD
a.
3
3
a
6
2
2


∴PO PA AO
a.
3
6
∴OO PO PO
a R.
3
P
a
R
R
A
A
R O•
O•

O′
解得R
时,球内切于圆锥,如图所示,
O为球心,M为球O与母线PB的切点,E为底面圆心,
设球O的半径为R,底面圆E的半径为r,
因为圆锥侧面积为2π,
LOGO
(4)正棱锥、圆锥 ②外接球
例8 正四棱锥的五个顶点在同一个球面上,若该正
四棱锥的底面边长为4,侧棱长为2 6,求这个球
P
的表面积. 36π
PO′= 4,OO′=4-R,AO=R
2 6
AO2 = OO′ 2 + AO′ 2,
R=3

O′
R
R
A
O
O•

O′
O′

O
LOGO
(4)正棱锥、圆锥 ②外接球
正棱锥外接球半径求法——轴截面法
1.球心在棱锥的高所在的直线上
2.球心到底面外接圆圆心的距离d等于锥体的高h 减去球半径R的绝对值
d= |h -R |
P
3. R 2 r 2 (h R ) 2
4
9
O
1
, 解得r= 3
轴截面法

球的内切与外接问题

球的内切与外接问题

02 球的外接问题
球的外接几何体
球的外接三角形
一个球的外接三角形是指 一个内接于球的三角形, 其三条边的中点都在球的 球面上。
球的外接多边形
一个球的外接多边形是指 一个内接于球的n边形,其 所有顶点都在球的球面上。
球的外接圆柱
一个球的外接圆柱是指一 个内接于球的圆柱,其底 面圆心与球心重合。
球的外接线与半径
球的内切与外接问
目录
• 球的内切问题 • 球的外接问题 • 球的内切与外接问题的应用 • 球的内切与外接问题的数学原理 • 球的内切与外接问题的实际案例
01 球的内切问题
球的内切几何体
01
02
03
球的内切正方体
球心与正方体的一个顶点 重合,正方体的对角线等 于球的直径。
球的内切长方体
长方体的一个角顶点位于 球心,长方体的体对角线 等于球的直径。
球的外接圆
一个球的外接圆是指一个内接于 球的圆,其圆心位于球的球面上 。
球的半径
球的半径是指从球心到球面的距 离。
球的外接多面体
球的外接正多面体
一个球的外接正多面体是指一个内接 于球的n面体,其所有面都是等边三 角形或等边四边形。
球的外接非正多面体
一个球的外接非正多面体是指一个内 接于球的n面体,其面可以是等边三角 形、等边四边形或等腰三角形等。
根据球的外接定理,推导出多面体的所有顶点都在球面上, 以及多面体的所有边都与球的半径相等的条件。
05 球的内切与外接问题的实 际案例
建筑设计中的球内切与外接问题
建筑设计中的球内切问题
在建筑设计领域,球内切问题通常涉及到如何将一个球体完美地放入一个给定的空间内,使得球体与 空间边界相切。例如,在建造穹顶或大型球形结构时,需要精确计算球体的大小和位置,以确保其与 周围结构相切。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球与多面体的外接、内切
定义1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球
一、直接法
1、求正方体的外接球的有关问题 例1、若棱长为3的正方体的顶点都在同一球面上,则该 球的表面积为 27.
3 2 6 2 3 a a a 12 3 12

1 3V A BCD S 表 r V A BCD r 3 S表
R=3r
2 3 3 a 6 12 a 2 12 3a
(1)正多面体存在内切球且正多面体的中心为内切球的球心. (2)求多面体内切球半径,往往可用“等体积法”.
2、构造长方体
, BC DC
A
AB 6, AC=2 13,AD=8 ,
则B、C两点间的球面距离是
. 4 3
B
O
C
D
图5
三、确定球心位置法
在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个 直二面角B-AC-D,则四面体ABCD的ห้องสมุดไป่ตู้接球的体积为( C )
125 A. 12
2、求长方体的外接球的有关问题
例2、一个长方体的各顶点均在同一球面上,且一个顶点上的 三条棱长分别为1,2,3 ,则此球的表面积为 .
二、构造法 1、构造正方体 例3、若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其 外接球的表面积是 变式题(浙江高考题)已知球O的面上四点A、B、C、D, DA 平面ABC,AB BC, DA AB BC 3 则球O的体积等于
125 B. 9
125 C. 6
125 D. 3
D C B
A
O 图4
四、构造直角三角形 例、求棱长为1的正四面体外接球的体积.
解:设SO1是正四面体S ABCD的高,外接球的球心 O在SO1上,设外接球半径为 R, AO1 r , 则在ABC中,用解直角三角形知 识得,r 3 1 2 2 , 从而SO1 SA2 AO1 1 , 3 3 3
3 (3)正四面体内切球半径是高的 4 ,外接球半径是高的 4 .
(4)并非所有多面体都有内切球(或外接球).
1 V多 S表 R内切 3 1
解:设点o是内切球的球心,正四面体棱长为a. 由图形的对称性知,点o也是外接球的球心. 设内切球半径为r,外接球半径为R. 正四面体的表面积 S 表 4 3 a 2 3a 2
VA BCD 正四面体的体积 1 3 2 3 2 a AE a 3 4 12
O
4
AB 2 BE 2
D
O
A O C
C
A
B
图4
P
B
例4、 求棱长为 a 的正四面体 A – BCD 的外接球的表面积。 变式题:1、一个四面体的所有棱长都为 2 ,四个顶点在同一球面上,
3 则此球的表面积为_________
A B A B
O
D C C
O
D
求正多面体外接球的半径
求正方体外接球的半径
已知点A、B、C、D在同一个球面上, AB 平面BCD
2 2
2 3 6 ,解得R 在RtAOO1中,由勾股定理得, R2 R , 3 3 4 4 3 4 6 6 V球 R . 3 3 4 8
3
几何体的内切球
正四面体的棱长为a,则其内切球和外接球的半径 是多少?
相关文档
最新文档