2012年全国大学生电子设计竞赛报告
12年A题实验报告(微弱信号检测装置)要点

2012年全国大学生电子设计竞赛【本科组】微弱信号检测装置(A题)摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。
该系统由加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。
其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路和显示电路完成微小信号的检测和显示在液晶屏上。
本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4053,最后通过低通滤波器输出直流信号检测出微弱信号,将该直流信号送入单片机处理后,液晶显示出来。
经最终的测试,本系统能较好地完成微小信号的检测。
关键词:微弱信号强噪声相敏检测Abstract: The system is of weak signal detection based on lock-in amplifier device, used for the detection of known weak sinusoidal signal under strong noise background frequency amplitude. The system consists of an adder, pure resistor divider network, weak signal detection circuit and display circuit. The adder and the pure resistor divider network to produce small signal, weak signal detection circuit and display circuit to complete the detection of tiny signal and displayed on the LCD screen. The system is based on a phase sensitive detector as the core, the reference signal through the phase shifter, then through the comparator produces Fang Bo todrive switch multiplier CD4053, finally through the low pass filter output DC signal detection ofweak signal, the DC signal into the microcontroller processing, liquid crystal display. The final test, the system can achieve the tiny signal.Key Word:weak signal strong noise phase sensitive detection目录摘要: (1)1. 系统设计 (3)1.1设计要求 (3)1.1.1设计任务 (3)1.1.2技术指标 (3)1.2方案比较与选择 (4)1.2.1微弱信号检测模块方案比较 (4)1.2.2移相网络模块方案比较 (4)1.2.3电阻分压模块方案比较 (5)1.3方案论证 (5)2.单元电路设计及参数计算 (5)2.1加法器电路 (5)2.4带通滤波电路 (7)2.5相敏检波电路 (7)2.7低通滤波电路 (8)3. 软件设计 (9)3.1程序总体流程图 (9)3.2程序清单(见附录2) (9)4.系统测试 (9)4.1测试仪器 (9)4.2测试结果 (10)5. 结束语 (10)参考文献 (10)附录 (10)附录1 主要元器件清单 (10)附录2 程序清单 (11)1.系统设计1.1设计要求1.1.1设计任务设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值,并数字显示出该幅度值。
2012年全国大学生电子设计竞赛模拟电子设计专题邀请赛

