动能定理功能关系练习题题含答案

合集下载

动能定理专项训练(含解析)

动能定理专项训练(含解析)

动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。

(完整版)高中物理动能定理典型练习题(含答案)

(完整版)高中物理动能定理典型练习题(含答案)

动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。

高中物理:动能定理 机械能守恒定律及功能关系的应用 练习(含答案)

高中物理:动能定理 机械能守恒定律及功能关系的应用 练习(含答案)

高中物理:动能定理机械能守恒定律及功能关系的应用练习(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分。

每小题只有一个选项符合题意。

) 1.假设摩托艇受到的阻力的大小正比于它的速率。

如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的()A.4倍B.2倍 C.3倍 D.2倍2.(南昌调研)如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面。

设物体在斜面最低点A时的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,不计小球与弹簧碰撞过程中的能量损失,则小球在C点时弹簧的弹性势能为()A.mgh-12m v2 B.12m v2-mghC.mgh+12m v2 D.mgh3.(武汉毕业调研)如图甲所示,固定的粗糙斜面长为10 m,一小滑块自斜面顶端由静止开始沿斜面下滑的过程中,小滑块的动能E k随位移x的变化规律如图乙所示,取斜面底端为重力势能的参考平面,小滑块的重力势能E p随位移x的变化规律如图丙所示,重力加速度g=10 m/s2。

根据上述信息可以求出()A.斜面的倾角B.小滑块与斜面之间的动摩擦因数C.小滑块下滑的加速度的大小D.小滑块受到的滑动摩擦力的大小4.(泰兴质量检测)如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。

现使小球以初速度v0=6Rg沿环上滑,小球运动到环的最高点时与环恰无作用力,则小球从最低点运动到最高点的过程中( )A .小球的机械能守恒B .小球在最低点时对金属环的压力是6mgC .小球在最高点时,重力的功率是mg gRD .小球的机械能不守恒,且克服摩擦力做的功是0.5 mgR5.如图所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,上面放一质量为m 的带正电小球,小球与弹簧不连接,施加外力F 将小球向下压至某位置静止。

现撤去F ,小球从静止开始运动到离开弹簧的过程中,重力、电场力对小球所做的功分别为W 1和W 2,小球离开弹簧时速度为v ,不计空气阻力,则上述过程中( )A .小球与弹簧组成的系统机械能守恒B .小球的重力势能增加W 1C .小球的机械能增加W 1+12m v 2D .小球的电势能减少W 26.(日照调研)如图所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

m: C 点竖直上抛,根据动能定理:
12 mgh 0 mv2
2 ∴ h=2.5 R ∴ H=h +R=3.5 R
(2) 物块从 H 返回 A 点,根据动能定理:
mgH -μ mg=s0-0 ∴ s=14 R
小物块最终停在 B 右侧 14R 处
13 也可以整体求解,解法如下:
m: B→ C,根据动能定理: F 2R f 2R mgH 0 0
解: (1) m 由 A 到 B:根据动能定理: mgh 1 mv2 2
1 mv02 2
v 20m/s
m v0
(2) m 由 A 到 B,根据动能定理 3:
1 21 2
mgh W mvt mv0
2
2
W 1.95J
3a、运动员踢球的平均作用力为 200N,把一个静止的质量为
在水平面上运动 60m 后停下 . 求运动员对球做的功?
4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v0竖直下抛,落地后,小钢球陷入泥 土中的深度为 h 求:
(1) 求钢球落地时的速度大小 v.
(2) 泥土对小钢球的阻力是恒力还是变力 ?
(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小 .
解: (1) m 由 A 到 B:根据动能定理:
WF f l cos180o 1 mvm2 0 2
l 800m
11. AB 是竖直平面内的四分之一圆弧轨道,在下端 B与水平直轨道相切,如图所示。一小球自
A 点起由静止开始沿轨道下滑。已知圆轨道半径为
R,小球的质量为 m ,不计各处摩擦。求
(1) 小球运动到 B点时的动能;
(2) 小球经过圆弧轨道的 B 点和水平轨道的 C点时,所受轨道支持力 N B、 N C各是多大 ?

