2019-2020学年八年级数学上册《12.1 分式(第2课时)》教案 (新版)冀教版.doc
【最新冀教版精选】冀教初中数学八上《12.1分式》word教案 (2).doc

八年级数学上册 第十四章 分式 14.1 分式名师教案1 冀教版 〖教学目标〗(-)知识目标1.经历分式概念的抽象过程,体会分式的模型思想,进一步发展符号感.2.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.4.利用分式的基本性质对分式进行“等值”变形.(二)能力目标1.能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.2.掌握分式有意义的条件,认识事物间的联系与制约关系.(三)情感目标通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.即通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.〖教学重点〗1.了解分式的形式 (A 、B 是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.2.掌握分式基本性质的内容,并有意识地运用它化简分式.〖教学难点〗1.分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零.2.分子分母进行约分.〖教学过程〗 这是一个在美国影响很大的算题:你见过这样荒谬绝伦的约分吗?凡学过分数的学生都会被这种运算笑掉大牙.笑罢之余,再猛地一想,怪事!这结果怎么反而是正确的?当然,这是一种偶然的巧合,但是这种偶然之下有没有值得研究的地方?我们的问题是:你能否再找出其它的分数,也具有这种奇特现象?稍加思索,我们可以找到问题的解法.我们知道,正分数的分子和分母都是正整数,而且一个个位数字是y ,十位数学是x 的两位正整数可以写成10x +y 的形式.设这个分数的分子为10a +b ,分母为10b +c .我们要做的事是求满足关系式c a c b b a =++1010的分数.这实际上是一个不定方程的问题.化简上式,得10a (c-b )=c (a-b ).分别讨论a ,b ,c 从1到9的取值情况,可以求出满足此条件的分数,有6526,6416,9849,9519. 这个奇妙的算题被列为美国20世纪“最佳”趣题之一.一、课前布置自学:阅读课本P26~P28,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).二、学情诊断1.了解学生原有认知机构,解答学生提出的问题.2.一起交流课本P26的“做一做”与“大家谈谈”三、师生互动(一)[师]在自学时,我们知道有些实际问题中的数量关系所对应的代数式,不能用整式.例如(出示题目),你来列一列所需的代数式.(1)一箱苹果售价a 元,箱子与苹果的总质量为m k g ,箱子的质量为n k g ,则每千克苹果的售价是_________元.(2)某书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是__________.[生](1)n m a -元;(2)x a b-册[师]这样的代数式同整式有很大的不同,而且它是以分数的形式出现的,它们是不同于整式的一个很大的家族,我们把它们叫做分式. 谁能说说分式与整式有什么不同? [生]:分式都是由分子、分母与分数线构成;分母中都含有字母.[生]分式与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.例如:42,90y x x -它们都含有分母,但分母中不含字母,所以它们是整式. [师]很好!阅读课本分式的概念,再次感受一下课本中是如何描述分式的:(整式A 除以整式B ,可以表示成B A 的形式.如果除式B 中含有字母,那么称B A 为分式,其中A 称为分式的分子,B 称为分式的分母.)[师]分式中,字母可以取任意数吗?[生]不可以.因为分式中分母含有字母,而分母是除式,不能为零.字母的取值就受到制约,即字母的取值不能使分母为零,否则,分式就会无意义.(二)鼓励学生讲解教师提供的例题.(例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充)例1 当x 取什么值时,下列分式有意义?(1)212x x -- (2)2||-x x分析:记住分式的分母不能为零,有意义的条件是分母≠0.解:(1)由分母-x 2=0得:x =0.所以当x ≠0时,分式212x x --有意义.(2)故|x |-2≠0,得|x |≠2,即x ≠±2.例2 当x 取什么值时, 分式211x x -+的值为零? 解:由分子x 2-1=0得x =±1而当x =-1时,分母x +1=-1+1=0 此时分式无意义,所以当x =1时,分式211x x -+的值为零. (三)[师]在小学学分数时,我们学习了分数的基本性质.自学时,你是怎样理解分式的基本性质的?[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质: 分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.