2020年高考数学一卷21题解答赏析
2020年全国I卷理科数学高考试题及解析

2020年普通高等学校招生全国统一考试理科数学三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题,共60分。
17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若1a =1,求数列{}n na 的前n 项和.解析:(1)由题意可知,,1a 为2a ,3a 的等差中项即1232a a a =+又因{}n a 是公比不为1的等比数列,设公比为q,得21112a a q a q =+即220q q +-=解得q=-2,或q=1(舍去)(2)1111,n n a a a q -== 由第1问计算得q=-2所以通项1(2)n n a -=-令1(2)n n n b na n -==-记{}n na 的前n 项和为Tn,012211(2)2(2)3(2)..(1)(2)(2)n n n T n n --=⨯-+⨯-+⨯-+--+-①23121(2)2(1)3(2)....(1)(2)(2)n nn T n n --=⨯-+⨯-+⨯-++--+-②1-②可得23131(2)(2)(2)...(2)(2)n nn T n -=+-+-+-++---1(2)[1(2)]31(2)1(2)n n n T n ----=+----131(2)99nn n T +=--点评:本题考查等差数列、等比数列的通知公式,数列的求和,其中第2问的数列求和在平时训练中会讲到类似的方法,不算新鲜的题,在计算时要特别小心。
18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE=AD,ABC ∆是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E 的余弦值.解析:DAE 的截面图和圆锥的底面图如下(1)证明:设OA=OE=1由于AD=AE,所以AD=2因为DO 垂直平面ABC,所以DOA 为直角三角形,由勾股定理,得223DO DA AO =-=6,6PO DO = 所以22PO =再由POD 为直角三角形,故2262PA PO AO =+=同理可得2PB =在三角形ABC 中,由于AO=1,得AB =因为22222⎛⎫⎛+=⎪ ⎪ ⎝⎭⎝⎭,也即222,PA PB AB +=得AP ⊥BP同理,AP ⊥CP,又由于PBC,CP PBC BP BP CP P⊆⊆⋂=平面平面,且AP PBC⊥所以平面(2)以O 为坐标原点,OE 的方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O-xyz.由题设可得1(0,1,0),(0,1,0),((0,0,).222E A C P --所以1(,0),(0,1,),222EC EP =--=-设m(x,y.z)是平面PCE 的法向量,则002,01022y z m EP m EC x y ⎧-+=⎪=⎧⎪⎨⎨∙=⎩⎪--=⎪⎩ 即可取(3m =-由(1)可知(0,1,PCB 2AP n AP == 是平面的一个法向量,记cos ,5n m n m n m ∙<>== 则。
2023年高考数学新高考一卷21题的认识

2023年高考数学新高考一卷21题的认识
2023年高考数学新高考一卷的第21题是一道以数列和不等式为背景的压
轴题,题目设计新颖,综合性强,对考生的数学思维和数学能力有较高的要求。
首先,这道题目涉及的知识点较多,包括等差数列、等比数列的性质和通项公式,数列求和的方法,不等式的性质和证明方法等。
考生需要在解题过程中灵活运用这些知识点,通过推导和转化,找到问题的突破口。
其次,这道题目需要考生具备较强的数学逻辑思维和推理能力。
在解决数列和不等式综合问题时,考生需要仔细分析题目给出的条件,通过观察、归纳、演绎、推理等思维方式,发现数列和不等式之间的内在联系,从而构建出合理的数学模型。
此外,这道题目还要求考生具备良好的数学运算能力和化归与转化思想。
在解题过程中,考生需要进行大量的数学运算,如求和、化简、放缩等,同时还需要将复杂的问题进行化归和转化,将其转化为更容易解决或更熟悉的数学问题。
最后,这道题目还体现了对考生数学素养的考查。
在解题过程中,考生需要具备严谨的数学态度和良好的数学学习习惯,如仔细审题、规范答题、善于总结等。
这些素养不仅有助于提高考生的数学成绩,也是其未来数学学习和发展的重要基础。
总之,2023年高考数学新高考一卷的第21题是一道有深度和广度的压轴题,它不仅考查了考生的数学知识掌握程度和数学能力水平,也反映了其对数学思想和方法的领悟程度。
通过解答这道题目,考生能够充分展示自己的数学才华和潜力,并为未来的数学学习和应用打下坚实的基础。
2020年高考全国1数学理高考真题变式题21-23题-(解析版)

2020年高考全国1数学理高考真题变式题21-23题原题211.已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 变式题1基础2.已知函数()()21e xax x f x a R -+=∈.(1)当2a =-时,求()f x 的单调区间; (2)当0x ≥时,()1f x ≤,求a 的取值范围. 变式题2基础 3.已知函数()ln xf x x =,()231m g x x x=--. (1)求函数()f x 的单调区间;(2)对一切()0,x ∈+∞,()()2f x g x ≥恒成立,求实数m 的取值范围; 变式题3巩固4.已知函数()()2ln f x x m x m =-∈R .(1)若函数()()3g x f x x =-为增函数,求m 的取值范围; (2)当0m >,若()1f x ≥在定义域内恒成立,求m 的值. 变式题4巩固 5.已知函数()ln af x x x x=+. (1)讨论函数()()h x xf x =的单调性;(2)若对任意的1,22x ⎡∈⎤⎢⎥⎣⎦不等式()1f x ≥恒成立,求实数a 的取值范围.变式题5巩固 6.已知函数1()(,x x f x ax a R e e+=+∈为自然对数的底数). (1)若12a >,请判断函数()f x 的单调性; (2)若12,x x R ∀∈,当12x x ≠时,都有2121()()1f x f x x x ->-成立,求实数a 的取值范围. 变式题6提升7.已知函数2()(1)x f x axe x =-+(其中a R ∈,e 为自然对数的底数). (1)当0a >时,讨论函数()f x 的单调性;(2)当0x >时,2()ln 3f x x x x >---,求a 的取值范围. 