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

1、 一质量为1kg 的物体被人用手由静止向上提高 (1)物体克服重力做功• (2)合外力对物体做功.解:⑴ m 由 A 到 B :W Gmgh 10J克服重力做功10W 克G W G 10J C12⑵m 由A 到B ,根据动能定理11: W -mv2⑶ m 由 A 到 B : W W G W FW F 12J2、 一个人站在距地面高 h = 15m 处,将一个质量为 上抛出• (1)若不计空气阻力,求石块落地时的速度 ⑵若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W.1 2 解:(1) m 由A 到B :根据动能定理: mgh mv⑵m 由A 到B ,根据动能定理12:1 2 1 2 mgh Wmv t mv oW 1.95J2 23a 、运动员踢球的平均作用力为200N ,把一个静止的质量为在水平面上运动 60m 后停下.求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理13:1 2 W mv 0 0 50J 2(3b)球在运动员踢球的过程中,根据动能定理14W 】mv 2-mv 22 210不能写成:W G mgh 10J .在没有特别说明的情况下,临 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 11也可以简写成:“m : A B : Q W EJ',其中 W E k 表示动能定理. 12此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功. 13踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 14结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等(3)手对物体做功.B m0 2J* N hA±+ mgm = 100g 的石块以v o = 10m/s 的速度斜向 V.1kg 的球以10m/s 的速度踢出,v 0 0 v ; v 0m_O A Bmg mg1m ,这时物体的速度是 2m/s ,求:4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v o 竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求:(2)泥土对小钢球的阻力是恒力还是变力 (4)求泥土对小钢球的平均阻力大小 .解:(1) m 由A 到B :根据动能定理:(2) m 由1状态到3状态15 16:根据动能定理:Fs 1 cos0omgscos180° 0 0s 100m15也可以用第二段来算s 2,然后将两段位移加起来.计算过程如下: m 由2状态到3状态:根据动能定理:o12mgs 2 cos180 0 mv s 70m则总位移s s, s?100m .(1)求钢球落地时的速度大小v.(3)求泥土阻力对小钢球所做的功 mgmgH12 12 mv mv 0 2 2(2)变力 6.(3) m 由B 到C ,根据动能定理: mgh W1 2 mv 2W f1 2mv 0 mg v tW f2 mv 02mg Hcos180°2h5、在水平的冰面上,以大小为 F=20N 冰车受到的摩擦力是它对冰面压力的 进了一段距离后停止.取g = 10m/s 2. (1)撤去推力F 时的速度大小. I 程s. I 的水平推力,推着质量 0. 01倍,当冰车前进了 .求:(2)冰车运动的总路m=60kg S 1=30m 的冰车, 后,撤去推力F ,冰车又前 由静止开始运动•解:(1) m 由1状态到2状态:根据动能定理7 F& cos0oo1 2mgs cos180 — mv 014m/s 3.74m/sv6、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止.求:(1) 在物体沿水平运动中摩擦力做的功(2) 物体与水平面间的动摩擦因数.解:⑴m由A到C9:根据动能定理:mgR W f 0 0W f mgR 8J⑵ m 由 B 到C: W f mg x cos180°0.27、粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止.设物体与轨道间的动摩擦因数为0.5 (g =10m/s 2),求:(1) 物体到达B点时的速度大小•(2) 物体在圆弧轨道上克服摩擦力所做的功.解:⑴m由B到C :根据动能定理:mg I cos180°v B 2m/s1 2⑵ m由A到B:根据动能定理:mgR W f mv(3 02克服摩擦力做功W克f W f 0.5J8、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为I,斜面倾角为,物体在斜面上运动的水平位移为s,,在水平面上运动的位移为S2,如图所示10.m由A到B :根据动能定理:mgh mg cos I cos180o mgs2 cos180°0 0又Q I cos s i、s S1 S2h则: h s 0即:ss9也可以分段计算,计算过程略10、汽车质量为 m = 2 x 103kg ,沿平直的路面以恒定功率 达到最大速度20m/s.设汽车受到的阻力恒定.求:证毕•9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的 从斜面的顶端以初速度 v o 沿斜面滑下,则停在平面上的 C 点•已知AB = BC 克服摩擦力做的功• ° A 故功 解:设斜面长为I , AB 和BC 之间的距离均为s ,物体在斜面上摩擦力 O 到B :根据动能定理: mgh W f 2 s cos180o 0 0 O 到C :根据动能定理: mgh W f 2 2s cos180° 1 2mv 2mgB 点•若该物体 ,求物体在斜面上N i厂ABN 2W f-mv 2 mgh 2克服摩擦力做功W 克 f W fmgh 1 2mv o2(1)阻力的大小. ⑵这一过程牵引力所做的功 (3)这一过程汽车行驶的距离解12 : (1)汽车速度v 达最大v m 时,有F f ,故:P F v m f v mf 1000N(2)汽车由静止到达最大速度的过程中: 6 g Pt 1.2 10 J (2)汽车由静止到达最大速度的过程中,由动能定理: mg mg l cos180o 1 2mv m 2l 800m 11. AB 是竖直平面内的四分之一圆弧轨道,在下端 A 点起由静止开始沿轨道下滑。

