2017-2018学年四川省绵阳市高三(上)一诊数学试卷(理科)
2018年四川省绵阳市高考数学三诊试卷(理科)

2018 年四川省绵阳市高考数学三诊试卷(理科)副标题题号一二三总分得分一、选择题(本大题共12 小题,共 60.0 分)1. 若复数 z 满足=i( i 是虚数单位),则z=()A. 1B. -1C. iD. -i2.已知集合 A={2 ,0,-2} ,B={ x|x2-2x-3> 0} ,集合 P=A∩B,则集合 P 的子集个数是()A. 1B. 2C. 3D. 43. 如表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗 y(吨标准煤)的几组对照数据,用最小二乘法得到y 关于 x 的线性回归方程 =0.7x,则 =()x3y 2.5A. 0.25B.4.已知实数 x, y 满足A.4B.45634 4.50.35 C. 0.45 D. 0.55,则 z=3x-2y 的最小值是()5 C.6 D. 75. 执行如图所示的程序框图,若输入t ∈[-1 , 3],则输出s的取值范围是()A. [e-2,1]B. [1,e]C. [0,1]D. [e-2,e]6.甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别 是()A. 吉利,奇瑞B. 吉利,传祺C. 奇瑞,吉利D. 奇瑞,传祺7.如图 1,四棱锥 P-ABCD 中, PD ⊥底面 ABCD ,底面 ABCD 是直角梯形, M 是侧棱 PD 上靠近点 P 的四等分点, PD =4.该四棱锥的俯视图如图 2 所示,则 ∠PMA 的大小是()A.B.C.D.8.在区间 [] 上随机取一个实数 x -1 sinx+cosx”发生的概率是,则事件“()A.B.C.D.9.双曲线 E:a 0b 0)的离心率是,过右焦点F作渐近线l的垂线,(>,>垂足为 M ,若 △OFM 的面积是 1,则双曲线 E 的实轴长是()A.B. 2C. 1D. 210. 已知圆 C 1:, x 2 +y 2=r 2,圆 C 2:( x-a ) 2+( y-b ) 2 =r 2( r >0)交于不同的A ( x 1,y 1),B ( x 2,y 2)两点,给出下列结论: ① a (x 1-x 2)+b ( y 1-y 2)=022;②2ax 1+2by 1=a +b ; ③x1+x 2=a , y 1+y 2=b .其中正确结论的个数是()A. 0B. 1C. 2D. 311. △ABC 中, AB=5,AC=10,=25,点 P 是 △ABC 内(包括边界)的一动点,且=( λ∈R ),则 | |的最大值是()A.B. C. D.12. 对于任意的实数 x ∈[1,e],总存在三个不同的实数 y ∈[-1, 4],使得 y 2xe 1- y - ax-ln x=0成立,则实数 a 的取值范围是()A. [, ) 0 ] C. [, e 2- ) D. [, e 2-)B.(,二、填空题(本大题共 4 小题,共 20.0 分)13. ( 2-x )( x-1) 4 的展开式中, x 2 的系数是 ______ .14. 奇函数 f ( x )的图象关于点( 1, 0)对称, f ( 3) =2,则 f ( 1) =______ .15. 已知圆锥的高为 3,侧面积为,若此圆锥内有一个体积为的球,则的最大值为 __________.16.如图,在△ABC中,BC=2,,AC的垂直平分线DE 与AB, AC 分别交于D, E 两点,且DE=,则BE2=______.三、解答题(本大题共7 小题,共84.0 分)17.已知数列 { a n } 的前 n 项和 S n满足:a1a n=S1+S n.(Ⅰ)求数列 { a n} 的通项公式;(Ⅱ)若 a n> 0,数列 {log 2} 的前 n 项和为 T n,试问当 n 为何值时, T n最小?并求出最小值.18.十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量 X(单位:吨)的历史统计数据,得到如下频率分布表:污水量[230 , 250)[250 , 270)[270 , 290)[290 , 310)[310 ,330)[330 , 350)频率0.30.440.150.10.0050.005将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来 3年里,至多 1年污水排放量 X∈[270 ,310)的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当 X∈[230,270)时,没有影响;当 X∈[270, 310)时,经济损失为10万元;当 X∈[310 ,350)时,经济损失为 60万元.为减少损失,现有三种应对方案:方案一:防治 350吨的污水排放,每年需要防治费 3.8 万元;方案二:防治 310吨的污水排放,每年需要防治费 2 万元;方案三:不采取措施.试比较上述三种文案,哪种方案好,并请说明理由.19.如图,在五面体ABCDPN 中,棱 PA ⊥底面 ABCD ,AB=AP=2PN.底面 ABCD 是菱形,.(Ⅰ)求证: PN∥AB;(Ⅱ)求二面角B-DN -C 的余弦值.20.如图,椭圆E:(a>b>0)的左、右焦点分别为F1, F2, MF 2⊥x 轴,直线 MF 1交 y 轴于 H 点, OH =, Q 为椭圆 E 上的动点,△F 1F 2Q 的面积的最大值为1.(Ⅰ)求椭圆 E 的方程;(Ⅱ)过点 S( 4,0)作两条直线与椭圆 E 分别交于 A,B,C,D,且使 AD ⊥x 轴,如图,问四边形 ABCD 的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.21.已知函数的两个极值点x1, x2满足 x1< x2,且 e< x2< 3,其中e为自然对数的底数.(1)求实数 a 的取值范围;(2)求 f( x2)-f(x1)的取值范围.22. 以直角坐标系的原点O 为极点, x 轴的正半轴为极轴,建立极坐标系,且在两种坐标系中取相同的长度单位.曲线 C 的极坐标方程是2.ρ=(Ⅰ)求曲线 C 的直角坐标方程;(Ⅱ)设曲线 C 与 x 轴正半轴及 y 轴正半轴交于点M, N,在第一象限内曲线 C 上任取一点 P,求四边形 OMPN 面积的最大值.23.设函数 f( x) =|x+a|+|x-3a|.(Ⅰ)若 f( x)的最小值是 4,求 a 的值;(Ⅱ)若对于任意的实数x R a [-2,3],使得m2x≤0()成立,求实数 m 的取值范围.答案和解析1.【答案】A【解析】解:由=i,得 z-i=,∴z=1.故选:A.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础的计算题.2.【答案】B【解析】解:B={x|x <-1,或x>3} ;∴A∩ B={-2} ;即 P={-2} ;∴集合 P 的子集为? ,{-2} ;∴集合 P 的子集个数为 2.故选:B.先求出集合 B={x|x <-1,或 x>3} ,然后进行交集的运算求出集合 P,从而便可得出集合 P 的子集个数.考查描述法、列举法表示集合的概念,以及子集的定义,交集的运算.3.