原题228.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t ⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标. 变式题1基础9.在直角坐标系xOy 中,曲线1C 的参数方程为cos sin x kty t =⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin cos 10ρθρθ--=.(1)当1k =时,判断曲线1C 与曲线2C 的位置关系: (2)当2k =时,求曲线1C 与曲线2C 的公共点的直角坐标. 变式题2基础10.己知曲线1C 的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02)ρθ≥≤<π. 变式题3巩固11.已知在极坐标系下,曲线:(cos 2sin )4C ρθθ+=(θ为参数)与点2,3A π⎛⎫⎪⎝⎭.(1)求曲线C 与点A 的位置关系;(2)已知极坐标的极点与直角坐标原点重合,极轴与直角坐标的x 轴正半轴重合,直线12:24x t l y t =-⎧⎨=-+⎩,求曲线C 与线l 的交点的直角坐标.变式题4巩固12.在直角坐标系xOy 中,直线l 的参数方程为1323x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C 的极坐标方程为3ρθ=.(1)写出C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 变式题5巩固13.在平面直角坐标系xOy 中,曲线1C 的参数方程为35135x y ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为5(cos sin )70ρθθ+-=.(1)求曲线1C 的普通方程以及曲线2C 的直角坐标方程;(2)若射线:340(0)l x y x -=≥与12,C C 分别交于,A B 两点,求AB 的值. 变式题6提升14.1.已知曲线1C 的参数方程为22x y θθ⎧=⎪⎨=⎪⎩(θ为参数),曲线2C 的参数方程为222x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系.(1)求曲线1C 与曲线2C 公共点的极坐标;(2)若点A 的极坐标为()2,π,设曲线2C 与y 轴相交于点B ,点P 在曲线1C 上,满足PA PB ⊥,求出点P 的直角坐标.原题2315.已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 变式题1基础16.已知函数()22f x x x =-++.(图中的每个方格是边长1个单位的正方形)()22f x x x =-++(1)画出函数()f x 的图象;(2)当0a >时,若不等式()()f x f x a <-的解集为{}|3x x <,求a 的取值范围. 变式题2基础17.已知函数f(x)=|x -8|-|x -4|.(1)作出函数y=f(x)的图象; (2)解不等式|x -8|-|x -4|>2. 变式题3巩固18.(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲 已知函数()123f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅰ)求不等式()1f x >的解集.变式题4巩固19.设函数()211f x x x =++-.(Ⅰ)画出()y f x =的图象并解不等式()3f x ≥;(Ⅰ)当[)0,x ∈+∞,()f x ax b ≤+恒成立,求a b +的最小值. 变式题5巩固20.已知函数()2f x x =-,()|21||23|g x x x =+--.(1)画出()y g x =的图象;(2)若()()f x a g x +≥,求a 的取值范围. 变式题6提升21.设函数()221x x f x =++-. (1)求()f x 的最小值;(2)若集合(){}10x R f x ax ∈+-<≠∅,求实数a 的取值范围.参考答案:1.(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e xf x x x =+-,()e 21x f x x ='+-, 由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, Ⅰ.当x =0时,不等式为:11≥,显然成立,符合题意;Ⅰ.当0x >时,分离参数a 得,321e 12x x x a x ----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1xh x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增; 当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x Ⅰ式成立.Ⅰ式()223e74244e-+++⇔≤xx x x , 令()223e7424()(0)e -+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='x xx x h x ()()222213e 2e 9e⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,Ⅰ式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤, 记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22xx x x a x a x x a x --⎡⎤=--+++=----⎣⎦, Ⅰ.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;Ⅰ.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;Ⅰ当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由Ⅰ可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立, 所以12a ≥时,满足题意. 综上,27e 4a-. 