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理练习巩固基础一、不定项选择题(每小题至少有一个选项)1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是()A.如果物体所受合外力为零,则合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,则合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。

2.下列说法正确的是()A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。

3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定()A.水平拉力相等B.两物块质量相等C.两物块速度变化相等D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能()A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为()A.s B.s/2 C.2/s D.s/46.两个物体A、B的质量之比m A∶m B=2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为()A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为()A.L B.2L C.4L D.0.5L8.一个人站在阳台上,从阳台边缘以相同的速率v0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能()A.上抛球最大B.下抛球最大C.平抛球最大D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( )A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( )A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。

当物体落回原处的速率为16m/s 。

在此过程中物体克服阻力所做的功大小为( )A .200JB .128JC .72JD .0J12.一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度为2m/s ,则下列说法中正确的是( )A .手对物体做功12JB .合外力对物体做功12JC .合外力对物体做功2JD .物体克服重力做功10J13.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N的水平拉力后,A 和B 一起前进了4m ,如图1所示。

在这个过程中B 对A 做的功等于( )图1A .4JB .12JC .0D .-4J14.一个学生用100N 的力,将静止在操场上的质量为0.6kg 的足球,以15 m/s 的速度踢出20m远。

则整个过程中学生对足球做的功为( ) A .67.5J B .2000J C .1000J D .0J15.一个质量为m 的小球,用长为L 的轻绳悬挂在O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地拉到Q 点,如图2所示,则拉力F 做的功为( )A .mgLcos θB .mgL(1-cos θ)C .FLsin θD .FLcos θ二、填空题16.如图3所示,地面水平光滑,质量为m 的物体在水平恒力F 的作用下,由静止从A 处移动到了B 处;此过程中力F 对物体做正功,使得物体的速度 (增大、减少、不变)。

如果其它条件不变,只将物体的质量增大为2m ,在物体仍由静止从A 运动到B 的过程中,恒力F 对物体做的功 (增大、减少、不变);物体到达B 点时的速度比原来要 (大、少、不变)。

如果让一个具有初速度的物体在粗糙水平地面上滑行时,物体的速度会不断减少,这个过程中伴随有 力做 功(正、负、零)。

可见做功能使物体的速度发生改变。

17.一高炮竖直将一质量为M 的炮弹以速度V 射出,炮弹上升的最P θ Q O F图2大高度为H ,则炮弹上升的过程中克服空气阻力所做的功为 ,发射时火药对炮弹做功为 。

(忽略炮筒的长度)18.质量为m 的物体静止在水平桌面上,物体与桌面间的动摩擦因数为μ,今用一水平力推物体,使物体加速运动一段时间,撤去此力,物体再滑行一段时间后静止,已知物体运动的总路程为s ,则此推力对物体做功 。

三、计算题20.一个质量为m=2kg 的铅球从离地面H=2m 高处自由落下,落入沙坑中h=5cm 深处,如图所示,求沙子对铅球的平均阻力。

(g 取10m/s 2)21.质量为m 的物体由半圆形轨道顶端从静止开始释放,如图4所示,A 为轨道最低点,A 与圆心0在同一竖直线上,已知圆弧轨道半径为R ,运动到A 点时,物体对轨道的压力大小为2.5mg ,求此过程中物体克服摩擦力做的功。

能力提升hH一、单选题(每小题只有一个正确选项)1.汽车在拱形桥上由A匀速率地运动到B,如图1所示,下列说法中正确的是()A.牵引力与摩擦力做的功相等;B.牵引力和重力做的功大于摩擦力做的功;C.合外力对汽车不做功;D.合外力为零。

2.如图2所示,质量为m的物体,由高为h处无初速滑下,至平面上A点静止,不考虑B点处能量转化,若施加平行于路径的外力使物体由A点沿原路径返回C点,则外力至少做功为()A.mgh;B.2mgh;C.3mgh;D.条件不足,无法计算。