序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生1-1一等奖(TI杯)C重庆邮电大学(TI杯)X-Y信号产生与图形显示孙辛泉陈华周瑜1-2一等奖A重庆大学高效LED驱动电路顾师达邹莘剑王骏逸1-3一等奖A成都信息工程学院高效LED驱动电路丁健贾奥徐浩1-4一等奖A东南大学高效LED驱动电路张添翼刘文贾子昱1-5一等奖B南京邮电大学简易电子秤高小星李浩佟亚波1-6一等奖B解放军理工大学简易电子秤王飞朱江波余强强1-7一等奖B成都理工大学简易电子秤周刚廖斌黄河1-8一等奖B西安交通大学简易电子秤乔思祎薛琼鲁润道1-9一等奖B东南大学简易电子秤王国鹏李多杨彬祺1-10一等奖C华中科技大学X-Y信号产生与图形显示屠志晨李蔚琳张力戈1-11一等奖C西安电子科技大学X-Y信号产生与图形显示李小双张禄鹏乔海东2-1二等奖A南开大学高效LED驱动电路丁涛张欢夏玉昊2-2二等奖A重庆邮电大学高效LED驱动电路黄国臣龙小伍肖颖2-3二等奖A杭州电子科技大学高效LED驱动电路邴硕存何泽骅吕洋2-4二等奖A南京大学高效LED驱动电路赖竞炜黄开成郭宇晗2-5二等奖A江南大学高效LED驱动电路张水春王哲嵇达勇2-6二等奖B哈尔滨工程大学简易电子秤吴谋炎张腾陈恺翔2-7二等奖B南京航空航天大学简易电子秤蒋鹏飞杨刚陆欣2-8二等奖B武汉理工大学简易电子秤孙文丰史晓莹王璐2-9二等奖B武汉理工大学简易电子秤杨明倪浩兰军健2-10二等奖B电子科技大学简易电子秤韩冬宋志达康冬亮2-11二等奖B复旦大学简易电子秤姚舜扬施明茅魁元2-12二等奖B南京航空航天大学简易电子秤金宇全颖顾宇昌2-13二等奖B上海交通大学简易电子秤张颖异杨博王鑫序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生2-14二等奖C山东大学X-Y信号产生与图形显示曾新贵颜发才杨关锁2-15二等奖C同济大学X-Y信号产生与图形显示任毅杨力博李思君2-16二等奖C东南大学X-Y信号产生与图形显示倪蕤童华清奚锦程2-17二等奖C南京邮电大学X-Y信号产生与图形显示史学良汤吉波陆一3-1三等奖A同济大学高效LED驱动电路陈剑黄旭南严骏华3-2三等奖A华南理工大学高效LED驱动电路林志鸿陈晓仕张泽平3-3三等奖A武汉大学高效LED驱动电路王佳华邹仁亭肖伟3-4三等奖A西南交通大学高效LED驱动电路李勇李路遥雍培元3-5三等奖A北京理工大学高效LED驱动电路朱翔宇谭思远喻涛3-6三等奖A东北大学高效LED驱动电路方智常韫恒邓迅3-7三等奖A南京大学高效LED驱动电路王鸿祥吴冰赵鑫3-8三等奖A武汉大学高效LED驱动电路黄小帅白清滨郑天宇3-9三等奖A华中科技大学高效LED驱动电路邱贞平姚金肖张能3-10三等奖A北京理工大学高效LED驱动电路王主彬王翊坤范轶阳3-11三等奖A上海大学高效LED驱动电路陶佳鸣薛子威苏忠煌3-12三等奖A西南交通大学高效LED驱动电路李飞腾王希平薛子涵3-13三等奖B河海大学简易电子秤张翼翔汪兴岳黄为民3-14三等奖B西安交通大学简易电子秤赵耀徐兴良张敬强3-15三等奖B西安电子科技大学简易电子秤郑义王晗昱孙景鑫3-16三等奖B浙江大学简易电子秤李如晖陈樱芝赵越3-17三等奖B解放军理工大学简易电子秤徐艳杨涛林志3-18三等奖B苏州大学简易电子秤杨州姚烨余磊3-19三等奖B杭州电子科技大学简易电子秤李欢柯若维奕科杰3-20三等奖B上海第二工业大学简易电子秤陈治龙邓欢赵雪鹏序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生3-21三等奖B北京邮电大学简易电子秤倪炜恒李博张饶3-22三等奖B河海大学简易电子秤沈后威程林宋明超3-23三等奖B苏州大学简易电子秤王一丹邵尉马崇琦3-24三等奖B上海交通大学简易电子秤赵鹏刘松陈嘉庚3-25三等奖B华中科技大学简易电子秤张梦阳申阁邵成3-26三等奖B哈尔滨工业大学简易电子秤丁建旺魏树银李竹奇3-27三等奖B上海海事大学简易电子秤许虎梁凯岳虎3-28三等奖B北京交通大学简易电子秤王欣然毛静娜郭子渝3-29三等奖B华东理工大学简易电子秤倪光耀王逸宁罗颖3-30三等奖B大连理工大学简易电子秤江磊王野韩承达3-31三等奖C复旦大学X-Y信号产生与图形显示刘彦洲王欣郭威3-32三等奖C南京师范大学X-Y信号产生与图形显示倪浩潘柯文杨佳3-33三等奖C大连理工大学X-Y信号产生与图形显示阮新宇罗汀鲁昂3-34三等奖C桂林电子科技大学X-Y信号产生与图形显示张扬帆王德雨卢文登3-35三等奖C四川师范大学X-Y信号产生与图形显示任宸莹刘兆瑞王灿灿3-36三等奖C电子科技大学X-Y信号产生与图形显示杨慧然刘未洋周末3-37三等奖C东华大学X-Y信号产生与图形显示胡江浩石纪军陆乔3-38三等奖C桂林电子科技大学X-Y信号产生与图形显示宋金坤李金勇黄文斌3-39三等奖C南京师范大学X-Y信号产生与图形显示苏露李成志蒋一戈注:上述排名不代表得分排序。