【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有: 方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!2.(1)单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭,()2,+∞;单调递减区间为1,22⎛⎫- ⎪⎝⎭(2)2e 1,4⎛⎤+-∞ ⎥⎝⎦【详解】(1)2a =-时,()221e x x xf x --+=,()()()212e xx x f x +-'=, 令()1102f x x '=⇒=-,22x =.Ⅰ()f x 的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭,()2,+∞,单调递减区间为1,22⎛⎫- ⎪⎝⎭.(2)法一:常规求导讨论 ()()()()221212e e xxax a x ax x x F -++----'==.Ⅰ当0a ≤时,令()02f x x '=⇒= 且当02x ≤<时,()0f x '<,()f x ;当2x >时,()0f x '>,()f x .注意到()01f =,2x ≥时,()0f x <符合题意.Ⅰ当12a =时,()()21220ex x f x --'=≤,()f x 在[)0,∞+上,此时()()01f x f ≤=符合题意.Ⅰ当102a <<时,令()102f x x '=⇒=,21x a=, 且当()f x 在[)0,2上,12,a ⎛⎫ ⎪⎝⎭上,1,a ⎛⎫+∞ ⎪⎝⎭上,此时()()01f x f ≤=符合题意.Ⅰ当102a <<时,令()102f x x '=⇒=,21x a=, 且当()f x 在[)0,2上,12,a ⎛⎫⎪⎝⎭上,1,a ⎛⎫+∞ ⎪⎝⎭上,此时只需1111111e 1e a a a a f a -+⎛⎫=≤⇒≥ ⎪⎝⎭,显然成立. Ⅰ当12a >时,令()110f x x a'=⇒=,22x =,且当()f x 在10,a ⎡⎫⎪⎢⎣⎭上,1,2a ⎛⎫⎪⎝⎭上,()2,+∞上.此时只需()22411e 121e 24a f a -+=≤⇒<≤. 综上:实数a 的取值范围2e 1,4⎛⎤+-∞ ⎥⎝⎦.法二:参变分离Ⅰ0x =时,不等式显然成立.Ⅰ当0x >时,2e 1x x a x +-≤,令()2e 1x x g x x +-=,()()()33e 12e 2e 2xx x x x x g x x x ----+'==.令()02g x x '=⇒=且当02x <<时,()0g x '<,()g x ;当2x >时,()0g x '>,()g x ,Ⅰ()()2mine 124g x g +==,Ⅰ2e 14a +≤.3.(1)递增区间是()0,e ,递减区间是()e,+∞;(2)(],4-∞.【分析】(1)求导以后,结合定义域解不等式()0f x '>和()0f x '<即可求出结果; (2)参变分离得到32ln m x x x≤++对一切()0,x ∈+∞恒成立,进而构造函数()32ln h x x x x=++,求出函数()h x 的最小值即可得到结果.【详解】(1)()ln x f x x =,得()21ln xf x x-'=由()0f x '>,得0x e <<;()0f x '<,得x e >; Ⅰ()f x 的递增区间是()0,e ,递减区间是()e,+∞ (2)对一切()0,x ∈+∞,()()2f x g x ≥恒成立, 可化为32ln m x x x≤++对一切()0,x ∈+∞恒成立. 令()32ln h x x x x =++,()()()222231232301x x x x h x x x x x +-+-='>=+-=,()0x > 当()0,1x ∈时,()0h x '<,即()h x 在()0,1递减当()1,x ∈+∞时,()0h x '>,即()h x 在()1,+∞递增,Ⅰ()()min 14h x h == Ⅰ4m ≤,即实数m 的取值范围是(],4-∞ 4.(1)9,8⎛⎤-∞- ⎥⎝⎦(2)2【分析】(1)求得函数()f x 的定义域,再对()g x 求导,将函数()g x 为增函数转化为2230x x m --≥在()0,∞+上恒成立,从而可得解;(2)根据题意可得2ln 1x m x -≥在()0,∞+上恒成立,构造函数()2ln h x x m x =-,求得导数和最值,再根据换元法构造函数()ln 1a a a a ϕ=--,求得导数和最值,进而可求出m 的值. (1)根据题意可得()f x 的定义域为()0,∞+,()2ln 3g x x m x x =--,则()22323m x x mg x x x x--'=--=,Ⅰ()g x 在定义域内为增函数,Ⅰ2230x x m --≥在()0,∞+上恒成立,即223m x x ≤-在()0,∞+上恒成立,则()2min 23m x x ≤-,Ⅰ22399232488x x x ⎛⎫-=--≥- ⎪⎝⎭,当34x =时,等号成立,Ⅰ98m ≤-,即m 的取值范围为9,8⎛⎤-∞- ⎥⎝⎦.(2)Ⅰ()1f x ≥在定义域内恒成立, Ⅰ2ln 1x m x -≥在()0,∞+上恒成立,令()2ln h x x m x =-,则()222m x mh x x x x-'=-=. Ⅰ0m >,Ⅰ令()0h x '>,解得x >()h x 在⎫+∞⎪⎪⎭上单调递增,令()0h x '<,解得0x <<()h x 在⎛ ⎝上单调递减,Ⅰ()min 2m h x h m ==-要使()1h x ≥在定义域内恒成立,即()min 12m h x m =-,即ln 10222m m m --≥,令()ln 1a a a a ϕ=--(其中02ma =>),则()ln a a ϕ'=-, Ⅰ当()0,1a ∈时,()0a ϕ'>,即()a ϕ在()0,1上单调递增, 当()1,a ∈+∞时,()0a ϕ'<,即()a ϕ在()1,+∞上单调递减, Ⅰ()()max 10a ϕϕ==,即()()1a ϕϕ≤,Ⅰ要使ln 10--≥a a a ,只能取1a =,即22m a ==, 综上所述,m 的值为2.5.(1)当120,e x -⎛⎫∈ ⎪⎝⎭时,函数()h x 单调递减;当12e ,x -⎡⎫∈+∞⎪⎢⎣⎭时,函数()h x 单调递增;(2)[1,)+∞.【分析】(1)先求解()h x 的导数,结合导数符号判定()h x 的单调性;(2)先进行参数分离,然后求解2()ln u x x x x =-的最大值,可得实数a 的取值范围. 