【答案】B【解析】【分析】计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论.本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.【解答】解:由题意, ==4.5, ==3.5y 关于 x 的线性回归方程=0.7x,∴根据线性回归方程必过样本的中心,3.5=0.7 4×.5+,∴=0.35.故选:B.4.【答案】C【解析】解:由实数 x,y 满足得到可行域如图:z=3x-2y 变形为 y= x- ,由,解得 B(2,0)当此直线经过图中 B 时,在y 轴的截距最大, z 最小,所以 z 的最小值为 3×2-2 ×0=6;故选:C.画出可行域,关键目标函数的几何意义求最小值.本题考查了简单线性规划问题;正确画出可行域,利用目标函数的几何意义求最值是常规方法.5.【答案】C【解析】图计算并输出 s=的值域,解:由已知可得:程序框的功能是当t∈[-1 ,1)时,s=et-1∈[e-2,1),当 t∈[1,3]时,s=log3t∈[0 ,1] ,故输出 s的取值范围是[0,1],故选:C.模拟执行程序框图,可得程序框图的功能是计算并输出 s=的值进域,而得到答案.本题以程序框图为载查值难体,考了函数的域,度中档.6.【答案】A【解析】【分析】本题为逻辑问题,此类问题在解决时注意结合题设条件寻找关键判断即可,中等难度.因为丁的猜测只对了一个,所以我们从″甲买的是奇瑞,乙买的不是奇瑞″,这两个判断着手就可以方便的解决问题.【解答】解:因为丁的猜测只对了一个,所以″甲买的是奇瑞,乙买的不是奇瑞″这两个都是错误的,否则″甲买的不是奇瑞,乙买的不是奇瑞″或者″甲买的是奇瑞,乙买的是奇瑞″ 是正确的,这与三人各买了一辆不同的品牌矛盾,″丙买的不是吉利”是正确的,所以乙买的是奇瑞,甲买的是吉利,故选:A.7.【答案】C【解析】解:如图所示四棱锥 P-ABCD 中,PD⊥底面 ABCD ,底面 ABCD 是直角梯形,M 是侧棱 PD上靠近点 P 的四等分点,PD=4.所以 PM=1.四棱锥的俯视图如图 2所示,则 BD 2+BC2=DC2,且∠BDA=60°,所以∠ADB=30°,进一步解得:AD=,AB=1.在 Rt△ADM 中,AM=,AD=,MD=3所以∠AMD=30° .则:∠AMP=180° -30 °=150°,即.故选:C.直接利用线面垂直的性质和勾股定理及逆定理的应用求出结果.本题考查的知识要点:线面垂直的性质的应用,勾股定理和逆定理的应用及相关的运算问题.8.【答案】B【解析】【解答】本题考查概率的求法,考查几何概型、三角函数性质等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.由-1sinx+cosx,得到-,由此利用几何概型能求出在区间 [] 上随机取一个实数 x,事件“-1sinx+cosx”发生的概率.【解答】解:∵-1sinx+cosx,∴-1≤2sin(x+),∴-,∴在区间[]上随机取一个实数 x,则事件“-1sinx+cosx”发生的概率是:p==.故选 B.9.【答案】D【解析】解:由题意可得 e= =,故而∴双曲线的渐近线为 y= ±2x,∴右焦点 F 到渐近线的距离为 d═由勾股定理可得 |OM|═==2,,,∴S△OFM =××=1,解得 c=,∴a=1,故双曲线的实轴长为 2a=2.故选:D.运用离心率公式,求得渐近线方程,运用点到直线的距离公式可得 F 到渐近线的距离,由勾股定理计算 |OM|,根据三角形的面积为 1 求出 c 从而得出 a 的值.本题考查双曲线的焦距的求法,注意运用渐近线方程和点到直线的距离公式,考查运算能力,属于中档题.第10 页,共 20页10.【答案】 D【解析】解:两圆方程相减可得直 线 AB 的方程为:a 2+b 2-2ax-2by=0,即2ax+2by=a 2+b 2,故② 正确;分别把 A (x 1,y 1),B (x 2,y 2)两点代入 2ax+2by=a 2+b 2 得:2ax 1+2by 1=a 2+b 2,2ax 2+2by 2=a 2+b 2,两式相减得:2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故① 正确;由圆的性质可知:线段 AB 与线段 C 1C 2 互相平分, ∴x 1+x 2=a ,y 1+y 2=b ,故③ 正确.故选:D .根据圆的公共弦方程判断 ② ,根据 A 、B 在公共弦上判断 ① ,根据公共弦与圆心连线互相平分及中点坐 标公式判断 ③ .本题考查了圆与圆的位置关系,属于中档 题.11.【答案】 B【解析】解:△ABC 中,AB=5 ,AC=10,=25,∴5×10 ×cosA=25,cosA=,∴A=60 °,B=90°;以 A 为原点,以 AB 所在的直 线为 x轴,建立如图所示的坐 标系,如图所示,∵AB=5 ,AC=10,∠BAC=60°,∴A (0,0),B (5,0),C (5,5),设点 P 为(x ,y ),0≤x ≤5,0≤y ≤ ,∵= - λ ,∴(x ,y )=(5,0)- λ(5,5)=(3-2λ,-2λ),∴,∴y=(x-3),①直线 BC 的方程为 x=5,② ,联立①② ,得,此时||最大,∴|AP|== .故选:B .以 A 为原点,以 AB 所在的直 线为 x 轴,建立平面直角坐标系,根据向量的坐标运算求得 y=(x-3),当该直线与直线 BC 相交时,||取得最大 值.本题考查了向量在几何中的 应用问题,建立直角坐标系是解题的关键,是中档题.12.【答案】 A【解析】解:∵x ≠0,∴原式可化 为 y 2e 1-y=+a ,令 f (x )=+a ,x ∈[1,e],故 f ′(x )= ≥0,f (x )递增,故 f (x )∈[a ,a+ ],令 g (y )=y 2e 1-y,y ∈[-1,4],故 g ′(y )=2y?e1-y -y 2e 1-y =y (2-y )e 1-y ,故 g (y )在(-1,0)递减,在(0,2)递增,在(2,4)递减,而 g (-1)=e 2,g (2)= ,g (4)= ,要使 g (y )=f (x )有解,则 g (y )=f (x )∈[g (4),g (2)],即 [a ,a+ ] ? [ , ),故,故≤a,<故选:A .原式可化 为 y 2 1-y ,令 () ,∈,,令()2 1-y ,y ∈[-1 ,e =+af x = +a x [1 e] g y =y e问题转 化 为 g (y )=f (x )∈[g (4),g (2)],得到关于 a 的不等式 组,解出即可.4], 本 题 考 查 了函数的 单调 值问题 查导 数的 应 用以及函数恒成立 问题 ,性、最 ,考考查转化思想,是一道综合题.【答案】 1613.【解析】2-x )(x-14432)解:∵(=(2-x )(x-4x +6x -4x+1),∴(2-x )(x-1 42的系数是 2×6+(-1)×(-4)=16.) 的展开式中,x故答案为:16.4展开二项式(x-1),再由多项式乘多项式得答案.本题考查二项式系数的性 质,关键是熟记二项展开式的通 项,是基础题.14.【答案】 2【解析】解:奇函数 f (x )的图象关于点(1,0)对称,f (3)=2,可得 f (x )+f (2-x )=0, 即有 f (3)+f (-1)=0,则 f (-1)=-2,可得 f (1)=-f (-1)=2,故答案为:2.