2.2.1对数与对数运算(第一课时)教学设计
2.2.1对数与对数运算(一)教案

3.2.1对数及其运算(一)
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用 教学重点:理解对数的概念、常用对数的概念.
教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
,则 叫做以 为底 的对数。
记作:b N a =log (1,0≠>a a )
2、对数的性质
(1) 零和负数没有对数,即
中N 必须大于零; (2) 1的对数为0,即01log =
(3) 底数的对数为1,即1log =a a
3、对数恒等式:N a N a =log
4、常用对数:以10为底的对数叫做常用对数,记为:N N lg log 10=
5、例子:
(1) 将下列指数式写成对数式
62554=
64
126=- 373=a
73.5)31
(=m
(2) 将下列对数式写成指数式
416log 2
1-=
=
7
log
128
2
log
27
a
=
3
=
lg-
2
01
.0
(3)用计算器求值
2004
lg
lg
0168
.0
lg
370
.
125
lg
.1
732
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
课后作业:习题2.2A组第1、2题.。
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
对数与对数运算第一课时教师

2.2.1对数与对数运算(第一课时)2016-11-6教学目标: 理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
教学重点: 对数的概念;对数式与指数式的相互转化。
教学难点: 对数概念的理解;对数性质的理解。
教学过程:一、复习回顾,新课引入:引例1:一尺之锤,日取其半,万世不竭。
(1)取5次,还有多长?(答:1/32)(2)取多少次,还有0.125x=?引例2:2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍?略解:08.1x=2,则x=?象上面的式子,都是已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念). 二、师生互动,新课讲解: 1.对数定义一般地,如果N a x =(0>a ,且1≠a ),那么数x 叫做以a 为底N 的对数(logarithm ),记作N x a log =,其中a 叫做对数的底数,N 叫做真数.解答引例:引例1 125.0log 21=x 读作x 是以21为底,0.125的对数引例2 2log08.1=x 读作x 是以08.1为底,2的对数提问:你们还能找到哪些对数的例子举例: 如:1144-=,则 411log 4=- 读作-1-是以4为底,41的对数.1242=,则41log 22=, 读作12是以4为底 ,2的对数. 2.两个重要的对数(常用对数和自然对数)通常我们将以10为底的对数叫做常用对数(common logarithm ),并且把N 10log 记作N lg .如2lg 2log 10= ππlg log 10=在科学技术中常使用以无理数 597182818284.2=e 为底数的对数,以e 为底的对数称为自然对数(natural logarithm ),并且把N elog记作N ln .如2ln 2log=eππln log =e3.对数式与指数式的互化当0>a ,且1≠a 时,如果N a x =,那么N x a log =;如果N x a log =,那么N a x=.即N a x =⇔N x a log =,指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N →真数例1:将下列指数式化为对数式,对数式化为指数式(1)62554=;(2)()64126=--;(3)01.0102=-;(4)2=em(5(6)303.210ln =;(7)a =27log 3;(8)31000lg =解: (1)4625log 5=;()66412log2-=;()201.0lg 3-=;()m =2ln 4 ()165214=⎪⎭⎫⎝⎛- ()61003.2=e()2773=a()10008103=例2:求下列各式中x 的值。
对数与对数运算(第一课时)教学设计

教学内容分析
教学重点:对数式与指数式的互化以及对数运算性质
教学难点:推导对数运算性质
教学模式
“传递──接受式”与“探究式教学”相结合
教学主题
掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握
2.通过观察,探究,分析掌握指数式与对数式的互化。
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
学情分析
高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历了从特殊到一般,具体到抽象的研究过程.
例题讲解(性质应用)
例2用 , , 表示下列各式:
(1) (2)
解:(1)
(2)
=
例3求下列各式的值:
(1) (2)
解:(1)
(2)
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
式子
名称
----幂的底数
----幂的指数
----幂值
----对数的底数
----以 为底 的对数
----真数
(停顿)这是因为 ,所以 。因此, 中真数N也要求大于零,所以在 , 的条件下,指数式与对数式是可以相互转化的。
由真数 ,得到负数与零一定没有对数。
改变教学方式注重主体参与——“2.2.1对数与对数运算(第一课时)”教学实录与评析

【 点评】教师 以问题 3为载体 ,引导学 生思考接下来应该研 生 :因为 Y=lg o ̄ x与 =a 等价 ,所以两个式子 中 n的取值 究解决 的问题是对数函数的图象 与性质. 此过程 中学生需要 思 y 在
一
样.