【详解】(1)由题可知2()()ln h x xf x a x x ==+,且定义域为(0,)+∞, 21()2ln (2ln 1)h x x x x x x x'∴=+⋅=+. 令()0h x '=, 得12e x -=.∴当120,e x -⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递减;当12e ,x -⎡⎫∈+∞⎪⎢⎣⎭时,()0h x '≥,函数()h x 单调递增.(2)对任意1,22x ⎡∈⎤⎢⎥⎣⎦,不等式()ln 1a f x x x x =+≥恒成立,等价于2ln a x x x ≥-恒成立;令2()ln u x x x x =-,则()12ln u x x x x '=--,(1)0u '=.令()12ln m x x x x =--,则()32ln m x x '=--, 1,22x ⎡⎤∈⎢⎥⎣⎦, ()32ln 0m x x '∴=--<,()u x '∴在1,22⎡⎤⎢⎥⎣⎦上单调递减,∴当1,12x ⎡⎤∈⎢⎥⎣⎦时,()0u x '≥,当(1,2]x ∈时,()0u x '<,即函数()u x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,在区间(1,2]上单调递减,max ()(1)1u x u ∴==,从而1a ≥,即a 的取值范围为[1,)+∞.【点睛】求解函数单调性的步骤:Ⅰ求解定义域;Ⅰ求解导数()'f x ;Ⅰ求解不等式,()0f x '>可得增区间,()0f x '<可得减区间;恒成立问题一般利用分离参数法,转化为函数最值问题求解. 6.(1)()f x 在R 上 单调递增;(2)11e ⎡⎫++∞⎪⎢⎣⎭,. 【分析】(1)求出1(),()x x x x f x a f x e e-'''=-+=,先判断出()'f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增,1()(1)0f x f a e ≥=-'>',所以()f x 单调递增;(2)先把212()()1f x f x x x ->-转化为2211()()f x x f x x ->-,记1()()xx g x f x x ax x e +=-=+-,等价于()g x 在R 单调递增,只需()0g x '≥,利用分离参数法即可求解. 【详解】1()xx f x ax e +=+的定义域为R . (1)1(),()x xx x f x a f x e e -'''=-+=,令()0f x ''>,解得:1x >;令()0f x ''<,解得:1x <; 所以()'f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增,则1()(1)0f x f a e ≥=-'>',所以()f x 在R 上单调递增;(2)不妨设12x x <,则212()()1f x f x x x->-,等价于2211()()f x x f x x ->-,记1()()x x g x f x x ax x e+=-=+-,等价于()g x 在R 单调递增, 即()0g x '≥,()101x xx x g x a a e e '=-+-≥⇒≥+在R 上恒成立, 设1()1,()x x x xh x h x e e-'=+=, 所以()h x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 所以()max 111x h x e==+,,所以11a e ≥+,即实数a 的范围为11e ⎡⎫++∞⎪⎢⎣⎭,. 【点睛】恒成立问题Ⅰ参变分离,转化为不含参数的最值问题;Ⅰ不能参变分离,直接对参数讨论,研究()f x 的单调性及最值;Ⅰ特别地,个别情况下()()f x g x >恒成立,可转换为()()min max f x g x >(二者在同一处取得最值).7.(1)分类讨论,答案见解析;(2)31,e ⎛⎫+∞ ⎪⎝⎭.【分析】(1)求导可得()()(1)2xf x x ae =+-',由()0f x '=得,11x =-,22ln x a =,分2ln 1a=-,2ln1a <-,2ln 1a>-三种情况讨论单调性即得解; (2)参变分离可得ln 2xx x a xe+->对任意的0x >恒成立,令ln 2()x x x g x xe +-=,求导分析单调性,求出max ()g x 即可.【详解】(1)由题意知,()()(1)2(1)(1)2x xf x a x e x x ae '=+-+=+-,当0a >时,由()0f x '=得,11x =-,22ln x a=, Ⅰ若2ln1a=-,即2a e =时,()0f x '≥恒成立,故()f x 在R 上单调递增;Ⅰ若2ln1a<-,即2a e >时, 令2()0lnx f x a'>∴<或1x >-;令2()0ln 1x a x f '<∴<<-故()f x 的单调递增区间为2,ln a ⎛⎫-∞ ⎪⎝⎭和(1,)-+∞,单调递减区间为2ln ,1a ⎛⎫- ⎪⎝⎭;Ⅰ若2ln1a>-,即02e a <<时, 令()01x f x '>∴<-或2ln x a >;令2()01ln f x ax '<∴-<<故()f x 的单调递增区间为(,1)-∞-和2ln ,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为21,ln a ⎛⎫- ⎪⎝⎭;综上:当2a e =时,()f x 在R 上单调递增;当2a e >时,()f x 的单调递增区间为2,ln a ⎛⎫-∞ ⎪⎝⎭和(1,)-+∞,单调递减区间为2ln ,1a ⎛⎫- ⎪⎝⎭;当02e a <<时,()f x 的单调递增区间为(,1)-∞-和2ln ,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为21,ln a ⎛⎫- ⎪⎝⎭; (2)由题意知,ln 20x axe x x --+>对任意的0x >恒成立, 即ln 2xx x a xe +->对任意的0x >恒成立, 令ln 2()(0)x x x g x x xe +-=>,则()2(1)(3ln )()xxx e x x g x xe +-'-=, 令()3ln h x x x =--,1()10h x x'=--<则()h x 在(0,)+∞上单调递减, 又(1)20h =>,()20h e e =-<,故()0h x =在(0,)+∞上有唯一的实根,不妨设该实根为0x , 故当0(0,)x x ∈时,()0g x '>,()g x 单调递增; 当0(,)x x ∈+∞时,()0g x '<,()g x 单调递减, 故0x 为()g x 的极大值点, 故()000max 00ln 2()x x x g x g x x e +-==,又003ln 0x x --=,代入上式得()000030ln 21x x x g x x e e+-==,故a 的取值范围为31,e ⎛⎫+∞ ⎪⎝⎭.8.