由题意可得 f (x )+f (2-x )=0,可令x=3,可得f (-1),由奇函数的定义,即可得到所求值.本题考查奇函数的定义,以及函数的对称性,考查定义法和运算能力,属于基础题.15.【答案】【解析】设圆锥底面半径为则圆锥的母线长l=,解:r,∴圆锥的侧面积 S 侧=π rl= πr=20 π,解得:r=4,∴l=5 .设圆锥的内切球半径为 R,则,解得 R=.∴球的最大体积为 V==.故答案为:.根据侧面积计算圆锥底面积,得出圆锥内切球的半径,从而求出球的体积.本题考查了球与圆锥的位置关系,球的体积计算,属于中档题.【答案】16.【解析】图连设解:如,接 DC,∠DAC= ∠DCA=θ,在 Rt△DCE 中,DC=,在△DCB 中,∠CDB=2θ,∠ABC=60°,BC=2,由正弦定理得:,即,可得 cos,∴θ=45,∠ACB=75°∴DE=EC=,在△BCE中,由余弦定理得:BE2=EC2+BC2-2EC?BCcos∠BCD =.故答案为:.连设,接 DC,∠DAC= ∠DCA=θ,在Rt△DCE 中,DC=由正弦定理得:,即,可得 cos02的值.,可得θ=45,∠ACB=75°,在△BCE中,由余弦定理得:BE本题考查了解三角形,考查运算求解能力,考查函方程思想,是中档题.17.【答案】解:(Ⅰ)由已知a1a n=S1+S n,可得当 n=1 时, a12=a1+a1,可解得 a1=0,或 a1=2,当 n≥2时,由已知可得 a1a n-1 =S1+S n-1,两式相减得a1( a n-a n-1) =a n,若 a1=0,则 a n =0,此时数列 { a n} 的通项公式为a n=0.若 a1=2,则 2( a n-a n-1) =a n,化简得 a n=2a n-1,即此时数列 { a n} 是以 2 为首项, 2为公比的等比数列,故 a n=2n.综上所述,数列 { a n} 的通项公式为a n=0 或 a n=2 n.(Ⅱ)因为 a n> 0,故 a n=2n,设 b n=log 2,则b n=n-5,显然{ b n}是等差数列,由 n-5≥0解得 n≥5,当 n=4 或 n=5 时, T n最小,最小值为 T n==-10 .【解析】【分析】本题考查等差数列和等比数列的定义、通项公式和求和公式的运用,以及数列的递推式的运用,解决问题的关键是:(Ⅰ)运用数列的递推式,结合等比数列的定义和通项公式,即可得到所求通项为n,;(Ⅱ)因 a n>0,故a n=2设 b n=log2,则 b n=n-5,运用等差数列的求和公式,即可得到所求最小值.18.【答案】解:(Ⅰ)由题得P(270≤X≤310)=0.25=,设在未来 3 年里,河流的污水排放量X∈[270 , 310)的年数为 Y,则 Y~ B( 3,).第15 页,共 20页则 P(A) =P( Y=0)+P( Y=1) == .∴在未来 3 年里,至多 1 年污水排放量X∈[270 , 310)的概率为.(Ⅱ )方案二好,理由如下:由题得 P( 230≤x≤270) =0.74 ,P( 310 ≤X≤ 350) =0.01.用 S1, S2, S3分别表示方案一、方案二、方案三的经济损失.则S1=3.8 万元.S2的分布列为:S2262P0.990.01E( S2) =2×0.99+62×0.01=2.6 .S3的分布列为:S301060P0.740.250.01E( S3) =0×0.74+10×0.25+60×0.01=3.1.∴三种方案中方案二的平均损失最小,∴采取方案二最好.【解析】(Ⅰ)由题得 P(270≤X≤310)=0.25=,设在未来3年里,河流的污水排放量X ∈[270 ,310)的年数为 Y,则 Y ~B(3,).设事件“在未来 3 年里,至多有一年污水排放量 X∈[270,310)”为事件 A ,则 P(A )=P(Y=0 )+P(Y=1 ),由此能求出在未来 3 年里,至多 1 年污水排放量 X ∈[270,310)的概率.(Ⅱ)由题得P(230≤x≤270)=0.74,P(310≤X≤350)=0.01.用S1,S2,S3分别表示方案一、方案二、方案三的经济损失.则 S1=3.8 万元.求出 S2的分布列,得到 E(S2)=2.6.求出 S3的分布列,得到 E(S3)=3.1.三种方案中方案二的平均损失最小,从而采取方案二最好.本题考查概率的求法,考查离散型随机变量的分布列的数学期望的求法及应用,考二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.【答案】证明:(Ⅰ)在菱形ABCD第 16 页,共面 CDPN .又 AB? 面 ABPN,面 ABPN∩面 CDPN =PN,∴AB∥PN.解:(Ⅱ)取 CD 的中点 M,则由题意知 AM⊥AB,∵PA⊥面 ABCD ,∴PA⊥AB, PA ⊥AM .如图,以 A 点为原点,建立空间直角坐标系A-xyz,设 AB=2,则 B( 2, 0, 0), C( 1,, 0), D( -1,, 0), N( 1, 0, 2),∴ =( -3,, 0),=( 2, - ,2),=( -2, 0, 0).设平面 BDN 的一个法向量为=( x, y, z),则,令 x=1,则=( 1,,),设平面 DNC 的一个法向量为=( x, y, z),则,取 z=,得=( 0, 2,),∴cos<>===.∴二面角 B-DN- C 的余弦值为.【解析】(Ⅰ)推导出 AB ∥面 CDPN .由此能证明 AB ∥PN.(Ⅱ)取CD 的中点 M ,则 AM ⊥AB ,以 A 点为原点,建立空间直角坐标系A-xyz ,利用向量法能求出二面角B-DN-C 的余弦值.本题考查线线平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.【答案】解:(Ⅰ)设F(c,0),由题意可得,即y Q=.∵OH 是△F 1F 2Q 的中位线,且 OH =,∴|QF 2|=,即,整理得a2=2b4.①又由题知,当Q 在椭圆 E 的上顶点时,△F1F2Q的面积最大,∴,整理得222bc=1,即 b( a -b ) =1 ,②联立①②可得2b6-b4=1 ,变形得( b2-1)( 2b4+b2+1) =0,解得 b2=1,进而 a2=2.∴椭圆 E 的方程式为.(Ⅱ)设 A( x1, y1), C( x2, y2),由对称性知 D (x1, -y1), B( x2, -y2),设 AC 与 x 轴交于( t ,0),则直线 AC 的方程为x=my+t(m≠0),联立222,消去 x 得:( m+2) y +2mty+t -2=0 ,∴,由 A、B、 S三点共线知 k AS=k BS,即,所以 y1( my2+t -4) +y2(my1+t-4) =0,整理得2my1 y2+(t -4)( y1 +y2)=0,从而,化简得 2m( 4t-2)=0,解得 t= ,于是直线AC 的方程为 x=my+,故直线AC 过定点(,0).同理可得DB 过定点(,0),∴直线 AC 与 BD 的交点是定点,定点坐标为(, 0).【解析】(1)根据椭圆的定义,可知△EFF1的周长 4a=8,求得 a,根据向量的数量积的坐标运算,可得当 y0=0 时,取最大值,即可求得 b 和 c 的值,即可求得椭圆方程;(2)设直线 AC 的方程,代入椭圆方程,根据 A 、B、S三点共线,即可求得 t=,同理即可求得直线 DB 也过定点(,0).