[师]在运用此性质时,应特别注意什么?[生]应特别强调分式的分子、分母都乘以(或除以)同一个不为零的整式中的“都”“同一个”“不为零”.[师]我们利用分数的基本性质可对一个分数进行等值变形.同样我们利用分式的基本性质也可以对分式进行等值变形.(鼓励学生讲解教师提供的例题.)2.下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2 (y ≠0);(2)bx ax =ba . 解:在(1)中,因为y ≠0,利用分式的基本性质,在x b 2的分子、分母中同乘以y ,即可得到右边, 即x b 2=y x y b ⋅⋅2=xyby 2; 在(2)中,bx ax 可以分子、分母同除以x 得到,即bx ax =x bx x ax ÷÷=ba . 强调:在(1)中,题目告诉你y ≠0,因此我们可用分式的基本性质直接求得.(2)中隐含条件x ≠0的发现.在bx ax 中,x 不会为“0”,如果是“0”, bx ax 中分母就为“0”,分式bxax 将无意义,所以(2)中虽然没有直接告诉我们x ≠0,但要由bx ax 得到b a ,bx ax 必须有意义,即bx ≠0由此可得b ≠0且x ≠0.(四)引导学生小结:1.注:1°对于任意一个分式,分母都不能为零.2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3°分式的值为零含两层意思:分母不等于零;分子等于零.2.数学知识之间是有内在联系的.利用分数的基本性质就可推想出分式的基本性质.四、补充练习作业P28习题〖分层练习〗1.①当a =1,2时,分别求分式aa 21+的值. ②当a 为何值时,分式aa 21+有意义? ③当a 为何值时,分式a a 21+的值为零? 2.当x =1时,分式①11-+x x ,②221--x x ,③112--x x ,④113+x 中,有意义的是( )A.①③④B.③④C.②④D.④3. 写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义,且分式的值为负) .4.已知分式x x 412-是正数,则x 的取值范围是( ) A.41≠x B.41>x C.41<x D.041≠<x x 且〖答案提示〗1.解:①当a =1时,121121⨯+=+a a =1; 当a =2时,43221221=⨯+=+a a .②当分母的值等于零时,分式没有意义,除此以外,分式都有意义. 由分母2a =0,得a =0.所以,当a 取零以外的任何实数时,分式aa 21+有意义. ③分式的值为零,包含两层意思:首先分式有意义,其次,它的值为零.因此a 的取值有两个要求:⎩⎨⎧=+≠0102a a所以,当a =-1时,分母不为零,分子为零,分式a a 21+为零. 2.D 3. 112+-x (或11+-x ,答案不唯一) 4.D。
八年级数学上册 12.1 分式教案 (新版)冀教版-(新版)冀教版初中八年级上册数学教案

三、巩固练习
1.某车间计划在x天内加工200个零件,而实际加工时比原计划少用2天完成了任务,实际每天加工多少个则分式的值
( ).
A. 扩大为原来的2倍 B. 不变
C. 缩小为原来的 D. 缩小为原来的
8. 不改变分式的值,使分子、分母首项为正,则 = .
9.下列各式的变形:① ;② ;③ ;④ .其中正确的是( ).
A. ①②③④ B. ①②③ C. ②③ D. ④
⑴ ⑵
11.观察下面一列有规律的数: ……根据其规律第n个数为 (n是正整数)
四、体会联想
通过这节课的学习,你学到了哪些知识?要注意什么问题?
分式
教学过程:
教学
目标
(1)使学生了解分式的概念,能够求出分式有意义的条件
(2)掌握分式的基本性质
通过小组探讨,经历由类比猜想获得分式基本性质的过程,发展合情推理的能力
体会符号美,发展"用数学"的信心
重点
分式概念及基本性质的获得
难点
分式概念的抽象过程
教法
学法
一、预习导航
1.分式都是 的形式,其中A,B都是 ,并且B中含有 .要想使分式有意义,分式的分母不能是 .
4.请在下列整式中,任选两个作为分子和分母,构造出三个分式。
3000, k, a+b, am+bn, 5x, 0, (x+y) ,(x-y)
的值为零,那么x应为( ).
6.x取何值时,下列分式有意义?取何值分式的值为零?
⑴ ⑵ ⑶ ⑷
7.下列分式中正确的是( )
A. = B. =-1 C. =0 D. =
在本节课的学习过程中,你有什么体会?
八年级数学上册(12.1 分式(第2课时))教案 (新版)冀教版 教案

12.1分式(第二课时)
一、教材分析
分式的约分是分式乘除的关键,因而本节不仅要讲明单项式与多项式的约分,还要仔细分析约分的依据,逐步总结约分的方法.
二、学情分析
学生已学过分数的约分,容易理解分式的约分.但分子、分母含多项式的分式在约分时需先进行因式分解.因式分解的方法及约分的一些小窍门还须加强训练.
三、教学目标
1.使学生明确分式的约分概念,掌握约分方法.
2.通过与分数约分作比较,渗透类比的思想.