全国大学生电子设计竞赛报告要求及格式

全国大学生电子设计竞赛设计报告要求及格式设计报告内容:一、封面:单独1页见样件二、摘要:中文200~300字,单独1页三、设计报告正文:1 前言:简述本设计要解决的主要问题或要达到的目标即设计题目给定的设计要求的主要内容,对应采用的实现方法及手段这点与摘要相似;一般这部分不宜太长,300字左右;2 系统方案设计:包括方案比较、方案论证、方案选择;以方框图的形式给出各方案,至少针对2个及以上方案进行;方案比较、论证要充分,方案选择要合理、正确;3 理论分析与计算根据设计要求达到的性能指标及实现的功能,必须进行理论分析及必要的计算,说明如何保证;4 系统电路设计:①说明各单元模块的功能,同时进行电路设计要有对应的单元电路图;②电路参数的计算及元器件的选择;③特殊器件的简介;④各单元模块的联接即接口问题;5 系统软件设计:①说明软件设计原理及设计所用工具;②画出软件设计结构图、说明其功能;③画出主要软件设计流程框图;6 系统测试:包括系统指标参数及功能的测试,说明测试方法与测试内容;1列出主要的测试仪器、仪表;2系统测试:①说明测试方法;②要求有完整的测试参数记录表及测试数据;③系统功能测试:测试或说明系统能实现的功能;3测试结果分析:对测试的系统指标参数及实现的功能分析与设计要求对比进行,指出指标参数及实现的功能的整体完成情况,重点分析指标及功能达不到要求的原因或功能、指标较优是如何实现的;7 结束语结论:②对设计制作进行小结,总结得失及收获体会;②对设计制作的不理想及不完善处提出进一步改进的设想;四、附录:①相关设计图必须包含一张系统总图;②相关设计程序主程序、部分子程序;设计报告格式:设计报告统一用A4纸打印,设计报告正文大标题用小三号宋体、小标题用四号宋体、内容用小四号宋体,报告正文为单倍行距;报告从正文开始统一编页码,报告每页上方必须留出3cm空白,空白内不得有任何文字,以便顶端密封装订;设计报告要求6页;特别注意:设计报告封面及内容中不能出现参赛队的任何信息包括学校名称、学生姓名等,否则,视为违规。
全国大学生电子设计竞赛报告格式

全国大学生电子设计竞赛报告格式第一篇:全国大学生电子设计竞赛报告格式全国大学生电子设计大赛论文报告格式设计报告内容:1.封面:单独1页(见样件)2.摘要、关键词:中文(150~200字)、英文;单独1页3.目录:内容必要对应页码号4.设计报告正文:一、前言:二、总体方案设计:包括方案比较、方案论证、方案选择(以方框图的形式给出各方案,并简要说明)三、单元模块设计:①各单元模块功能介绍及电路设计;②电路参数的计算及元器件的选择;③特殊器件的介绍;④各单元模块的联接,以一个模块为一个框,画出框的联接图并简要说明。
四、系统调试:说明调试方法与调试内容,软件仿真放这里。
五、系统功能、指标参数:①说明系统能实现的功能;②系统指标参数测试,说明测试方法,要求有测试参数记录表;③系统功能及指标参数分析(与设计要求对比进行)。
六、设计总结:包括:①对设计的小结;②设计收获体会;③对设计的进一步完善提出意见或建议。
5.参考文献:如:[1]陈武凡.小波分析及其在图像处理中的应用.科学出版社,2002.01.[2][3]6.附:①系统原理图;设计报告格式:设计报告统一用A4纸打印,设计报告正文大标题用小三号宋体、小标题用四号宋体、内容用小四号宋体。
报告从正文开始统一编页码、左侧装订。
设计报告要求20页左右。
竞赛结束时,参赛队需要上交的材料包括:(1)《设计报告》;(2)制作实物;(3)《全国大学生电子设计竞赛登记表》。
上述材料使用赛区统一制作的封条,封入由各校自备的纸箱。
密封后的纸箱外部不得出现任何校名、参赛队代号、参赛队员姓名及其它暗记,否则视为无效。
纸箱封条由赛区组委会自备,各参赛学校必须按照赛区组委会要求的时间、地点上交参赛作品。
《设计报告》写作与装订要求《设计报告》正文的图文篇幅限制为6页,第一页含300字以内的设计中文摘要,正文采用小四号宋体字,单倍行距,标题字号自定,一律采用A4纸,页面纵向打印、装订,装订时第一页为空白页。