本题考查椭圆方程求法,考查考查两直线的交点是否为定点的判断与求法,考查椭圆、韦达定理,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于难题.21.,【答案】解:( 1), f′( x) =由题意知x1、 x2为方程 ax2-4x+a=0 的两个根.根据韦达定理得x1+x2= , x1?x2=1.整理得 a=.又 y=x在(e,3)上单调递增,∴.( 2)∵f( x2) -f( x1) =-ax1++4ln x1,∵x,∴f(x2)-f(x1)=- +ax2+4ln =2a( x2-)-8ln x2,由( 1)知 a=,代入得f( x2) -f( x1) =(x2-)-8ln x2=-8ln x2,令,于是可得h( t) =-4ln t,故 h′( t)=,∴h( t)在( e2, 9)上单调递减,∴f(x2) -f( x1)的取值范围为().【解析】本题考查了利用导数判定函数的单调性以及根据函数的单调性求函数极值的问题,属于中档题.(1)求f(x)的导数 f ′(x),可得由题意知 x1、x 2为方程 ax2-4x+a=0 的两个根,根据韦达定理即可得整理得a=.即可求出a的取值范围;(2)由(1)知,可得f(x )-f (x )=(x2-)-8lnx,令21-8lnx 2=2,于是可得h(t)=-4lnt,再求导,即可求出范围.22.2【答案】解:(Ⅰ)∵曲线 C 的极坐标方程是ρ=.222∴由题可变形为ρρcos θ =16,+3222222∵ρ=x +y ,ρcosθ=x,∴x +y +3x =16 ,∴曲线 C 的直角坐标方程为=1.(Ⅱ)设 P( 2cosα, 4sin α),α∈(0,).M( 2, 0), N( 0, 4),直线MN 的方程为: 2x+y-4=0 ,|MN|=2,点 P 到直线 MN 的距离 d==,∵α∈( 0,),∈(,),∴sin()∈(,1),当 = 时, ,∴S △DMN 的最大值为 = ,又 ,∴四边形 OMPN 面积的最大值 S=4+4 .【解析】线 标 方程 转 化 为 222 2 2 2 ,ρcos θ,=x 能求=x +y cos出曲线 C 的直角坐 标方程.(Ⅱ)设 P (2cos α,4sin α),α∈(0, ).直线 MN 的方程为:2x+y-4=0 ,|MN|=2 ,点P 到直线 MN 的距离 d= ,由此能求出四边形 OMPN 面积的最大值.本题考查曲线的直角坐 标方程的求法,考查四边形面积的最大值的求法,考 查极坐标方程、直角坐标方程、参数方程的互化等基 础知识,考查运算求解 能力,考查函数与方程思想,是中档 题.23.【答案】 解:( Ⅰ )函数 f ( x ) =|x+a|+|x-3a| ≥|(x+a )-( x-3a )|=4|a|,由已知 f ( x )的最小值是 4,知 4|a|=4,解得 a=±1.( Ⅱ )对于任意的实数 x ∈R ,总存在 a ∈[-2 , 3],使得 m 2-4|m|-f ( x ) ≤0成立,可知 m 2-4|m| ≤a4|,又 a 是存在的, ∴|m|2-4|m| ≤a4|max =12. 2即 |m| -4|m|-12≤0,变形得( |m|-6)( |m|+2) ≤0,∴|m| ≤6,∴-6≤m ≤6.【解析】(Ⅰ)利用绝对值三角不等式,化简函数的解析式,通过 f (x )的最小值是 4,即 可求 a 的值;(Ⅱ)利用不等式恒成立,总存在 a ∈[-2 ,3],使得 m 2-4|m|-f (x )≤0成立,推出不等式,然后求解即可.本题考查绝对值 不等式的解法,函数恒成立条件的 应用,考查转化思想以及 计算能力.。
四川省绵阳2023-2024学年高三上学期10月月考(一诊模拟)理科数学试题含解析

绵阳南山高2021级高三(上)一诊模拟考试理科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()UA B = ð()A.{}12x x << B.{}12x x ≤< C.{}01x x << D.{}01x x <≤【答案】D 【解析】【分析】先解一元二次不等式,化简集合A,再利用数轴进行集合的补集和交集运算可得.【详解】解一元二次不等式化简集合A,得{|02}A x x =<<,由{|1}B x x =>得{|1}U C B x x =≤,所以(){|01}U A C B x x ⋂=<≤.故选D.【点睛】本题考查了一元二次不等式的解法,集合的交集和补集运算,用数轴运算补集和交集时,注意空心点和实心点的问题,属基础题.2.若复数5i43iz =-,则z =()A.34i 55+ B.34i 55-+ C.34i 55-- D.34i 55-【答案】C 【解析】【分析】由复数的四则运算结合共轭复数的概念求解.【详解】由()5i 43i 5i 34i43i 2555z +===-+-,得34i 55z =--.故选:C3.设n S 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A.15B.30C.45D.60【答案】C 【解析】【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.4.已知命题p :x ∃∈R ,使得2210ax x ++<成立为真命题,则实数a 的取值范围是()A.(],0-∞ B.(),1-∞ C.[)0,1 D.(]0,1【答案】B 【解析】【分析】由一次函数和二次函数的图象和性质,知当0a ≤时,命题为真命题,当0a >时,需0∆>,最后综合讨论结果,可得答案.【详解】命题p 为真命题等价于不等式2210ax x ++<有解.当0a =时,不等式变形为210x +<,则12x <-,符合题意;当0a >时,Δ440a =->,解得01a <<;当a<0时,总存在x ∃∈R ,使得2210ax x ++<;综上可得实数a 的取值范围为(),1-∞.故选:B5.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC -B.1344AB AC -C.3144+AB AC D.1344+AB AC 【答案】A 【解析】【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+ ,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A.9B.12C.14D.16【答案】A 【解析】【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A7.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该萻电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A.1.12 B.1.13C.1.14D.1.15【答案】D 【解析】【分析】根据题意可得1530507.5C λλ=⨯=⨯,再结合对数式与指数式的互化及换底公式即可求解.