(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44.【分析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C 的参数方程化为 22cos (sin tt t ==为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线 2C 化为直角坐标方程,联立12,C C 方程,即可求解.【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t =⎧⎨=⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎨=⎩为参数),所以0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin tt t 为参数),两式相加得曲线1C 1=,1=1,01,01y x x y =-≤≤≤≤, 曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=, 曲线2C 直角坐标方程为41630x y -+=,联立12,C C 方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=或 136(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为 11(,)44.【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关键,要注意曲线坐标的范围,考查计算求解能力,属于中档题. 9.(1)相交(2)⎭【分析】(1)将曲线1C 与曲线2C 的方程化成普通方程可知,两曲线一个表示直线,一个表示圆,根据直线与圆的位置关系即可判断;(2)联立曲线1C 与曲线2C 的普通方程即可解出. (1)当1k =时,由cos sin x ty t=⎧⎨=⎩可得曲线1C 的普通方程为:221x y +=,由cos sin x y ρθρθ=⎧⎨=⎩可将2sin cos 10ρθρθ--=化简得曲线2C 的普通方程为:210x y -+=,圆心()0,0到直线210x y -+=的距离为1d r =<=,所以曲线1C 与曲线2C 相交. (2)当2k =时,由2cos 212sin sin x t t y t ⎧==-⎨=⎩可得曲线1C 的普通方程为:()21211x y y =--≤≤,联立221012x y x y -+=⎧⎨=-⎩,解得2x y ⎧=⎪⎨=⎪⎩或2x y ⎧=⎪⎨=⎪⎩(舍去) 所以曲线1C 与曲线2C的公共点的直角坐标为⎭. 10.(1)、28cos 10sin 160ρρθρθ--+=;(2)、4π⎫⎪⎭和2,2π⎛⎫ ⎪⎝⎭【分析】(1)、将1C 的参数方程消去参数t 化为普通方程,利用cos x ρθ=,sin y ρθ=把1C 的参数方程化为极坐标方程;(2)、将曲线2C 的极坐标方程化为普通方程,与1C 的普通方程联立,求出1C 与2C 交点的直角坐标,由此求出1C 与2C 交点的极坐标.【详解】(1)、1C 的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩,(t 为参数)1C ∴的普通方程为()()224525x y -+-=即22810160x y x y +--+=1C ∴的极坐标方程为:28cos 10sin 160ρρθρθ--+=.(2)、2C 的极坐标方程为2sin ρθ=2C ∴的直角坐标方程为:2220x y y +-=22221810160120x x y x y y x y y =⎧+--+=⎧∴∴⎨⎨=+-=⎩⎩或02x y =⎧⎨=⎩1C ∴与2C 交点的坐标为()1,1或()02,,1C ∴与2C交点的极坐标为4π⎫⎪⎭和2,2π⎛⎫ ⎪⎝⎭11.(1)点A 不在曲线C (直线)上.(2)48,33⎛⎫- ⎪⎝⎭.【分析】(1)把极坐标方程化为直角坐标方程,点的极坐标化为直角坐标后判断; (2)把直线l 的参数方程代入曲线C 的直角坐标方程求解.【详解】(1)由cos sin x y ρθρθ=⎧⎨=⎩,代入:(cos 2sin )4C ρθθ+=,得24x y +=,此即为曲线C 直线坐标方程,又2cos1,2sin33ππ==A ,而14+,所以点A 不在曲线C (直线)上.(2)把1224x t y t =-⎧⎨=-+⎩代入24x y +=得122(24)4t t -+-+=,得76t =,4123t -=-,8243t -+=, 所以交点坐标为48,33⎛⎫- ⎪⎝⎭.12.(1)220x y +-=;(2)()3,0.【分析】(1)根据极坐标转化为直角坐标的公式求得C 的直角坐标方程. (2)求得l 的普通方程,结合图象求得P 的直角坐标.【详解】(1)由ρθ=得222sin ,0x y ρθ=+-=. (2)(22220,3x y x y +-=+=,所以圆心(C ,半径r =直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数得0l y --=,倾斜角为3π,过点(()0,,3,0-.由于过(和()3,0的直线的斜率为1=-, 所以当P 到圆心C 的距离最小时,P 的直角坐标为()3,0.13.