全国大学生电子设计竞赛设计报告格式

二、关键词
要求具有专指性 。一个词表达一个主题概 念。限制不加组配的泛指词的使用,以免出 现概念含糊的情况。 例如:在题为《简易数字存储示波器》的报 告中,作者选用“示波器”作为关键词之一, 但 “示波器”有“模拟示波器”和“数字 示波器”之分,该文指的显然是“数字示波 器”,因此,应选用专指性强的词“数字示 波器”为关键词。 第一关键词应能体现出文章的学科分类。
摘要分类:
报道性摘要、指示性摘要和报道―指示性摘要。 • 通常学位论文、学术论文、技术报告及总结报告等科技 文献采用报道性摘要 • 综述、述评及进展报告等介绍性文献采用指示性摘要。
摘要的要素有:目的、方法、结果和结论
(1)研究目的: 准确描述该研究的目的,表明研究的范围 和重要性。 (2)研究方法: 简要说明研究课题的基本设计, 结论是如何 得到的。 (3)结果: 简要列出该研究的主要结果,有什么新发现, 说明其价值和局限。叙述要具体、准确
(6).参考文献五号宋体,尾注。(在文章 的最后请附上项目的具体实施日程及成员 分工情况。) (7).用纸及打印规格:A4纸要求双面打印。
一、摘要
摘要是论文的重要组成部分,摘要是 论文内容的简介,摘要加以概括。高质量的摘要可以 吸引读者,反之则可能失去读者。因此, 摘要的好坏直接影响读者对论文的阅读, 影响着论文被利用的程度,论文作者必须 重视摘要的编写。
科技论文写作时应注意的其他事项,适用 于摘要的编写 如采用法定计量单位, 正确使用语言文字和标点符号等, 也同样. 目前摘要编写中的主要问题有: 要素不全,或缺目的,或缺方法;出现引 文,无独立性与自明性;繁简失当。
举例:
摘要 本项目通过不同浓度的Cr6+离子对水螅形态影响和行为变化, 揭示出它们之间关系,建立水螅对铬污染水的敏感监测模型。具体步骤 是:准备10组梯度的Cr6+离子(通过重铬酸钾来配制)从0.0 7ppm到0.7ppm,每组分别放入10个不出芽的水螅。通过时 间的积累、仔细观察他们的形态和行为变化,记录变化的细节并且拍摄 照片。数据的分析和整理则由MATLAB软件程序来进行。实验表明, 水螅对Cr6+的形态和行为变化的普遍特点是不可逆的收缩身体和触 手萎缩。在触手的顶部出现一个“鼓锤状”的结构之后,内外层的细胞 将会分解和脱落。同时捕食行为和运动行为也会停止。数据分析显示水 螅在Cr6+ 溶液中触手和身体的长度相关性在数学统计中是有意义的, 并且归结出浓度与生物指标关系的量化数学模型。我们发现水螅是一种 能够用来监测铬污染的敏感生物。上述的试验通过上海宝山钢铁总厂的 工业铬污染废水监测中验证。我们希望这些结论能够进一步运用在类似 的污染物水体中去。
2012年全国大学生电子设计竞赛模拟电子设计专题邀请赛

2012年全国大学生电子设计竞赛模拟电子设计专题邀请赛序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生1-1一等奖(TI杯)C重庆邮电大学(TI杯)X-Y信号产生与图形显示孙辛泉陈华周瑜1-2一等奖A重庆大学高效LED驱动电路顾师达邹莘剑王骏逸1-3一等奖A成都信息工程学院高效LED驱动电路丁健贾奥徐浩1-4一等奖A东南大学高效LED驱动电路张添翼刘文贾子昱1-5一等奖B南京邮电大学简易电子秤高小星李浩佟亚波1-6一等奖B解放军理工大学简易电子秤王飞朱江波余强强1-7一等奖B成都理工大学简易电子秤周刚廖斌黄河1-8一等奖B西安交通大学简易电子秤乔思祎薛琼鲁润道1-9一等奖B东南大学简易电子秤王国鹏李多杨彬祺1-10一等奖C华中科技大学X-Y信号产生与图形显示屠志晨李蔚琳张力戈1-11一等奖C西安电子科技大学X-Y信号产生与图形显示李小双张禄鹏乔海东2-1二等奖A南开大学高效LED驱动电路丁涛张欢夏玉昊2-2二等奖A重庆邮电大学高效LED驱动电路黄国臣龙小伍肖颖2-3二等奖A杭州电子科技大学高效LED驱动电路邴硕存何泽骅吕洋2-4二等奖A南京大学高效LED驱动电路赖竞炜黄开成郭宇晗2-5二等奖A江南大学高效LED驱动电路张水春王哲嵇达勇2-6二等奖B哈尔滨工程大学简易电子秤吴谋炎张腾陈恺翔2-7二等奖B南京航空航天大学简易电子秤蒋鹏飞杨刚陆欣2-8二等奖B武汉理工大学简易电子秤孙文丰史晓莹王璐2-9二等奖B武汉理工大学简易电子秤杨明倪浩兰军健2-10二等奖B电子科技大学简易电子秤韩冬