【详解】由题意知1530507.5C λλ=⨯=⨯,所以50304157.5λ⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg 2lg23λ=,所以2lg220.3011.151lg310.477λ⨯=≈≈--.故选:D .8.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A.15B.C.3D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin 4αα∴=-=,sin 15tan cos 15ααα∴==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.9.函数π()412sin 2x xf x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为()A.B. C.D.【答案】D 【解析】【分析】对函数化简后,利用排除法,先判断函数的奇偶性,再取特殊值判断即可【详解】因为()|22|cos x x f x x -=-⋅,()22cos()()xx f x x f x --=-⋅-=,所以()f x 为偶函数,所以函数图象关于y 轴对称,所以排除A ,C 选项;又1(2)4cos 204f =-<,所以排除B 选项,故选:D .10.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.513,36⎫⎡⎪⎢⎣⎭B.519,36⎡⎫⎪⎢⎣⎭C.138,63⎛⎤ ⎥⎝⎦D.1319,66⎛⎤ ⎥⎝⎦【答案】C【解析】【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .11.已知函数()1ex x f x +=.若过点()1,P m -可以作曲线()y f x =三条切线,则m 的取值范围是()A.40,e ⎛⎫ ⎪⎝⎭B.80,e ⎛⎫ ⎪⎝⎭C.14,e e ⎛⎫- ⎪⎝⎭D.18,e e ⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】切点为0001,e x x x +⎛⎫ ⎪⎝⎭,利用导数的几何意义求切线的斜率,设切线为:()000001e ex x x x y x x +--=-,可得()021ex x m +=,设()()21exx g x +=,求()g x ',利用导数求()g x 的单调性和极值,切线的条数即为直线y m =与()g x 图象交点的个数,结合图象即可得出答案.【详解】设切点为0001,e x x x +⎛⎫ ⎪⎝⎭,由()1e x x f x +=可得()()2e e 1e ex x xx x x f x -⋅+-==',所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线的斜率为()00e x x kf x -'==,所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线为:()000001e ex x x x y x x +--=-,因为切线过点()1,P m -,所以()0000011e ex x x x m x +--=--,即()021ex x m +=,即这个方程有三个不等根即可,切线的条数即为直线y m =与()g x 图象交点的个数,设()()21e xx g x +=,则()()()2222211e e xxx x x x g x +-++'-+==由()0g x '>可得11x -<<,由()0g x '<可得:1x <-或1x >,所以()()21exx g x +=在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,当x 趋近于正无穷,()g x 趋近于0,当x 趋近于负无穷,()g x 趋近于正无穷,()g x 的图象如下图,且()41eg =,要使y m =与()()21e xx g x +=的图象有三个交点,则40em <<.则m 的取值范围是:40,e ⎛⎫ ⎪⎝⎭.故选:A.12.已知函数()323,0,31,0x x f x x x x ->⎧=⎨-+≤⎩,函数()()()g x f f x m =-恰有5个零点,则m 的取值范围是()A.()3,1- B.()0,1 C.[)1,1- D.()1,3【答案】C【分析】由题意可先做出函数()f x 的大致图象,利用数形结合和分类讨论,即可确定m 的取值范围.【详解】当0x ≤时,()233f x x ¢=-.由()0f x ¢>,得1x <-,由()0f x '<,得10-<≤x ,则()f x 在(]1,0-上单调递减,在(),1-∞-上单调递增,故()f x 的大致图象如图所示.设()t f x =,则()m f t =,由图可知当3m >时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意.当3m =时,()m f t =的解是11t =-,23t =.1f x t =()有2个不同的实根,2f x t =()有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当13m ≤<时,()m f t =有3个不同的实根3t ,4t ,5t ,且()321t ∈--,,(]41,0t ∈-,[)52,3t ∈.3f x t =()有2个不同的实根,4f x t =()有2个不同的实根,5f x t =()有3个不同的实根,则()t f x =有7个不同的实根,不符合题意.当11m -≤<时,()m f t =有2个不同的实根6t ,7t ,且()631t ∈--,,[)71,2t ∈.6f x t =()有2个不同的实根,7f x t =()有3个不同的实根,则()t f x =有5个不同的实根,符合题意.当3<1m -<-时,()m f t =有2个不同的实根8t ,9t ,且()831t ∈--,,()901t ∈,,8f x t =()有2个不同的实根,9f x t =(),有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当3m ≤-时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意,综上,m 的取值范围是[)1,1-.【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m 的讨论应有3m =,13m ≤<,11m -≤<,3<1m -<-,3m ≤-这几种情况,也是解题关键.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.【答案】103-.【解析】【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高200BC =m ,则山高MN =______m .【答案】300【解析】【分析】先求,AC AMC ∠,由正弦定理得sin sin MCA AMCAM AC∠∠=,最后由sin MN AM MAN =⋅∠可求.【详解】由题意,sin BCAC CAB==∠m ,18045AM C M AC M CA ∠=︒-∠-∠=︒,由正弦定理得2sin sin 22MCA AMC AM AM AC AM ∠∠=⇒=⇒=m ,所以sin 3002MNAM MAN =⋅∠==m.