四、重点、难点
重点:依据分式的基本性质进行约分.难点:分子、分母含多项式的分式的约分
五、教学设计。
八年级数学上册《分式》教案、教学设计

为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
《12.1分式》作业设计方案-初中数学冀教版12八年级上册

《分式》作业设计方案(第一课时)一、作业目标本节作业的目标是巩固学生对分式的基本概念的理解,熟悉分式的表示法、性质以及运算规则,培养学生对分式问题进行基本分析和解决的能力,为后续学习打下坚实的基础。
二、作业内容1. 概念理解题:- 要求学生掌握分式的定义,能够正确判断一个式子是否为分式。
- 举例:请判断下列哪些是分式,哪些不是,并说明理由。
(附答案及解析)2. 分式的基本性质:- 练习分式的约分和通分,理解分子分母同大或同小对分式值的影响。
- 示例:对给定的分式进行约分和通分操作,并比较前后的变化。
(含详细步骤及解析)3. 分式的运算法则:- 练习分式的加减法、乘除法以及混合运算。
- 练习题:设计一系列由简单到复杂的分式运算题目,提高学生运算能力。
(附答案及解析)4. 应用题:- 将分式应用于实际问题中,如工程问题、比例问题等。
- 实例:某工程队需要完成一定量的工作,根据工作效率计算所需时间,用分式表示并求解。
(含问题分析和解答过程)三、作业要求1. 学生需认真审题,明确题目要求,准确作答。
2. 对于每个题目,应详细写出解题步骤和思路,不可只写答案。
3. 分式运算要保证计算的准确性和规范性,避免计算错误。
4. 完成作业后,需自行检查答案的正确性,并修正错误。
5. 鼓励学生在解题过程中尝试多种方法,培养灵活的思维。
四、作业评价1. 教师将根据学生的作业完成情况,对每位学生的作业进行批改和评价。
2. 评价标准包括概念理解、运算准确性、解题思路和规范性等方面。
3. 对于表现优秀的学生给予表扬和鼓励,对于存在问题的地方给予指导和帮助。
五、作业反馈1. 教师将根据学生的作业情况,进行课堂讲解和答疑。
2. 对于普遍存在的问题进行重点讲解,帮助学生解决疑惑。
3. 鼓励学生之间互相交流学习,分享解题经验和思路。
4. 将本次作业作为后续学习的基础,为后续课程的学习做好准备。
通过这样的作业设计方案,希望能够帮助学生更好地掌握《分式》第一课时的知识内容,提高学生的学习效果和学习兴趣。
冀教版数学八年级上册12.1《分式》教学设计

冀教版数学八年级上册12.1《分式》教学设计一. 教材分析冀教版数学八年级上册12.1《分式》是学生在学习了有理数、实数和代数式等知识的基础上,进一步学习分式的概念、性质和运算法则。
本节内容是整个初中数学的重要知识,也是高中数学的基础,对于学生来说具有承前启后的作用。
教材通过生活实例引入分式的概念,让学生感受数学与实际的联系,培养学生的应用意识。
同时,教材从具体的生活实例中抽象出分式的概念,让学生体会从特殊到一般的思维过程,培养学生的抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数、实数和代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。
但分式作为一个新的数学概念,对学生来说较为抽象,不易理解。
因此,在教学过程中,教师需要注重引导学生通过具体的生活实例来理解和掌握分式的概念,以及分式的性质和运算法则。
三. 教学目标1.理解分式的概念,掌握分式的性质和运算法则。
2.能够运用分式解决实际问题,培养学生的应用意识。
3.培养学生的抽象思维能力和团队合作能力。
四. 教学重难点1.分式的概念及其理解。
2.分式的性质和运算法则的掌握。
3.将分式应用于实际问题中。
五. 教学方法1.实例导入:通过生活实例引入分式的概念,让学生感受数学与实际的联系。
2.小组讨论:学生在小组内讨论分式的性质和运算法则,培养学生的团队合作能力。
3.练习巩固:通过大量的练习题,让学生巩固所学知识,及时发现并解决问题。
4.拓展应用:让学生运用分式解决实际问题,培养学生的应用意识。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示分式的概念、性质和运算法则。
2.练习题:准备适量的练习题,用于课堂练习和巩固所学知识。
3.小组讨论材料:准备相关的小组讨论材料,方便学生进行小组讨论。
七. 教学过程1.导入(5分钟)教师通过一个生活实例(如盐水的浓度问题)引入分式的概念,让学生感受数学与实际的联系。
2.呈现(10分钟)教师讲解分式的概念,通过PPT展示分式的性质和运算法则,让学生初步认识和理解分式。
八年级数学上册12分式和分式方程教学案新版冀教版