宋志达康冬亮2-11二等奖B复旦大学简易电子秤姚舜扬施明茅魁元2-12二等奖B南京航空航天大学简易电子秤金宇全颖顾宇昌2-13二等奖B上海交通大学简易电子秤张颖异杨博王鑫序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生2-14二等奖C山东大学X-Y信号产生与图形显示曾新贵颜发才杨关锁2-15二等奖C同济大学X-Y信号产生与图形显示任毅杨力博李思君2-16二等奖C东南大学X-Y信号产生与图形显示倪蕤童华清奚锦程2-17二等奖C南京邮电大学X-Y信号产生与图形显示史学良汤吉波陆一3-1三等奖A同济大学高效LED驱动电路陈剑黄旭南严骏华3-2三等奖A华南理工大学高效LED驱动电路林志鸿陈晓仕张泽平3-3三等奖A武汉大学高效LED驱动电路王佳华邹仁亭肖伟3-4三等奖A西南交通大学高效LED驱动电路李勇李路遥雍培元3-5三等奖A北京理工大学高效LED驱动电路朱翔宇谭思远喻涛3-6三等奖A东北大学高效LED驱动电路方智常韫恒邓迅3-7三等奖A南京大学高效LED驱动电路王鸿祥吴冰赵鑫3-8三等奖A武汉大学高效LED驱动电路黄小帅白清滨郑天宇3-9三等奖A华中科技大学高效LED驱动电路邱贞平姚金肖张能3-10三等奖A北京理工大学高效LED驱动电路王主彬王翊坤范轶阳3-11三等奖A上海大学高效LED驱动电路陶佳鸣薛子威苏忠煌3-12三等奖A西南交通大学高效LED驱动电路李飞腾王希平薛子涵3-13三等奖B河海大学简易电子秤张翼翔汪兴岳黄为民3-14三等奖B西安交通大学简易电子秤赵耀徐兴良张敬强3-15三等奖B西安电子科技大学简易电子秤郑义王晗昱孙景鑫3-16三等奖B浙江大学简易电子秤李如晖陈樱芝赵越3-17三等奖B解放军理工大学简易电子秤徐艳杨涛林志3-18三等奖B苏州大学简易电子秤杨州姚烨余磊3-19三等奖B杭州电子科技大学简易电子秤李欢柯若维奕科杰3-20三等奖B上海第二工业大学简易电子秤陈治龙邓欢赵雪鹏序号获奖等级组别参赛学校参赛题目参赛学生参赛学生参赛学生3-21三等奖B北京邮电大学简易电子秤倪炜恒李博张饶3-22三等奖B河海大学简易电子秤沈后威程林宋明超3-23三等奖B苏州大学简易电子秤王一丹邵尉马崇琦3-24三等奖B上海交通大学简易电子秤赵鹏刘松陈嘉庚3-25三等奖B华中科技大学简易电子秤张梦阳申阁邵成3-26三等奖B哈尔滨工业大学简易电子秤丁建旺魏树银李竹奇3-27三等奖B上海海事大学简易电子秤许虎梁凯岳虎3-28三等奖B北京交通大学简易电子秤王欣然毛静娜郭子渝3-29三等奖B华东理工大学简易电子秤倪光耀王逸宁罗颖3-30三等奖B大连理工大学简易电子秤江磊王野韩承达3-31三等奖C复旦大学X-Y信号产生与图形显示刘彦洲王欣郭威3-32三等奖C南京师范大学X-Y信号产生与图形显示倪浩潘柯文杨佳3-33三等奖C大连理工大学X-Y信号产生与图形显示阮新宇罗汀鲁昂3-34三等奖C桂林电子科技大学X-Y信号产生与图形显示张扬帆王德雨卢文登3-35三等奖C四川师范大学X-Y信号产生与图形显示任宸莹刘兆瑞王灿灿3-36三等奖C电子科技大学X-Y信号产生与图形显示杨慧然刘未洋周末3-37三等奖C东华大学X-Y信号产生与图形显示胡江浩石纪军陆乔3-38三等奖C桂林电子科技大学X-Y信号产生与图形显示宋金坤李金勇黄文斌3-39三等奖C南京师范大学X-Y信号产生与图形显示苏露李成志蒋一戈注:上述排名不代表得分排序。
全国大学生电子设计竞赛报告

. -全国大学生电子设计竞赛2012年TI杯模拟电子系统专题邀请赛设计报告参赛题目:高效LED驱动电路(A题)参赛对号:xxx参赛选手:xxx参赛地点:xxx参赛时间:2012-8-28~2012-8-29. - 优质文档-2012-8-29摘要:本文主要介绍基于MSP430G2553的高效LED驱动电路的系统设计。
该设计的LED驱动主回路是以TI公司的DC/DC升压芯片TPS61040为核心的恒流源电路,通过MSP430G2553对恒流源电路的给定控制,实现对LED电流的准确设定。
为了实现延长断电后的恒流延续时间,我们采用单独的TPS61040做自供电升压稳压电源,为单片机提供稳定的、更长时间的工作电压。
为了方便设定值的读取,综合考虑系统的设计成本,采用两位数码管显示设定电流值。
最终,通过设置超级功耗单片机的低功耗模式进入断电期,真正实现了高效的LED驱动。