故答案为:30015.已知等比数列{}n a 的前3项和为25168,42a a -=,则6a =___________.【答案】3【解析】【分析】设等比数列{}n a 的公比为q ,根据已知条件利用等比数列的定义计算可得12q =,196a =,即可求得6a 的值.【详解】解:设等比数列{}n a 的公比为q ,0q ≠,由题意1q ≠,因为前3项和为168,故()3112311681a q a a a q-++==-,又()43251111a a a q a q a q q-=-=-,所以12q =,196a =,则561196332a a q ==⨯=.故答案为:3.16.已知函数()y f x =是R 的奇函数,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,有下列命题①(1)(2)(3)(2019)0f f f f ++++= ②直线5x =-是函数()y f x =图象的一条对称轴③函数()y f x =在[7,7]-上有5个零点④函数()y f x =在[7,5]--上为减函数则结论正确的有____________.【答案】①②④【解析】【分析】根据题意,利用特殊值法求得()20f =,进而分析得到1x =时函数()f x 的一条对称轴,,函数()f x 时周期为4的周期函数,且函数()f x 在[1,1]-上单调递增,据此结合选项,逐项判定,即可求解.【详解】由题意,函数()y f x =是R 的奇函数,则()00f =,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当2x =,有()()0220f f ==,即()20f =,则有(2)()f x f x -=,即1x =时函数()f x 的一条对称轴,又由()f x 为奇函数,则(2)()f x f x -=--,即()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以函数()f x 时周期为4的周期函数,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,可函数()f x 在[1,1]-上单调递增,对于①中,由()()2f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2019)504[(1)(2)(3)(4)]f f f f f f f f ++++=+++ ()(1)(2)(3)20f f f f +++==,所以①正确;对于②中,由1x =时函数()f x 的一条对称轴,且函数()f x 时周期为4的周期函数,则直线5x =-是函数()y f x =图象的一条对称轴,所以②正确;对于③中,函数()y f x =在[7,7]-上有7个零点,分别为6,4,2,0,2,4,6---,所以C 错误;对于④中,函数()y f x =在[1,1]-上为增函数且周期为4,可得()y f x =在[5,3]--上为增函数,又由5x =-是函数()y f x =图象的一条对称轴,则函数()y f x =在[7,5]--上为减函数,所以④正确.故答案为:①②④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣【解析】【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域.【小问1详解】解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()323f x x π⎛⎫=+ ⎪⎝⎭.【小问2详解】将函数()f x 的图象向右平移3π个单位后,可得323sin 2333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()343g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又 函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,524g π⎛⎫= ⎪⎝⎭03g π⎛⎫= ⎪⎝⎭∴3()4,32g x x π⎛⎫⎡=-∈- ⎪⎢⎝⎭⎣∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域32⎡-⎢⎣.18.已知数列{}n a 的前n 项和为n S ,313log 1log n n b b +-=,且()1122n n n a a a n +-=+≥.339S b ==,414b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c a b ++=⋅,求数列{}n c 的前n 项和n T .【答案】(1)13n n b -=,21n a n =-(2)13n n T n +=⋅【解析】【分析】(1)根据对数运算得13n nb b +=,利用等比数列定义求通项公式,利用等差中项判断数列{}n a 为等差数列,建立方程求出公差,从而可得{}n a 的通项;(2)利用错位相减法计算即可.【小问1详解】∵313log 1log n n b b +-=,∴313log log (3)n n b b +=,则13n nb b +=,所以{}n b 为等比数列,又39b =,得11b =,所以13n n b -=,由112n n n a a a +-=+知{}n a 是等差数列,且41427b a ==,39S =,∴111327339a d a d +=⎧⎨+=⎩,得11a =,2d =.∴21n a n =-.【小问2详解】因为21n a n =-,13n n b -=,所以()11213nn n n c a b n ++=⋅=+,所以()()1231335373213213n n n T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅则()()23413335373213213n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅上面两式作差得()223123232323213n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-+⋅()()111913922132313n n n n n -++⎛⎫- ⎪=+-+⋅=-⋅ ⎪-⎝⎭,∴13n n T n +=⋅19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=.【解析】【分析】(1)根据正弦定理的边角关系有ac BD b=,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b c R ABC C R==∠,因为sin sin BD ABC a C ∠=,所以22b c BD a R R ⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23b a b b a C +-=⋅.