3.某消防队员从一平台跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m。

在着地过程中,地面对他双腿的平均作用力是他自身重力的()A.2倍;B.5倍;C.8倍;D.10倍。

4.物体在水平恒力F作用下,在水平面上由静止开始运动,当位移为L时撤去F,物体继续前进3L后停止运动,若水平面情况相同,则物体所受的摩擦力f和最大动能E k是()A .3F f =,E k =4FL ;B .3Ff =,E k =FL ;C .4F f=,3FL E k =; D .4F f =,43FL E k =。

5.质量为1kg 的物体以某一初速度在水平面上滑行,由于摩擦力的作用,其动能随位移变化的图像如图3所示,g=10m/s 2。

则以下说法正确的是( )A .物体与水平面间的动摩擦因数为0.5;B .物体与水平面间的动摩擦因数为0.2;C .物体滑行的总时间为4s ;D .物体滑行的总时间为2.5s 。

6.如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周做匀速圆周运动,在上述增大拉力的过程中,绳的拉力对小球做的功为( )A .4FR ;B .FR 23; C .FR ; D .FR 21。

7.如图5所示,物体以100J 的初动能从斜面底端沿斜面向上运动,当它向上通过斜面上某一点M 时,其动能减少了80J ,克服摩擦力做功32J ,则物体返回到斜面底端时的动能为( )A .20J ;B .48J ;C .60J ;D .68J 。

8.质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A .mgR 41;B .mgR 31;C .mgR 21;D .mgR 。

9.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离为d = 0.50m ,盆边缘的高度为h = 0.30m 。

在A 处放一个质量为m 的小物块并让其从静止出发下滑。

已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ= 0.10。

小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50mB .0.25mC .0.10mD .0二、计算题10.如图6所示,m A =4kg ,A 放在动摩擦因数μ=0.2的水平桌面上,m B =1kg ,B 与地相距h=0.8m ,A 、B 均从静止开始运动,设A 距桌子边缘足够远,g 取10m/s 2,求:(1)B 落地时的速度;(2)B 落地后,A 在桌面滑行多远才静止。

动能定理练习参考答案:巩固基础:一、选择题1.A 2.AB 3.D 4.AD 5.D 6.B 7.C 8.D 9.C10.C 11.C 12.ACD13.A 14.A 15.B二、填空题16.增大;不变;小;滑动摩擦;负; 17.mgH mv -221;221mv 18.μmgs三、计算题19.∵全过程中有重力做功,进入沙中阻力做负功∴W 总=mg (H+h )—fh由动能定理得:mg (H+h )—fh=0—0 得hh H mg f )(+= 带入数据得f=820N 20.物体在B 点:R v m mg 2=-N ∴mv B 2=(N-mg )R=1.5mgR ∴mgR mgR 4375.0mv 212B == 由动能定理得:mgR 43W mgR f=+ ⇒ mgR 41W f -= 即物体克服摩擦力做功为mgR 41 能力提升:一、选择题1.C 2.B 3.B 4.D 5.C 6.B 7.A 8.C 9.D二、计算题10.从开始运动到B 落地时,A 、B 两物体具有相同的速率。