关键字:高效LED驱动msp430 低功耗1.系统方案论证1.1供电方案论证方案一:该方案是指只用一片TPS61040为整个系统提供电源,包括五颗白光LED、MSP430单片机、显示模块等。
由于TPS61040的输入电压低至1.8V,所以当断电后电容电压可以跌到1.8V单片机仍然能够获得足够的工作电压。
该方案的优点在于只用一片芯片,可以在较低的输入电压工作。
缺点是输入电压不是最低的,输出电压的X围太宽。
方案二:该方案指的是用两片TPS61040作为电源,其中一片单独为五颗LED做恒流使用,另外一片将输入电压升高后,提供给LED的恒流输入和单片机。
为了使升压电路的工作电压更低,采用自供电方式,即使用升压的输出电压为升压芯片供电。
这样可以再电容电压低至更低值时保证系统的正常工作,进一步延长断电延续时间。
还能为单片机提供一个相对稳定、合适的工作电压。
缺点是由于升压电路的加入,系统的效率会有所降低、成本会提高。
本设计采用后者方案,原因在于在对第一种方案测试之后发现:五颗LED 的供电电压远高于单片机的工作电压,导致必须加入降压稳压拓扑,不可行。
2012年全国大学生电子设计竞赛

2012年辽宁省大学生电子设计竞赛微弱信号检测装置(A题)2012年8月5日摘要微弱信号检测装置是用以检测在强噪声背景下微弱正弦波信号的幅值,并数字显示出该幅度值的装置。
本设计首先将给定的噪声文件通过通过MP3或手机播放,由音频输出线输出音频电压信号,此音频电压信号由TI公司的音频放大器OPA2134进行幅度的调整输出噪声信号V N,可以达到1V 0.1V的要求。
正弦波信号源V S由函数信号发生器产生,采用TI公司的高精度运算放大器构建加法电路实现V C =V S+V N。
采用精密电阻构建电阻分压网络以实现100倍的幅度衰减。
经上述处理产生了带有噪声的微弱信号V C,并且噪声的频带覆盖了有用信号的频带。
带有噪声的微弱信号V C先经仪用放大器AD620进行前置放大,然后经低通滤波器和高通滤波器滤除2.1KHZ以上和400HZ以下的噪声信号,再经OPA2227进行二次放大,使得待测信号的噪声得到抑制。
为了剥离噪声,采用了锁相相关技术和取样积分方法。
采用原始的正弦信号V S作为参考信号,此参考信号经运放阻抗隔离后进行滤波,为达到与待测信号V C同相,参考信号的滤波与待测信号的滤波电路一致。
滤波后的参考信号经比较器后得到与待测信号同频同相的。
待测信号与参考方波信号经CD4066后变为半波信号,在经积分环节可得到与峰值有关的直流信号。
最后由MSP430单片机内部的A/D进行采样与数据处理,最后依据经实验测试得到输出结果与待测值的比例系数,可以求出正弦信号的峰值。
关键词:微弱信号检测;峰峰值;均方根值;锁相放大;取样积分;目录摘要 (2)Abstract ......................................................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国大学生电子设计竞赛2012年TI杯模拟电子系统专题邀请赛设计报告参赛题目:高效LED驱动电路(A题)参赛对号:xxx参赛选手:xxx参赛地点:xxx参赛时间:2012-8-28~2012-8-292012-8-29摘要:本文主要介绍基于MSP430G2553的高效LED驱动电路的系统设计。
该设计的LED驱动主回路是以TI公司的DC/DC升压芯片TPS61040为核心的恒流源电路,通过MSP430G2553对恒流源电路的给定控制,实现对LED电流的准确设定。
为了实现延长断电后的恒流延续时间,我们采用单独的TPS61040做自供电升压稳压电源,为单片机提供稳定的、更长时间的工作电压。
为了方便设定值的读取,综合考虑系统的设计成本,采用两位数码管显示设定电流值。
最终,通过设置超级功耗单片机的低功耗模式进入断电期,真正实现了高效的LED驱动。
关键字:高效LED驱动msp430低功耗21.系统方案论证1.1供电方案论证方案一:该方案是指只用一片TPS61040为整个系统提供电源,包括五颗白光LED、MSP430单片机、显示模块等。
由于TPS61040的输入电压低至1.8V,所以当断电后电容电压可以跌到1.8V单片机仍然能够获得足够的工作电压。
该方案的优点在于只用一片芯片,可以在较低的输入电压工作。
缺点是输入电压不是最低的,输出电压的范围太宽。
方案二:该方案指的是用两片TPS61040作为电源,其中一片单独为五颗LED做恒流使用,另外一片将输入电压升高后,提供给LED的恒流输入和单片机。