②由①②得2222223(3b a bc a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32c a =,当22,33c c a b ac ===时,333c c a b c +=+<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b c a b =,即CA BA CB BD=,即ACB ABD ∽,故AD AB AB AC =,即23b c c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BD ABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b =,化简得2sin sin 3C A =.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a a DE EC BE ===.在BED 中,2222(()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c b a c b a c ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r .以向量,BA BC 为基底,有2133BD BC BA =+ .所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b ac c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=,2222(2)(1)9x y x y ++-+=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||||6,32a BC c BA b =====,由余弦定理得2227cos 212a cb ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.20.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1x h x x =--,证得e 1x x ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【小问1详解】因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:由(1)得,()()()ln min 2ln ln ln e1a f a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1x h x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.21.已知函数()()ln 1e x f x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -≤≤,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+≥,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=,令(),1,e x x h x x =>-则1(),1,e x x h x x -'=>-所以()x x h x e =在()1,1-上单调递增,在()1,+∞上单调递减,所以()1()1e h x h ≤=,又e e 10a -->,e 1e 10e e a a f a -⎛⎫-≥-+⋅= ⎪⎝⎭,所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减,当()1,0x ∈-,()()1e h x h >-=-,又e 1e 10a -<-<,()e e 1e e 0a f a a -<-=而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.选修4—4:坐标系与参考方程22.在直角坐标系xOy 中,曲线M 的方程为24y x x =-+,曲线N 的方程为9xy =,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求曲线M ,N 的极坐标方程;(2)若射线00π:(0,02l θθρθ=≥<<与曲线M 交于点A (异于极点),与曲线N 交于点B ,且||||12OA OB ⋅=,求0θ.【答案】(1)π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭;2sin 218ρθ=(2)π4【解析】【分析】(1)根据极坐标与直角坐标的互化公式,即可求解曲线M 和N 的极坐标方程;(2)将0θθ=代入曲线M 和N的方程,求得||OB ρ==0||4cos OA ρθ==,结合题意求得0tan 1θ=,即可求解.【小问1详解】解:由y =224(0)y x x y =-+≥,即224(04,0)x y x x y +=≤≤≥,又由cos sin x y ρθρθ=⎧⎨=⎩,可得2π4cos (0)2ρρθθ=≤≤,所以曲线M 的极坐标方程为π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭.由9xy =,可得2cos sin 9ρθθ=,即2sin 218ρθ=,即曲线N 的极坐标方程为2sin 218ρθ=.【小问2详解】解:将0θθ=代入2sin 218ρθ=,可得||OB ρ==将0θθ=代入4cos ρθ=,可得0||4cos OA ρθ==,则||||OA OB ⋅=,因为||||12OA OB ⋅=,所以0tan 1θ=,又因为0π02θ<<,所以0π4θ=.选修4—5:不等式选讲23.已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.【答案】(1)7,33⎛⎫- ⎪⎝⎭(2)证明见详解【解析】【分析】(1)分段讨论去绝对值即可求解;(2)利用绝对值不等式可求得2m =,再利用基本不等式即可证明.【小问1详解】由题意可得:()31,11213,1131,1x x f x x x x x x x -≥⎧⎪=++-=--<<⎨⎪-+≤-⎩,当1x ≥时,则()318f x x =-<,解得23x ≤<;当11x -<<时,则()38f x x =-<,解得11x -<<;当1x ≤-时,则()318f x x =-+<,解得713x -<≤-;综上所述:不等式()8f x <的解集为7,33⎛⎫-⎪⎝⎭.【小问2详解】∵()()1112g x f x x x x =++---≥=,当且仅当[]1,1x ∈-时等号成立,∴函数()g x 的最小值为2m =,则2a b c ++=,又∵22a b a b +≥=,当且仅当2a b b =,即a b =时等号成立;22b c b c +≥=,当且仅当2b c c =,即b c =时等号成立;22c a c a +≥=,当且仅当2c a a =,即a c =时等号成立;上式相加可得:222222a b c b c a a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当a b c ==时等号成立,∴2222a b c a b c b c a ++≥++=.。