第十二章分式和分式方程1.了解分式的概念,掌握分式的基本性质,并能用其进行约分和通分.2.理解和掌握分式加、减、乘、除的运算法则,会进行简单的分式的加、减、乘、除的运算.3.了解分式方程的概念,会解一些简单的可化为一元一次方程的分式方程,懂得解分式方程可能产生增根,理解检验的必要性,并会进行检验.4.通过与分数的类比,学习分式的性质及其运算;能建立分式方程模型解决有关的实际问题.1.在判断分式的过程中,让学生会区分整式和分式.2.在了解分式的基本性质的基础上,掌握分式的约分和通分法则.3.能按照分式的四则运算法则进行分式的加、减、乘、除及混合运算,掌握计算的方法和技巧,会解分式方程并进行检验.1.在认识分式的过程中,让学生体验知识之间的必然联系,体会类比思想的运用,激发学生爱数学、学数学的兴趣.2.培养学生养成认真仔细计算的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.本章主要内容是通过现实情境建立分式的概念,探索分式的基本性质,进行分式的加、减、乘、除运算,建立分式方程并解分式方程.分式的运算实质是转化为整式的运算来进行的,分式的通分与约分一般需要分解因式,因此,分式的运算是整式的运算及多项式因式分解的综合运用和进一步发展,也是学习分式方程、函数等内容的重要基础.本章内容呈现方式及特点:(1)突出了模型的建立过程.教材通过用代数式表示现实问题中的数量关系,并对代数式进行分类、比较,建立起分式的概念;在与已学过的方程进行比较的过程中,抓住了知识的“生长点”,建立了分式方程的概念.本章突出了模型思想和建立模型的过程,降低了概念过分形式化的要求.(2)突出了“类比”过程,类比是合情推理的重要方式之一,是“发现”和“创新”的重要手段,也是解决问题的常用方法.本章让学生充分经历了与分数类比、提出猜想、获得分式的基本性质和运算法则的过程.(3)突出了“转化”过程,转化是解决问题常用的思想方法,教材在异分母分式的加减运算和解分式方程中都突出了转化的过程,进一步使学生感悟数学思想,积累解决问题的经验.【重点】1.能用分式的基本性质进行约分和通分,会进行分式的混合运算.2.能解可化为一元一次方程的分式方程.3.能用分式方程解决一般的实际问题.【难点】1.对分式概念及其基本性质的理解.2.能进行分式的约分、通分,体会方程是刻画现实世界的一个有效的数学模型.1.让学生充分经历概念的形成过程,学生获得知识必须建立在数学思考的基础上,因此,对于分式、分式方程和分式方程的增根等概念,要创设情境,向学生提供充足的素材,促进数学思考的发展.教学中,还可以补充一些更具有现实性和挑战性的问题.2.分式的通分、约分和运算的教学,实际上是分式基本性质、运算法则的运用,应通过适当的运算让学生进一步理解运算的意义,掌握算法,在理解算理的基础上选择适当的算法,不要追求训练的数量和技巧,不要增加繁难的计算题.3.解分式方程时,要理解去分母的目的和由此产生增根的原因,从而体会去分母的意义和对根进行检验的必要性.能解可化为一元一次方程的分式方程即可,不必增加难度和进行大量的训练.总之,本章的知识是传统的代数基本知识,但在知识的呈现方式上作了较大的改进,在教学要求上也有所不同.在教学过程中,不要认为知识太简单而不留给学生探索与思考的时间和空间,“一讲到底”.对每一个新知识的教学,要有与学生一起思考的活动,要有与学生一起探索的过程,要有与学生一起分享成功的喜悦.本教材内容严格按照课程标准的要求,切实改变繁难偏旧的状况,教学时要把握教材的要求,不要随意增加例题和习题的难度,不要随意拔121分式1.了解分式的概念,明确分式中分母不能为0是分式成立的条件.2.了解分式的基本性质,掌握分式的约分法则.经历与分数类比学习分式的过程,学会与他人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等.1.认识和体会特殊与一般的辩证关系,提高数学运用能力.2.通过类比分数、分数的基本性质及分数的约分,推测出分式、分式的基本性质及分式的约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.【重点】分式的意义、分式的基本性质、最简分式和约分.【难点】分式的特点及要求;分子、分母是多项式的分式约分.第课时1.使学生了解分式的概念,明确整式和分式的区别,能用分式表示现实情境中的数量关系.2.明确分式中分母不能为0是分式成立的条件.3.使学生能求出分式有意义的条件.4.使学生初步掌握分式的基本性质,并能用它进行分式的约分.启发学生学会观察、分析、寻找解题的途径,提高分析问题、解决问题的能力.1.通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创新,体会分式的模型思想.2.通过分数与分式的比较,培养学生良好的类比习惯和思想方法,并培养学生严谨的科学态度.【重点】1.分式的概念,分式有意义的条件.2.分式的基本性质.【难点】分式有意义的条件,分式的值为0的条件及分式的基本性质.【教师准备】相关课件.【学生准备】复习小学学过的分数和初中学习过的整式.