为了使升压电路的工作电压更低,采用自供电方式,即使用升压的输出电压为升压芯片供电。
这样可以再电容电压低至更低值时保证系统的正常工作,进一步延长断电延续时间。
还能为单片机提供一个相对稳定、合适的工作电压。
缺点是由于升压电路的加入,系统的效率会有所降低、成本会提高。
本设计采用后者方案,原因在于在对第一种方案测试之后发现:五颗LED 的供电电压远高于单片机的工作电压,导致必须加入降压稳压拓扑,不可行。
1.2主控器方案论证方案一:采用MSP430G2553作为控制器,其资源包括10位AD,14个I/O,5种低功耗模式等,满足本设计的需要。
优点在于该单片机工作电压可低至1.8V,编程控制方便,能够满足要求。
缺点是型号低端,功耗不如其他两种型号低,尤其是MSP430FR5739.方案二:采用MSP430F5529作为控制器,其资源包括10位AD,I/O,6种低功耗模式等,满足本设计的需要。
优点在于该单片机工作电压可低至1.8V,低功耗模式功耗非常低。
缺点是编程控制不熟悉。
方案三:采用MSP430FR5739作为控制器,其资源包括10位AD,I/O,9种低功耗模式等,满足本设计的需要。
优点在于低功耗模式功耗极低。
缺点是该单片机工作电压达2V,编程控制不熟悉。
综合上述来看,本设计选择了熟悉的MSP430G2553作为控制器,在断电后开启低功耗模式,基本能够得到比较理想的性能。
31.3恒流控制方案论证方案一:采用PWM方式控制LED电流。
优点:不需要额外的器件,可由单片机资源完成,节约成本,控制精度比较高。
缺点:电流采样比较困难,存在很大纹波,降低控制判断的准度。
方案二:采用D/A输出电压的方式控制LED电流。
优点:控制精度高,纹波小,有利于采样。
缺点:加入D/A芯片,提高成本,电压基准不准确,带来控制误差。
本设计采用方案二,使用DAC7512做D/A转换。
2.理论分析与计算2.1设定电流精度计算由于题目要求(1)中要求上电初始值为1mA,变化范围为1mA~22mA可循环,步进为3mA,控制精度为±0.2mA,并尽量提高控制精度。
因此在选择A/D 之前,为了能达到要求精度,我们作出如下简单的理论值计算:采样分辨率:A/D检流电阻的选择:D/A电流分辨率:2.2能量消耗计算由于题目要求(2)中要求开关S1断开后,电路由电容C供电。
控制LED驱动电路,在保证LED串上电流不小于0.5mA的前提下,尽可能延长对LED的供电45时间。
这是对系统功耗和效率的考察,因此我们先作出理想情况下的理论值计算:电容C理想存储电能:(假设电容充电足够久,并忽略漏电流)=1.79685J断电后供五颗LED 以0.5mA 电流保持时间:(只计LED 耗电量且电容电能全部输出)由以上计算可知,若电容在最为理想的情况下,只供五颗LED 0.5mA 亮越4分钟。
但实际情况与此相去甚远,原因有如下几点:第一:电容存在内阻,不可能做到完全充满电,也不可能做到将电容中的电能完全释放出来;第二:除了LED 消耗电能,还有大量的电能消耗于DC/DC 变换器及控制器等其他电路,这部分电能流失不可不计;第三:为了维持电流0.5mA 稳定不变,电容电压跌至1.3V 左右,变换器就将失稳,停止工作,LED 将迅速熄灭,因此电容将残留部分能量。
3.电路与程序设计图1系统结构框图示意3.1硬件电路设计3.1.1LED恒流驱动电路LED恒流驱动电路参照TPS61040数据手册上的典型运用,设计电路如图2所示。
该电路的输入电压是来自于前级的另外一片TPS61040,因此断电后能稳定的工作较长时间。
出于降低功耗提高效率的考虑,设计两种不同阻值的采样电阻,通过单片机控制三极管开关状态选择。
恒流闭环的反馈端来自于数模转换电压与取样电压经电阻分压的结果,以达到能通过单片机D/A给定电流的效果。
3.1.2自供电升压电路为了进一步降低TPS61040的工作电压阀值,采用如图3所示的自供电升压电路拓扑结构。
将升压输出引入TPS61040的供电端,从而抬高输入电压,使得在输入电压低于TPS61040最低工作电压时仍然能正常工作。
3.1.3显示电路67图4八段LED 显示电路由图4可知,本次使用的两片一位LED 是由74HC164来做串行转并行静态驱动的。
这样只需要两根线与单片机相连,与动态并行扫描比较,既节约了硬件资源,又节省了单片机的软件开销。