(1)()22915x y -+=;5570x y +-=; (2)1【分析】(1)消去曲线1C 参数方程中的参数即可求出曲线1C 的普通方程;根据公式cos ,sin x y ρθρθ==即可求出曲线2C 的直角坐标方程;(2)把l 的方程与1C 的方程联立即可求出点A 的坐标,把l 的方程与2C 的方程联立即可求出点B 的坐标,从而利用两点间的距离公式即可求出AB 的值. (1)由1x y ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,得1x y ϕϕ⎧-=⎪⎪⎨⎪=⎪⎩, 两式平方相加,得()22915x y -+=,所以曲线1C 的普通方程为()22915x y -+=; 由5(cos sin )70ρθθ+-=,得5cos 5sin 70ρθρθ+-=, 因为cos ,sin x y ρθρθ==,所以5570x y +-=, 所以曲线2C 的直角坐标方程为5570x y +-=. (2)由5570340x y x y +-=⎧⎨-=⎩,得4535x y ⎧=⎪⎪⎨⎪=⎪⎩,所以43,55B ⎛⎫ ⎪⎝⎭;由()22915340x y x y ⎧-+=⎪⎨⎪-=⎩,消x 得225840935y y --=,即52520353y y ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭, 所以625y =-(舍)或65y =,所以85x =,所以86,55A ⎛⎫⎪⎝⎭,所以1AB ==.14.(1))π和π2⎫⎪⎭(2)4,3⎛- ⎝⎭【分析】(1)将参数方程化为普通方程,进而求出交点坐标,再转化为极坐标; (2)通过参数方程设出点P 的坐标,将PA PB ⊥转化为平面向量的数量积为0,进而解得答案. (1)由题意,1C 的普通方程为:222x y +=,2C的普通方程为:y x =+为()(,,极坐标为:)ππ,2⎫⎪⎭.(2)点A 的直角坐标为()2,0-,点B的直角坐标为(,根据题意,设)Pθθ,则),AP BP θθθθ→→+==,因为PA PB ⊥,所以)20AP BP θθθθ→→=⋅⋅+=,且0BP →→≠,sin 1θθ-=-,又22cos sin 1θθ+=,解得cos 1sin 3θθ⎧=⎪⎪⎨⎪=-⎪⎩,所点P的直角坐标为4,3⎛- ⎝⎭. 15.(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.16.(1)答案见解析;(2)6a =.【分析】(1)根据绝对值的定义,化简为分段函数,结合一次函数的性质,即可求解; (2)根据图象的变换,把函数()y f x =的图象向右平移a 个单位后得到()y f x a =-的图象,结合不等式的解集和图象的交点,即可求解.【详解】(1)由题意,函数()2,2224,222,2x x f x x x x x x -≤-⎧⎪=-++=-<<⎨⎪≥⎩,则函数()f x 的图象如图所示:(2)由()y f x =的图象向右平移a 个单位后得到()y f x a =-的图象,如图所示, 因为不等式()()f x f x a <-的解集为{}|3x x <,可得()y f x =与()y f x a =-的交点为(3,6),所以()22f x a x a x a -=--+-+|过点(3,6), 故32326a a --+-+=,解得6a =或0a =(舍),当6a =时,()(6)y f x a f x =-=-的图象为()f x 的图象向右平移6个单位,由前面的论证可知,交点(3,6)A ,故()(6)f x f x <-的解集为{}|3x x <,综上可得,实数a 的值为6.17.(1)(2)不等式的解集为(-∞,5)【详解】(1)f(x)=图象如下:(2)不等式|x-8|-|x-4|>2,即f(x)>2.由-2x+12=2,得x=5.由函数f(x)图象可知,原不等式的解集为(-∞,5).18.(1)见解析(2)11353x x x x⎧⎫<<⎨⎬⎩⎭或或【详解】试题分析:(Ⅰ)化为分段函数作图;(Ⅰ)用零点分区间法求解.试题解析:(Ⅰ)的图像如图所示.(Ⅰ)由的表达式及图像,当时,可得或;当时,可得或,故的解集为;的解集为,所以的解集为.【考点】分段函数的图像,绝对值不等式的解法【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式.19.(Ⅰ)详见解析;(Ⅰ)5.【分析】(Ⅰ)根据x的取值范围,分12x≤-,112x-<<,1≥x三种情况分别去绝对值,求出函数()f x 的解析式,根据解析式作出函数()f x 的图象,结合图象求出不等式的解集即可; (Ⅰ)结合(Ⅰ)中函数()f x 的图象,由在[)0,x ∈+∞时,直线y ax b =+的图象满足在函数()f x 的上方或重合,分别求出,a b 的最小值即可求出a b +的最小值.【详解】(Ⅰ)由题意知,当12x ≤-时,()2113f x x x x =---+=-, 当112x -<<时,()2112f x x x x =+-+=+, 当1≥x 时,()2113f x x x x =++-=,所以()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩, 作出()y f x =的图象如图所示:由图知,不等式()3f x ≥解集为{}|11x x x ≥≤-或.(Ⅰ)由(Ⅰ)中的图象知,()y f x =的图象与y 轴交点的纵坐标为2,且()y f x =的图象各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞恒成立,因此a b +的最小值为5.【点睛】本题主要考查利用图象法解绝对值不等式及求解恒成立问题;考查学生的运算求解能力和分类讨论思想、数形结合思想;正确画出函数()f x 的图象是求解本题的关键;属于中档题、常考题型.20.(1)答案见解析;(2)92a ≥. 【分析】(1)将()y g x =用分段函数表示,在平面直角坐标系中分段画出图形即可;(2)在同一个坐标系里画出()(),f x g x 图像,平移使得()y f x a =+图象在()y g x =图象上方即可,可知需要向左平移,即0a >,临界状态为过3,42A ⎛⎫ ⎪⎝⎭,解得92a =,即得解 【详解】(1)由题可知14,213()212342,2234,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=--≤<⎨⎪⎪≥⎪⎩, 画出函数图像:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过3,42A ⎛⎫ ⎪⎝⎭时,3|2|42a +-=,解得92a =或72-(舍去), 则数形结合可得需至少将()y f x =向左平移92个单位,92a ∴≥.21.(1)()min 52f x =;(2)()()2,,3+∞⋃-∞-. 【解析】(1)首先利用零点分段法,去绝对值,求得函数的最小值;(2)()1f x ax <-+在R 上有解,画出函数()f x 的图象,并且1y ax =-+过点()0,1,利用数形结合分析实数a 的取值范围.【详解】解:(1)()1321()3221312x x f x x x x x ⎧⎪--≤-⎪⎪⎛⎫=--<<⎨ ⎪⎝⎭⎪⎪⎛⎫+≥⎪ ⎪⎝⎭⎩当2x -≤时,()[)5,f x ∈+∞, 当122x -<<时,()5,52f x ⎛⎫∈ ⎪⎝⎭, 当12x ≥时,()5,2f x ⎡⎫∈+∞⎪⎢⎣⎭()min 52f x =.(2)据题意:()1f x ax <-+在R 上有解, 作函数()y f x =及1y ax =-+的图象,1y ax =-+恒过点()0,1,且直线的斜率k a =-, 51220AC k -==---,且直线BC 的斜率3BC k = 由图可得:3a ->或2a -<-所以a 的范围为()()2,,3+∞⋃-∞-.【点睛】关键点点睛:本题的第二问的关键是数形结合分析问题,理解1y ax =-+表示过点()0,1的直线,并且直线的斜率k a =-,结合(1)的分段函数,画出函数的图象,分析临界斜率,求a 的取值范围.。