①以A 与B 构成的系统为研究对象,根据动能定理得2)(21v m m gh m gh m B A A B +=-μ BA AB m m ghm m v +-=)(2μ,带入数据得v=0.8m/s②以A 为研究对象,设滑行的距离为s ,由动能定理得:2210v m gs m A A -=-μ,得g v s μ22=,带入数据得s=0.16m动能 动能定理及其应用一、单项选择题(本题共5小题,每小题7分,共35分) 1.如图1所示,质量相同的物体分别自斜面AC 和BC 的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面 底部C 点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所 做的功分别为W 1和W 2,则 ( ) 图1A .E k1>E k2 W 1<W 2B .E k1>E k2 W 1=W 2C .E k1=E k2 W 1>W 2D .E k1<E k2 W 1>W 2解析:设斜面的倾角为θ,斜面的底边长为l,则下滑过程中克服摩擦力做的功为W=μmg cosθ·l/cosθ=μmgl,所以两种情况下克服摩擦力做的功相等.又由于B的高度比A低,所以由动能定理可知E k1>E k2,故选B.答案:B2.一质量为m的小球用长为l的轻绳悬挂于O点,小球在水平力作用下,从平衡位置P点缓慢地移动,当悬线偏离竖直方向θ角时,水平力大小为F,如图2所示,则水平力所做的功为( )A.mgl cosθB.Fl sinθ 图2C.mgl(1-cosθ) D.Fl cosθ解析:小球在缓慢移动的过程中,动能不变,故可用动能定理求解,即W F+W G=0,其中W G=-mgl(1-cosθ),所以W F=-W G=mgl(1-cosθ),选项C正确.答案:C3.如图3所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R.当拉力逐渐减小到F4时,物体仍做匀速圆周运动,半径为2R,则外力对物体做的功为() 图3A.-FR4B.3FR4C.5FR2D.FR4解析:F=mv12R,F4=mv222R,由动能定理得W=12mv22-12mv12,联立解得W=-FR 4,即外力做功为-FR4.A项正确.答案:A4.(2010·河北省衡水中学调研)如图4所示,小球以初速度v0从A点沿不光滑的轨道运动到高为h的B点后自动返回,其返回途中仍经过A点,则经过A点的图4速度大小为( )A.v02-4ghB.4gh-v02C.v02-2ghD.2gh-v02解析:设由A到B的过程中,小球克服阻力做功为W f,由动能定理得:-mgh-W f=0-12mv02,小球返回A的过程中,再应用动能定理得:mgh-W f=12mv A2-0,以上两式联立可得:v A=4gh-v02,故只有A正确.答案:A5.(2010·清远模拟)如图5所示,斜面AB和水平面BC是由同一板材上截下的两段,在B处用小圆弧连接.将小铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静图5止于P处.若从该板材上再截下一段,搁置在A、P之间,构成一个新的斜面,再将小铁块放回A处,并轻推一下使之具有初速度v0,沿新斜面向下滑动.关于此情况下小铁块的运动情况的描述正确的是( )A.小铁块一定能够到达P点B.小铁块的初速度必须足够大才能到达P点C .小铁块能否到达P 点与小铁块的质量有关D .以上说法均不对解析:如图所示,设AB =x 1,BP =x 2,AP=x 3,动摩擦因数为μ,由动能定理得:mgx 1sin α-μmgx 1cos α-μmgx 2=0,可得: mgx 1sin α=μmg (x 1cos α+x 2),设小铁块沿AP 滑到P 点的速度为v P ,由动能定理得:mgx 3sin β-μmgx 3cos β=12mv P 2-12mv 02,因x 1sin α=x 3sin β,x 1cos α+x 2=x 3cos β,故得:v P =v 0,即小铁块可以沿AP 滑到P 点,故A 正确.答案:A二、双项选择题(本题共5小题,共35分.在每小题给出的四个选项中,只有两个选项正确,全部选对的得7分,只选一个且正确的得2分,有选错或不答的得0分)6.(2010·南通模拟)如图6甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则 小物块运动到x 0处时的动能为 ( )A .0 B.12F m x 0图6C.π4F m x 0D.π8x 02解析:根据动能定理,小物块运动到x 0处时的动能为这段时间内力F 所做的功,物块在变力作用下运动,不能直接用功的公式来计算,但此题可用根据图象求“面积”的方法来解决.力F 所做的功的大小等于半圆的“面积”大小.E k=W =12S 圆=12π(x 02)2,又F m =x 02.整理得E k =π4F m x 0=π8x 02,C 、D 选项正确. 答案:CD7.(2010·济南质检)如图7所示,电梯质量为M ,地板上放着一质量为m 的物体.钢索拉电梯由静止开始向上加速运动,当上升高度为H 时,速度达到v ,则 ( )A .地板对物体的支持力做的功等于12mv 2图7B .地板对物体的支持力做的功等于mgH +12mv 2C .钢索的拉力做的功等于12Mv 2+MgHD .合力对电梯做的功等于12Mv 2解析:对物体m 用动能定理:WF N -mgH =12mv 2,故WF N =mgH +12mv 2,A 错误,B 正确;钢索拉力做的功,W F 拉=(M +m )gH +12(M +m )v 2,C错;由动能定理知,合力对电梯M 做的功应等于电梯动能的变化12Mv 2,D 正确.