3.2系统软件设计图5主程序流程图示意如图5所示,程序执行的流程如下所述:第一步:在程序开始执行时,首先检测输入电压是否低于阀值,判断系统是否掉电,若掉电,直接进入低功耗模式;若未掉电,进行数据校准。
第二步:在现场校准之后,通过检测按键,读取电流设定值,并通过D/A输出设定值;第三步:循环检测是否掉电,若掉电,直接进入低功耗模式;若未掉电,检测电流是否下降到阈值,如果到了,指示灯显示,否者返回到设定电流。
测试方案与测试结果4.如图6所示为本设计的测试电路,图中C是一颗0.33F的法拉电容,断电后为系统提供能量。
毫安表直接与五颗白光LED串联接入驱动回路,以检测流过LED的电流值。
本次设计两个参数测试实验,如下文详述。
4.1测试设定电流精度按照题目要求,设计实验为设定电流精度检测。
实验过程中接通开关S,通过循环按键K,步进3.00mA,按表1数据依次设定,并读取毫安表上显示的电流中。
偏差的计算公式为:值,记录于表11.00 4.007.0010.0013.0016.0019.0022.00设定电流(mA)1.01 3.967.069.9813.0216.1019.0321.97实际电流(mA)110.860.20.150.630.150.13偏差(%)89表1设定电流精度测试表由表1数据可见,从1.00~22.00mA 设定电流偏差不超过1%,满足高精度要求。
4.2测试断电工作时间按照题目要求,设计该实验测试系统效率和功耗。
实验开始时闭合开关S,任意设定电流值,到足够长时间(至少等到电容C 两端电压达到3.3V 输入电压),然后准备断开开关,在断开开关的同时秒表开始计时,注意观察毫安表显示的电流值,等到电流值下降到小于0.5mA 时,立即停止计时,并记录于表2。
多次重复测量并计算平均值。
次数12345678平均时间1’27”1’20”1’18”1’23”1’19”1’11”1’20”1’18”1’19.5”表2断电续航时间测试表通过以上数据结果与之前的理论值比较,作出如下的效率估算:5.结论本次设计完成了TPS61040的五颗LED 恒流驱动电路设计、前级TPS61040升压电路设计、DAC7512设计、数码管显示设计等硬件系统设计,经过多次调试最终达到硬件稳定完成预期工作。
基于MSP430G2553的控制系统软件调试包括定时器、I/O 口、10位A/D 等,最终完善所有预期功能,并且与硬件连调通过,性能良好。
经过设计实验测试,该系统用单片机控制LED 发光管亮度。
流过LED 的平均电流可通过按键控制。
上电初始值为1mA,变化范围为1mA~22mA 可循环,步进为3mA,控制精度为±0.1mA。
开关断开后,电路由电容供电。
在保证LED 串上电流不小于0.5mA 的前提下,延长对LED 的供电时间达1’27”。
用单片机检测流过LED 串的电流。
在当流过LED 串的电流在1mA-0.5mA 之间时,单片机开发板上的LED 指示灯熄灭;当流过LED 串的电流大于1mA 或小于0.5mA 时,点亮LED指示。
除了要求完成功能之外,本设计还加入数码管显示部分,能显示设定电流值,方便设定。
10高效LED驱动电路(A题)组号:069参考文献[1]Texas Instruments,Incorporated[SCHS155,C].CD54HC164,CD74HC164, CD54HCT164,CD74HCT164(Rev.C)Data Sheet.Texas Instruments,2012.[2]Texas Instruments,Incorporated[SBAS156,B].Low-Power Rail-To-Rail Output12-Bit Serial Input D/A Converter(Rev.B)Data Sheet.Texas Instruments,2012.[3]Texas Instruments,Incorporated[SLVS413,E].Low Power DC/DC Boost Converter in SOT-23Package(Rev.E)Data Sheet.Texas Instruments,2012.[4]Texas Instruments,Incorporated[SLAS735,F].MSP430G2x53, MSP430G2x13Mixed Signal Microcontroller(Rev.F)Data Sheet.Texas Instruments,2012.11。