考 研 究 函 数 图 象 的 一般 方 法 ( 从特 殊 到 一般 ) 即 ,还 要 动 手 实 践
师 :说得 有道 理 !把 Y= ( a>0 ,且 a )化 为对 数式 象) 、Ⅱ ≠1 , 、Y的取值 范 围是什 么 ,Y=lg 的结构特征是 什 么. og
时 , 等于什么 ?
生 3 =lg : o #.
学生通过积极 的思考和 活动 ,从具体 到抽象 的过程 中主动地获
() 1 Y=l  ̄ o x的图象都过定点 g
般地 ,把 函数 Y=l  ̄ ( o x n>0 g ,且 。 ) 叫做对 数 函数 , ≠1
其 中 自变量 ∈( ,+。 . 0 o)
() 2 Y=lg oa x的图象都 在
一
一
轴的
—
—
一
侧 ,且 以
—
—
轴
师 :注意函数 Y l 与函数 = 都是一个整体 ,不能割 为渐近线. =o ( ) 0<a<1 ,Y=lg 3 当 时 oa X的图象 呈 裂开.继续思考有何特征? 趋势 ; >1 o x的图象呈 g 生。 :右边对数式 的系数与指数都为 1 的系数与指数也都 。 时 ,Y=l . ,
符合 我们 的认识规律.在下列坐标系 中,已经给 出了Y=lg o2 x与
Y = lg o
—
的图象 ,请用列表 、描点 、连线 的方法 ,在 此坐标 系
3
2
o x与 g o x的 图象 .( g 图略 . ) 生 :常数 。 应该 与指数 函数 中 a的取值 一样 ,自变量 与 中 画 出 Y=l 3 Y=l & ( 师 引领 学 生 完成 填 表 ,描 点 、连 线 由 学 生 完成 . 教 )
高中数学 2.2.1 对数与对数运算 第一课时教案精讲 必修1

2.2 对数函数2.2.1 对数与对数运算第一课时第一课时对数[读教材·填要点]1.对数的概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a 叫做对数的底数,N叫做真数.2.两类特殊对数名称定义符号常用对数以10为底的对数lg N自然对数以e为底的对数ln N3.当a>0,a≠1时,a x=N⇔x=log a N.4.对数的基本性质性质1负数和零没有对数性质21的对数是0,即log a1=0(a>0,且a≠1)性质3底数的对数是1,即log a a=1(a>0,且a≠1)1.任何指数式都能转化为对数吗?提示:不能.如(-3)2=9就不能直接写成log(-3)9,只有符合a>0,a≠1时,才有a x =N⇔x=log a N2.式子a log a N=N(a>0,a≠1,N>0)成立吗?为什么?提示:此式称为对数恒等式.设a b=N,则b=log a N,∴a b=a log a N=N.3.指数式a x=N和对数式x=log a N有何区别和联系(其中a>0且a≠1)?提示:二者本质是一样的,都是a、x、N之间的关系式;但二者之间突出的重点不一样,指数式a x=N中突出的是指数幂N,而对数式x=log a N中突出的是对数x.对数概念的理解[例1](1)log(2x-1)(x+2);(2)log(x2+1)(-3x+8).[自主解答] (1)因为真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧x +2>02x -1>02x -1≠1,解得x >12且x ≠1.即x 的取值范围是{x |x >12且x ≠1};(2)因为底数x 2+1>0,且x 2+1≠1,所以x ≠0;又因为-3x +8>0,所以x <83,综上可知x <83,且x ≠0.即x 的取值范围是{x |x <83且x ≠0}.在本例(2)中,若底数与真数中的式子互换,即log (-3x +8)(x 2+1),则x 的取值范围又如何?解:因为底数-3x +8>0且-3x +8≠1, 所以x <83且x ≠73.又因为x 2+1>0,所以x ∈R .综上可知:x 的取值范围是{x |x <83且x ≠73}.——————————————————解决对数式有意义的题时,只要注意满足底数大于0且不为1,真数大于0,然后解不等式即可.————————————————————————————————————————1.求使得对数log (x -3)(6-x )有意义的x 的取值范围. 解:依题意得⎩⎪⎨⎪⎧6-x >0x -3>0x -3≠1,解得3<x <6且x ≠4.即x 的取值范围为{x |3<x <6且x ≠4}.指数式与对数式的互化[例2] (1)log 327=3;(2)log 128=-3(3)log2x =5;(4)24=16;(5)(13)-2=9;(6)2-2=14.[自主解答] (1)33=27;(2)(12)-3=8;(3)(2)5=x ;(4)4=log 216; (5)log 139=-2;(6)log 214=-2.——————————————————(1)对数式log a N =b 是由指数式a b=N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值N ,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图.(2)在指数式a b=N 中,若已知a ,N ,求幂指数b ,便是对数运算b =log a N . ————————————————————————————————————————2.将下列指数式化为对数式,对数式化为指数式: (1)43=64; (2)3-2=19; (3)(14)-3=64;(4)log 1327=-3; (5)log3x =6.解:(1)log 464=3. (2)log 319=-2.(3)log 1464=-3.(4)(13)-3=27.(5)(3)6=x .对数概念及性质应用[例3] (1)log 2(log 4x )=0; (2)log 3(lg x )=1; (3)log2-113+22=x .[自主解答] (1)∵log 2(log 4x )=0, ∴log 4x =1,∴x =4. (2)∵log 3(lg x )=1 ∴lg x =3,∴x =103. (3)∵log2-113+22=log2-1(3-22)=x ,∴(2-1)x =3-22=(2-1)2, ∴x =2. ——————————————————1解决这类求值问题时,注意几种对数方程的变形: log a f x =0a >0,且a ≠1⇒f x =1; log a f x =1a >0,且a ≠1⇒f x =a ;log fxm =n m >0,m ,n 为常数⇒[()]()0() 1.n f x m f x f x ⎧⎪>⎨⎪≠⎩=,,2有关“底数”和“1”的对数,可利用对数的性质求出其值为“1”和“0”,化为常数,有利于简化计算.