2020高考数学全国卷1卷试题及答案详解

绝密★启用前2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟. 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效. 3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效. 4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效. 5.考试结束后,请将本试卷和答题卡一并上交. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .53B .23 C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题15DBCCD - 610BCCAA - 11.D 12.B二、填空题13.1 14.3 15.2 116.4-三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-. ∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴ ()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯-()()1223nnn --=-⨯-∴()()312199nn n S +-=- 18.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===, ∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥, ∴PA ⊥平面PBC(2)以O 为坐标原点,OE 方向为y 轴正方向,OE 为单位长, 建立如图所示的空间直角坐标系O xyz -. 由题设可得()()310,1,0,0,1,0,,,022E A C ⎛⎫--⎪⎝⎭, xyz。
2020年全国卷1函数与导数压轴题一题多解,深度解析

全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
高考理科数学(1卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。
2020年新高考全国Ⅰ卷(山东卷)数学第21题解法研究——同构放缩携起手导数不等式难题不再有

2020年新高考全国Ⅰ卷(山东卷)数学第21题解法研究同构放缩携起手导数不等式难题不再有高振宁(山东省新泰市第一中学㊀271200)摘㊀要:本文通过对2020年高考数学山东卷第21题解法的探研ꎬ从命题人的角度来反思问题解决的方法ꎬ发现放缩法㊁隐零点法㊁同构法放缩法㊁分而治之法之间的联系与区别ꎬ得出导数解决高考数学中函数与导数压轴题的基本途径ꎬ旨在高中导数与函数复习中提高实效.关键词:导数与单调性ꎻ同构与放缩ꎻ分而治之ꎻ隐零点中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0026-02收稿日期:2020-07-05作者简介:高振宁(1983.4-)ꎬ男ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀原题再现㊀已知函数f(x)=aex-1-lnx+lna.(1)当a=e时ꎬ求曲线y=f(x)在点(1ꎬf(1))处的切线与两坐标轴围成的三角形的面积ꎻ(2)若f(x)ȡ1ꎬ求a的取值范围.解㊀(1)略.(2)方法一(隐零点法):由f(x)=aex-1-lnx+lnaꎬ则fᶄ(x)=aex-1-1xꎬ显然a>0.设g(x)=fᶄ(x)ꎬ则gᶄ(x)=aex-1+1x2>0ꎬ所以g(x)在0ꎬ+¥()上单调递增ꎬ即fᶄ(x)在0ꎬ+¥()上单调递增.当a=1时ꎬfᶄ(1)=0ꎬ当xɪ(0ꎬ1)ꎬfᶄ(x)<0ꎬf(x)在0ꎬ1()上是减函数ꎻxɪ(1ꎬ+¥)时ꎬfᶄ(x)>0ꎬf(x)在(1ꎬ+¥)上是增函数.ʑf(x)min=f(1)=1ꎬ故fx()ȡ1恒成立.当a>1时ꎬ1a<1ꎬ所以e-1<1ꎬfᶄ(1a)fᶄ(1)=a(e-1-1)(a-1)<0ꎬ故存在唯一x0>0ꎬ使得fᶄ(x0)=aex-1-1x0=0ꎬ且当xɪ(0ꎬx0)时fᶄ(x)<0ꎬ当xɪ(x0ꎬ+¥)时ꎬfᶄ(x)>0ꎬ所以aex-1=1x0ꎬ即lna+x0-1=-lnx0.因此f(x)min=f(x0)=aex-1-lnx0+lna=1x0+lna+x0-1+lnaȡ2lna-1+21x0x0=2lna+1>1ꎬ所以f(x)ȡ1恒成立.当0<a<1时ꎬf(1)=a+lna<a<1ꎬʑf(1)<1ꎬf(x)ȡ1不恒成立.综上所述ꎬ实数a的取值范围是[1ꎬ+ɕ).方法二(放缩法):当0<a<1时ꎬf(1)=a+lna<1.当a=1时ꎬf(x)=ex-1-lnxꎬfᶄ(x)=ex-1-1xꎬ显然fᶄ(x)在(0ꎬ+¥)上是增函数.当xɪ(0ꎬ1)时ꎬfᶄ(x)<0ꎬf(x)在(0ꎬ1)上是减函数ꎻxɪ(1ꎬ+¥)时ꎬfᶄ(x)>0ꎬf(x)在(1ꎬ+¥)上是增函数.所以f(x)最小值=f(1)=1ꎬ从而f(x)ȡ1恒成立ꎬ当a>1时ꎬf(x)=aex-1-lnx+lnaȡex-1-lnxꎬ由a=1的结论可知f(x)=ex-1-lnxȡ1恒成立.综上可知:a的取值范围是1ꎬ+¥[).方法三(同构函数y=ex+x):显然a>0ꎬa=elnaꎬ则f(x)=aex-1-lnx+lna=elna+x-1-lnx+lnaȡ1ꎬ等价于elna+x-1+lna+x-1ȡlnx+x=elnx+lnx.