导入一:某种商品,原来每盒售价为p元,现在每盒的售价降低了2元.用500元钱购买这种商品,现在比原来可多买多少盒?怎样用代数式表示现在比原来可多买多少盒?盒.[设计意图]通过教材章前图,引导学生列出分式,感知分式的特点,为学习本课时做认知准备.导入二:如果在一条公路上,同向行驶且前后相邻的两辆车的车头与车头之间的平均距离为d(米/辆),车辆的平均速度为v(m/s),那么(辆/秒)叫做这条公路的同向行驶的车流量.问题:如果知道中两个字母所代表的数量,你能求出此时的车流量吗?[设计意图]通过教材中习题的车流量的情境,帮助学生感受用“分式”表示生活中数量关系的方便性和准确性.导入三:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务.原计划每月固沙造林多少公顷?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月.让学生讨论并填空:生:原计划完成一期工程需要个月,实际完成一期工程用了个月.[设计意图]通过土地沙化问题,进一步丰富问题的实际背景,激发学生的求知欲望,让学生探索问题中的数量关系,并且体会保护人类生存环境的重要性.(一)出示教材第2页做一做1.一项工程,甲施工队5天可以完成.甲施工队每天完成的工程量是多少?3天完成的工程量又是多少?如果乙施工队a天可以完成这项工程,那么乙施工队每天完成的工程量是多少?b(b<a)天完成的工程量又是多少?2.已知甲、乙两地之间的路程为m km.如果A车的速度为n km/h,B车比A车每小时多行20 km,那么从甲地到乙地,A车和B车所用的时间各为多少?(二)尝试对所列代数式分类师:同学们能列出这两个问题中的相关代数式吗?生:(列代数式、老师随时板书),;,;,.师:刚才同学们列出的代数式有什么共同特点?你能把它们分成两类吗?预设:生1:都是分数.生2:按照分母是否含有字母分两类.生3:按照分子是否含有字母分两类.[设计意图]通过分类活动,让学生积极参与到课堂思考活动当中,在分类中发现分母含有字母这个重要特征,为总结和理解分式的概念奠定基础.。
2019-2020学年八年级数学上册《分式方程1》教学案 新人教版.doc

2019-2020学年八年级数学上册《分式方程1》教学案 新人教版过程与方法:经历“实际问题-分式方程方程模型-求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
情感态度价值观: 在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
重点:分式方程的解法及应用.难点:理解解分式方程时产生增根的原因,分式方程的应用学习方法:学习过程:一:导入新课:一艘轮船在静水中的最大速度为20千米每时,它沿江以最大航速顺流航 行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?二,自主学习:自学书本:P26-281, 分式方程的定义:2, 解分式方程中去分母是根据 的性质。
3, 分式方程的解是指:三,学生展示:1,一条是全长600 km 的普通公路,另一条是全长480 km 的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。
求该客车由高速公路从甲地到乙地所需的时间。
2,完成书本P29练习四,教师点评:五,当堂检测:1,解方程: (1),)2)(1(311--=--x x x x (2),2211-=-x x(3),23416242+-=---x x x (4), 3115+=-x x(5),1637222-=-++x x x x x (6),x x ++51=212,若分式方程xx k x x x k +-=----2225111有增根1-=x ,求k 的值。
3,当m 为何值时,解方程115122-=-++x m x x 会产生增根?4,若使23--x x 与232+-x x 互为倒数,求x 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级数学上册《12.1 分式(第2课时)》教案(新
版)冀教版
一、教材分析
分式的约分是分式乘除的关键,因而本节不仅要讲明单项式与多项式的约分,还要仔细分析约分的依据,逐步总结约分的方法.
二、学情分析
学生已学过分数的约分,容易理解分式的约分.但分子、分母含多项式的分式在约分时需先进行因式分解.因式分解的方法及约分的一些小窍门还须加强训练.
三、教学目标
1.使学生明确分式的约分概念,掌握约分方法.
2.通过与分数约分作比较,渗透类比的思想.
四、重点、难点
重点:依据分式的基本性质进行约分. 难点:分子、分母含多项式的分式的约分
五、教学设计
设计意图说明:约分
取知识
别进行因式分解,再
,
)若分子分母都是单项式,则约简系数,并约去分子分
2)若分子分母含多项式,则先将多项式进行因式。