————————————————————————————————————————3.求下列各式中x 的值. (1)log x 27=32;(2)log 8x =-23;(3)x =log 2719.解:(1)∵x 32=27, ∴x =(27) 32=32=9. (2)x =823-=2-2=14.(3)x =log 2719;27x=19.∴33x =3-2.∴x =-23.解题高手易错题审题要严,做题要细,一招不慎,满盘皆输,试试能否走出迷宫!x [错解] ∵log x 9=2,∴x 2=9,x =±3.[错因] 错解中,忽视了底数a >0.导致出现增根.[正解] ∵log x 9=2,∴x 2=9,x =±3. 又∵x >0,且x ≠1, ∴x =3.1.log 5b =2,化为指数式是( ) A .5b=2 B .b 5=2 C .52=b D .b 2=5答案:C2.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <3或3<a <5 C .2<a <5D .3<a <4解析:要使式子b =log (a -2)(5-a )有意义则⎩⎪⎨⎪⎧a -2>0a -2≠15-a >0即2<a <3或3<a <5.答案:B3.下列结论正确的是( )①lg(lg10)=0 ②lg(lne)=0 ③若10=lg x 则x =10 ④若e =ln x ,则x =e 2A .①③B .②④C .①②D .③④解析:∵lg10=1,∴lg(lg10)=0,故①正确; ∵lne =1,∴lg(lne)=0,故②正确; ∵10=lg x ,∴x =1010,故③不正确; ∵e =ln x ,∴x =e e,故④也不正确; 答案:C4.若log 31-2x9=0,则x =________.解析:∵log 31-2x 9=0,∴1-2x9=1,1-2x =9.∴-2x =8.x =-4. 答案:-45.若a >0,a 2=49,则log 23a =________.解析:∵a >0,且a 2=49,∴a =23.∴log2323=1. 答案:16.将下列指数式化为对数式,对数式化为指数式: (1) πx=8;(2)log x 64=-6; (3)lg1 000=3.解:(1)由πx=8,得x =log π8; (2)由log x 64=-6,得x -6=64; (3)由lg1 000=3,得103=1 000. 一、选择题1.已知log x 8=3,则x 的值为( ) A.12 B .2 C .3D .4解析:由log x 8=3,得x 3=8,∴x =2. 答案:B2.方程2log 3x =14的解是( )A .9 B.33C. 3D.19解析:∵2log3x=14=2-2. ∴log 3x =-2. ∴x =3-2=19.答案:D3.若log x 7y =z 则( ) A .y 7=x zB .y =x 7zC .y =7xD .y =z 7x解析:由log x 7y =z 得:x z =7y ,y =x 7z. 答案:B4.log 5[log 3(log 2x )]=0,则x12等于( )A.36 B.39C.24D.23解析:∵log 5[log 3(log 2x )]=0, ∴log 3(log 2x )=1, ∴log 2x =3. ∴x =23=8. ∴x12-=812-=18=122=24. 答案:C 二、填空题5.log 6[log 4(log 381)]=________. 解析:设log 381=x ,则3x=81=34, ∴x =4,∴原式=log 6[log 44]=log 61=0. 答案:0 6.log 23278=________. 解析:设log 23278=x ,则(23)x =278=(23)-3, ∴x =-3.∴log 23278=-3. 答案:-37.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1-x ,x >1,若f (x )=2,则x =________.解析:由⎩⎪⎨⎪⎧x ≤13x=2⇒x =log 32,⎩⎪⎨⎪⎧x >1-x =2⇒x =-2无解.答案:log 328.若log a 2=m ,log a 3=n ,则a2m +n=________.解析:∵log a 2=m ,∴a m=2,∴a 2m=4,又∵log a 3=n , ∴a n=3,∴a 2m +n=a 2m ·a n=4×3=12.答案:12 三、解答题 9.求下列各式中x .(1)log 2x =-23;(2)log 5(log 2x )=0. 解:(1)x =223-=(12)23(2)log 2x =1,x =2.10.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. 解:原函数式可化为f (x )=lg a (x +1lg a )2-1lg a+4lg a . ∵f (x )有最大值3,∴lg a <0,且-1lg a +4lg a =3,整理得4(lg a )2-3lg a -1=0, 解之得lg a =1或lg a =-14.又∵lg a <0,∴lg a =-14.∴a =1014-.。
2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探究:1。