令gx()=ex+xꎬ上述不等式等价于g(lna+x-1)ȡg(lnx).显然g(x)为R上的单调增函数ꎬ故lna+x-1ȡlnxꎬ即lnaȡlnx-x+1.令h(x)=lnx-x+1ꎬ则hᶄ(x)=1x-1=1-xxꎬ在(0ꎬ1)上hᶄ(x)>0ꎬh(x)是增函数ꎻ在(1ꎬ+¥)上hᶄ(x)<0ꎬh(x)是减函数.ʑh(x)max=h(1)=0ꎬ则lnaȡ0ꎬ即aȡ1ꎬ即a的取值范围是[1ꎬ+ɕ).方法四(同构函数y=xex):因f(1)=a+lnaȡ1ꎬ设g(a)=a+lnaꎬ显然y=g(a)在区间0ꎬ+¥()上是增函数ꎬg(a)ȡg(1)=1ꎬ故aȡ1.f(x)=aex-1-lnx+lnaȡ1ꎬ得aex-1ȡlnexa⇔exȡealnexa⇔xexȡexalnexa.显然x>0ꎬexa=eln(e/a)ꎬ则原不等62式等价于xexȡlnexaeln(e/a).设g(x)=xexꎬ显然g(x)在0ꎬ+¥()上是增函数ꎬ则上述不等式等价于g(x)ȡg(lnexa).当lnexa<0时g(x)>0ꎬg(lnexa)<0ꎬ显然g(x)ȡg(lnexa)成立ꎻ当lnexa>0时ꎬ原不等式等价于xȡlnexaꎬ由于exȡ1+xꎬ且aȡ1则可得ex-1ȡxȡxaꎬ故a的取值范围是1ꎬ+¥[).方法五(同构函数y=xlnx):同方法四可得xexȡexalnexaꎬ即exlnexȡexalnexa.设g(x)=xlnxꎬ则上述不等式等价于g(ex)ȡg(exa).gᶄ(x)=lnx+1ꎬg(x)在0ꎬ1eæèçöø÷上是减函数ꎬ在(1eꎬ+¥)上是增函数.当exa<1时ꎬg(ex)>0ꎬ而g(exa)<0ꎬ显然有g(ex)ȡg(exa)成立ꎻ当exaȡ1>1e时ꎬ不等式g(ex)ȡg(exa)⇔exȡexa⇔ex-1ȡxa.以下同方法四.方法六(分而治之法):f(x)=aex-1-lnx+lnaȡ1⇔aex-1ȡlnexa⇔aexeȡlnexa⇔aeˑexxȡlnexaexaˑea.aeˑ(exx)minȡ(lnexaexa)maxˑea.设g(x)=exxꎬx>0ꎬgᶄ(x)=(x-1)exx2ꎬ易知g(x)=exx在0ꎬ1()上是减函数ꎬ在1ꎬ+¥()上是增函数ꎬ故g(x)min=g(1)=e.设h(x)=lnxx(x>0)ꎬhᶄ(x)=1-lnxx2ꎬ易知h(x)=lnxx在(0ꎬe)上是增函数ꎬ在(eꎬ+¥)上是减函数ꎬ故h(x)max=h(e)=1eꎬ则知(lnexaexa)max=1eꎬ则aȡ1aꎬ故a的取值范围是1ꎬ+¥[).从解决问题方法的角度看ꎬ隐零点法是解决问题的一般性通法ꎬ但是此种方法需要强大的计算能力作为基础ꎬ特别是在利用aex-1=1x0进行代换得到lna+x0-1=-lnx0的这种思路ꎬ应该作为一种基本的解决导数不等式压轴题的基本思路进行培养.放缩法是山东省教育招生考试院给出的官方答案ꎬ此种办法的优点是ꎬ计算量不是大ꎬ借助分类讨论思想ꎬ利用特殊点明确参数的范围进而证明此范围符合题意ꎬ但是在实际的教学中ꎬ新教材已经把分析法和综合法等不等式证明方法删除ꎬ学生证明不等式能力较弱的情况下掌握放缩法不易ꎬ这就需要教师在教学中渗透不等式的证明方法.为了突破这个教学难点ꎬ笔者认为可以利用具体的证明方法ꎬ而不用过多的纠缠这种方法的具体含义和要求ꎬ比方说把 执果索因 给学生讲解成 把结论等价变形成能解决问题的形式 ꎬ在教学的实践中怎么充实这一点ꎬ还需要不断的在实际中摸索与探究.方法三㊁四㊁五可以归结成同构法ꎬ同构法的本质是构造目标函数ꎬ借助目标函数单调性把复杂函数简单化递减ꎬ比方说若F(x)ȡ0能等价变形为F(f(x))ȡF(g(x))ꎬ若F(x)递增ꎬ则问题转化为f(x)ȡg(x)ꎬ若F(x)递减ꎬ则问题转化为f(x)ɤg(x).此类方法的关键是构造目标函数ꎬ高考压轴题中的构造常见形式可分为两类:(1)aeaɤblnb可以同构aeaɤlnbelnbꎬ借助函数f(x)=xex解决ꎬ也可以同构ealneaɤblnbꎬ借助f(x)=xlnx解决ꎬ更可以同构为lna+aɤlnb+ln(lnb)ꎬ借助f(x)=x+lnx解决.(2)eaaɤblnb可以同构eaaɤelnblnbꎬ借助函数f(x)=exx解决ꎬ也可以同构为ealneaɤblnbꎬ借助函数f(x)=xlnx解决ꎬ更可以同构a-lnaɤlnb-ln(lnb)ꎬ借助函数f(x)=x-lnx解决.当然ꎬ用同构法解题ꎬ除了要有同构法的思想意识外ꎬ对观察能力㊁对代数式的变形能力的要求也是比较高的.但是笔者认为ꎬ利用同构法可以最接近命题者的原始创作方向ꎬ此题目设计思路的开始点应该是exȡexa.正所谓ꎬ同构新天地ꎬ放缩大舞台!方法六属于解决问题的巧妙方法ꎬ不属于通性解法ꎬ一般情况下f(x)ȡg(x)不等价于f(x)minȡg(x)maxꎬ但是对于极个别的问题ꎬ利用上分而治之的方法ꎬ会极大地降低运算程度ꎬ但是构造不等式两侧的目标函数有一定的技巧性ꎬ学生不易掌握.㊀㊀参考文献:[1]陈永清.轻松快捷巧记高中数学知识与解题方法[M].长沙:湖南师范大学出版社ꎬ2020:42-47.[责任编辑:李㊀璟]72。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学一卷21题解答赏析
21.(12分)
方法一:在《高考数学核心题型与解题技巧》一书中,有题型总结:利用两个课本中的不等式解答高考试题,通过例题,学习的重点是利用这两个不等式进行放缩,去解决证明求参问题。
利用解答这类不等式的经验和技巧,下面的解答思路水到渠成!
现已将该方法总结到书中;
方法二:在《高考数学核心题型与解题技巧》一书中,有题型总结:利用公切线确定参数范围。
掌握了该种题型的解答策略,由我们总结的模板,本题可以使用公切线法确定参数范围!
现已将该方法总结到书中;两种解法无论从思路还是运算量都可谓是简短容易。
方法三:在《高考数学核心题型与解题技巧》一书中,有题型总结:反函数问题,对课本中比较边角的知识点反函数性质的应用列举了比较深刻的三个例题,如果使用该题型模式解答本题,就更漂亮了:
现已将该方法总结到书中;我们看这三个方法无论哪一个都具有优势,都可以实现问题的快速解答。
方法四:在《高考数学核心题型与解题技巧》一书中,有题型总结:利用同构秒杀高考试题魅力无限,阐述了同构的解题思路,有函数题,有导数题,有解析几何题,是比较系统的一个专题,利用同构思想获得该题的秒解:
下面是资料的部分截图:
2020年,整个试卷可以说对于难点部分题型全部出现,小题中很多可以实现光速解法。
我们从来不去离开基础追求“秒杀”,我们的实力来自对学生的了解,对考试大纲的深度理解核和对高考命题规律的准确把握!
对于该四种解法都体现了方法上的优势,漂亮!。