答案:BD8.一个小物块从底端冲上足够长的斜面后,又返回斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为E /2.若小物块冲上斜面的动能为2E ,则物块( )A .返回斜面底端时的动能为EB.返回斜面底端时的动能为3E/2C.返回斜面底端时的速度大小为2vD.返回斜面底端时的速度大小为v解析:设初动能为E时,小物块沿斜面上升的最大位移为x1,初动能为2E时,小物块沿斜面上升的最大位移为x2,斜面的倾角为θ,由动能定理得:-mgx1sinθ-F f x1=0-E,2F f x1=E2,E-E2=12mv2;而-mgx2sinθ-F f x2=0-2E,可得:x2=2x1,所以返回斜面底端时的动能为2E-2F f x2=E,A正确,B错误;由E=12mv′2可得v′=2v,C正确、D错误.答案:AC9.如图8所示,水平传送带长为s,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功可能() 图8A .大于12mv 2B .小于12mv 2C .大于μmgsD .小于μmgs解析:货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速而货物的最终速度小于v ,故摩擦力对货物做的功可能等于12mv 2,可能小于12mv 2,可能等于μmgs ,可能小于μmgs ,故选B 、D. 答案:BD10.如图9所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物体从静止开始做匀加速直线运动. 图9已知物体和木板之间的摩擦力为F f .当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中( )A .物体到达木板最右端时具有的动能为(F -F f )(L +x )B.物体到达木板最右端时,木板具有的动能为F f xC.物体克服摩擦力所做的功为F f LD.物体和木板增加的机械能为Fx解析:由题意画示意图可知,由动能定理对小物体:(F-F f)·(L+x)=12mv2,故A正确.对木板:F f·x=12Mv2,故B正确.物块克服摩擦力所做的功F f·(L+x),故C错.物块和木板增加的机械能12mv2+12Mv2=F·(L+x)-F f·L=(F-F f)·L+F·x,故D错.答案:AB三、非选择题(本题共2小题,共30分)11.(14分)如图10所示,质量为M=0.2 kg 的木块放在水平台面上,台面比水平地面高出h=0.20 m,木块距水平台的右端L=1.7 m.质量为m=0.10M的子弹以v0=180 m/s的速度水平射向木块,当子弹以v=90 m/s的速度水平射出时,木块的速度为v1=9 m/s(此过程作图10用时间极短,可认为木块的位移为零).若木块落到水平地面时的落地点到台面右端的水平距离为l=1.6 m,求:(g取10 m/s2)(1)木块对子弹所做的功W1和子弹对木块所做的功W2;(2)木块与台面间的动摩擦因数μ.解析:(1)由动能定理得,木块对子弹所做的功为W1=12mv2-12mv02=-243 J同理,子弹对木块所做的功为W2=12Mv12=8.1 J.(2)设木块离开台面时的速度为v2,木块在台面上滑行阶段对木块由动能定理,有:-μMgL=12Mv22-12Mv12木块离开台面后的平抛阶段l=v22hg,解得μ=0.50.答案:(1)-243 J 8.1 J (2)0.5012.(16分)(2010·韶关质检)如图11所示为“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成的,固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成的,圆半径比细管内径大得多,轨道底端与水平地面相切,弹射装置将一个小球(可视为质点)从a点水平射向b点并进入轨道,经过轨道图11后从p点水平抛出,已知小球与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25 m,圆的半径R=0.1 m,小球质量m =0.01 kg,轨道质量为M=0.15 kg,g=10 m/s2,求:(1)若v0=5 m/s,小球从p点抛出后的水平射程;(2)若v0=5 m/s,小球经过轨道的最高点时,管道对小球作用力的大小和方向;(3)设小球进入轨道之前,轨道对地面的压力大小等于轨道自身的重力,当v0至少为多大时,轨道对地面的压力为零.解析:(1)设小球运动到p点时的速度大小为v,对小球由a点运动到p点的过程,应用动能定理得:-μmgL-4Rmg=12mv2-12mv02①小球从p点抛出后做平抛运动,设运动时间为t,水平射程为x,则4R =12gt 2 ②x =vt③ 联立①②③代入数据解得x =0.4 6 m(2)设在轨道最高点时管道对小球的作用力大小为F ,取竖直向下为正方向,有:F+mg =m v 2R ④ 联立①④代入数据解得F =1.1 N ,方向竖直向下.(3)分析可知,要使小球以最小速度v 0运动,且轨道对地面的压力为零,则小球的位置应该在“S ”形轨道的中间位置,则有:F ′+mg =m v 12R,F ′=Mg -μmgL -2mgR =12mv 12-12mv 02 解得:v 0=5 m/s.答案:(1)0.4 6 m (2)1.1 N ,方向竖直向下 (3)5 m/s。

相关文档
最新文档