是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=0.01; (4)303.2e =10.例3.求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x, ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg 0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值.2.2.1对数与对数运算(二)教学目标(三) 教学知识点对数的运算性质. (四) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程; 3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值; 5.明确对数运算性质与幂的运算性质的区别. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题.教学重点证明对数的运算性质.教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a⑶对数恒等式N aNa =log4.指数运算法则 )()(),()(),(R n b a ab R n m aa R n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =pa ,N =qa . ∴MN = pa qa =qp a+ ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =pa ,N =qa .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴nM =npa ∴a log nM =np , 即证得a log nM =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式. ①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+. ③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的. )10(log 2)10(log 10210-=-是不成立的. ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zyx zxya a . 解:(1)zxyalog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x3log )z y a -= a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-.例2. 计算(1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2; (3)解法一:lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 例4.已知3010.02lg =,4771.03lg =, 求45lg例5.课本P66面例5.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为 M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).3.课堂练习:教材第68页练习题1、2、3题. 4.课堂小结对数的运算法则,公式的逆向使用.=n a a log n2.2.1对数与对数运算(三)教学目标(五) 教学知识点1. 了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明; 3.运用对数的知识解决实际问题。
对数与对数的运算详细教案

课题2.2.1 对数与对数的运算 教学内容:对数与对数的运算 教学目标:1.知识目标:理解对数的概念,掌握指数式与对数式的互化以及认识特殊对数的意义和表示方式;2.能力目标:培养学生分析问题、解决问题的能力与思维灵活性的能力;3.情感目标:在知识的探索和发现过程中让学生认识事物之间的相互联系与相互转换;感受探索新知的乐趣和成功的喜悦.教学重点:对数的概念,对数与指数的关系. 教学难点:对数概念的理解. 课型:新授课. 教学方法:1 教法:讲解法,合作法.2 学法:类比学习法,合作学习法.3 教学用具:彩色粉笔;多媒体.教学过程:1.创设情境,引入新知(1)庄子:一尺之棰,日取其半,万世不竭.①取5次,还有多长? ②取多少次,还有0.125尺?(2)截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么多少年后我国人口数可达18亿? 可抽象出:51,2a ⎛⎫= ⎪⎝⎭10.125?2xx ⎛⎫=⇒= ⎪⎝⎭()1311%18y⨯+=即181.01?13y y =⇒=师:上一节我们已经知道指数运算就是我们以前学的乘方运算,同样也知道乘方运算的逆运算开方运算.对512a⎛⎫=⎪⎝⎭,大家认为是什么运算呢?a的值为多少呢?对于1180.125 1.01213xy⎛⎫==⎪⎝⎭和,这两个式子有什么共同的地方没有?是什么?(已知底数和幂值,求指数).是我们熟悉的运算吗?和我们所熟知的指数也能算和开方运算有联系吗?其中的x y和的值怎么表示呢?带着这些问题进入我们今天的课堂:对数.2.探究新知⑴对数定义如果x a N=(a>0且a≠1),那么数x叫做以a为底N的对数,记作x =loga N(01a a>≠且)其中a叫对数的底数,N叫做真数.师:从上述定义要知道对数的记法为:logaN;读作:以a为底N的对数.师:得出logaN表示a的多少次幂为N.师:在上节我们学的指数函数中,我们知道a>0且a≠1才有意义,所以在考虑对数的时候我们也规定a>0且a≠1.师:知道了对数的定义,我们就根据定义来把刚刚的第三和四小题中的,x y表示出来了:因为10.1252x⎛⎫=⎪⎝⎭,所以12log0.125x=;因为181.0113y=,所以1.0118log13y=.师:我们根据对数定义,可以看出指数和对数存在密不可分的关系,那么究竟有怎样的关系呢?我们一起来看看.⑵指数式和对数式的关系师: 讨论两者之间的关系前要明确a的取值范围是a>0且a≠1,也要知道两个式子中相同字母代表的是同一个数,只是数的位置发生了变化,到底是怎样的变化呢?下面我们就一起来学习:师: 这便是指数式和对数式的关系,在此我还要强调一下,x a N =和x =log a N 其实表示的一种关系,它们是一种关系的不同表达式,x a N =是指数形式,x =log a N 是对数形式,本质上它们是一回事。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算(第一课时)教学设计
教学目标:
1.知识技能:
(1)通过对数产生的历史,引入对数的定义,了解对数产生的意义;
(2)掌握对数式与指数式的互化;
(3)掌握对数的运算公式.
2. 过程与方法:
通过与指数式的比较,引出对数定义与性质.
3.情感、态度、价值观:
(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
(2)通过对数的运算法则的学习,培养学生的严谨的思维品质;
(3)在学习过程中培养学生探究的意识.
教学重点:对数式与指数式的互化及对数运算公式的探索.
教学难点:对数运算公式的探索.
教学用具:投影仪.
教学方法:讲授法、讨论法、类比分析与发现.
教学过程:
一、对数的定义
问题1.没有计算器或计算机怎样简化计算123456789×987654321=? 16世纪中叶,由航海和天文的发展而引起的大数计算日益激增,类似的九位数及以上的乘法需要做数十次的乘法运算,于是人们就提出能不能把乘除法运算转换为加减运算?数学家们通过一系列努力,最终形成了一个新的运算规则,大大简化了大规模乘除法运算.
这个规则就是定义一个新运算,在合理化的情况下使乘除运算变为加减运算成为可能.我们就来一起体验这个新规则的制定.
问题2.完成下列问题:
(1)若53M =,则M =? (243)
(2)若33N -=,则N =? (127
)
(3)若381x =,则x =? (4)
(4)若415x =,则x =?
现有工具无法求出x ,则用符号4log 15表示,以此类推,381x =中的x 用这种方式表示是怎样的?
问题3.抽象为一般情况,若x a N =,则x =? (log a x N =). 在此给出对数的定义:
一般地,若(0,1)x a N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N = ,a 叫做对数的底数,N 叫做真数. 练习:式子181.0113
x =,481x =中的x 怎么表示? 二、指数、对数互化
根据对数的定义,可以得到指数与对数的关系.
log x a a N N x =⇔=
指数式⇔对数式
幂底数←a →对数底数
指 数←x →对数
幂 ←N →真数
练习:完成课本64页练习
三、探索运算法则
对数是用来表示一个指数幂中的指数,而指数运算有m n m n a a a +⋅=,不妨设m M a =,n a N =,则有m n MN a +=.又由对数定义可得:log a M m =,log a N n =,log ()a MN m n =+,所以log ()log log a a a MN M N =+.
问题4.有了上面这个运算法则,那么123456789×987654321=?
我们可以先对乘积取对数得10log (123456789987654321)⨯
1010log 123456789log 987654321=+
由对数表可以知道:10log 1234567898.91514977=,
10log 9876543218.99464968=.
于是10log (123456789987654321)⨯=17.90975474.
再查一次反对数表得到:17123456789987654321 1.21932631110⨯=⨯. 问题5.类似地,大规模计算
M N ,n M 又怎么解决呢? 这个作为课后思考.
四、课堂小结:
1、对数产生的意义;
2、对数式与指数式的互化的方法;
3、如何合理化制定计算规则.
五、布置作业:
习题2.2 A 组1,2两题.
1、此片段的设计意图:本节课对数概念的引入与一般做法不一样,从问题开始,引出对数产生的背景,引起学生探索的兴趣。
本课时很多教师进行对数概念教学往往喜欢从现实中例子出发,逐步引入概念,忽略了概念产生的科学背景,只是传授对数的相关知识而学生根本不知道为什么要学习对数,学习对数有什么用。
所以教师要从学生的认知角度考虑,这样才能最大限度地激发学生的学习兴趣,从而更好地学好数学。
2、上完此课后,达到了的预期目标,教学效果很好。
3、此片段的优点能最大限度地调动学生的学习积极性,激发学生的学习兴趣,从而使学生牢固地掌握本节课内容。
不足是本节课主要以问题为主,需要学生积极主动地参与。
对于参与度不高的学生或后进生而言,还需要教师在课堂上有针对地辅导,必要时课后还要单独辅导。