2018年四川省绵阳市游仙区中考数学一诊试卷

2018年四川省绵阳市游仙区中考数学一诊试卷一、选择题:本大题共12个小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求.1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.一元二次方程(x﹣3)(x+4)=0的根是()A.3和4B.3和﹣4C.﹣3和4D.﹣3和﹣43.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣34.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°5.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5B.C.7D.6.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x 2=5707.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3B.C.6D.8.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是()A.B.C.D.9.已知抛物线y=ax 2﹣2ax+1(a>0)的图象经过三个点A(﹣2,y1),B(0,y2),C(3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y3>y1D.y3>y2>y110.如图,⊙O的内接正六边形ABCDEF的边心距为,分别以B、D、F为圆心,正六边形的半径画弧,则图中阴影部分的面积是()A.B.C.D.11.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7,叫做“正六边形的渐开线”,其中,,,,,,,的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,,.当AB=1时,l2011等于()A.B.C.D.12.如图,已知抛物线y1=﹣x2+1,直线y2=x+1,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中较小值记为M,若y1=y2,记M=y1=y2;例如:当x=1时,y1=0,y2=2,y1<y2,此时M=0,下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M的值越大;③使得M=﹣2的x值是±;④使得M大于1的x值不存在;其中正确的个数是()A.1个B.2个C.3个D.4二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接写在横线上.13.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=.14.如图,已知四边形ABCD内接于⊙O,E是BC延长线上一点,若∠A=70°,那么∠DCE=.15.如图,已知菱形ABCD的对角线交于坐标原点O,边AD∥x轴,OA=4,∠ABC=120°,则点C的坐标是.16.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y =﹣x2+x+.则他将铅球推出的距离是m.17.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.18.已知关于x的一元二次方程2x2﹣(k+1)x﹣k+2=0有两个实数根x1,x2,且满足0<x1<1,1<x2<2,则k的取值范围是.三、解答题:本大题共7个小题,共86分.解答应写出文字说明,证明过程或演算步骤.19.(16分)计算(1)计算:(2)解方程:x(x﹣1)=3x+720.(11分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).21.(11分)已知关于x的一元二次方程(x﹣3)(x﹣2)﹣p 2=0(1)求证:无论P取何值时,方程总有两个不相等的实数根;(2)若方程的两实数根为x1,x2,且满足x1=4x2,试求出方程的两个实数根及P的值.22.(11分)如图,抛物线y=x2﹣4x+3交x轴于A、B两点(点A在B左侧),顶点为D点,点C为抛物线上一点,且横坐标是4;(1)求A、B、D三点的坐标;(2)求△ACD的面积;23.(11分)绵阳经开区“万达广场”开业在即,开发商准备对一楼的40个商铺出租,小王和开发商约定:小王租赁的每个商铺每个月的租金y(元/个)与租赁的商铺的数量x(个)之间函数关系如图中折线段ABC所示(不包含端点A,但包含端点C)(1)求y与x的函数关系式;(2)已知开发商每个月对每个商铺的投入成本为280元,小王租赁的商铺数量为多少时,开发商在这次租赁中每个月所获的利润W最大?最大利润是多少?24.(12分)如图所示,已知⊙O的半径为2cm,A、B、C为⊙O上的动点,连接AB,BC,BD平分∠ABC交⊙O于点D(1)若AC=2cm,判断△ACD的形状并说明理由;(2)在(1)的条件下,求证:AB+BC=BD;(3)如图2所示,当AC为⊙O最长的弦,且BE平分∠ABC的外角,交⊙O于点E,请你直接写出AB、BE、BC之间的关系25.(14分)已知二次函数的图象交x轴于点A(3,0),B(﹣1,0),交y轴于点C(0,﹣3),P这抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△PAC是以AC为直角边的直角三角形时,求点P的坐标;(3)抛物线上是否存在点P,使得以点P为圆心,2为半径的圆既与x轴相切,与抛物线的对称轴相交?若存在,求出点P的坐标,并求出抛物线的对称轴所截的弦MN的长度;若不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一个符合题目要求.1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】利用因式分解法把方程转化为x﹣3=0或x+4=0,然后解两个一次方程即可.【解答】解:x﹣3=0或x+4=0,所以x1=3,x2=﹣4.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.5.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.6.【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m 2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.7.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.8.【分析】根据90°的圆周角所对的弦是直径进行判断.【解答】解:A、不是圆周角,故本选项不能判断;B、根据90°的圆周角所对的弦是直径,本选项符合;C、不是圆周角,故本选项不能判断;D、不是圆周角,故本选项不能判断.故选:B.【点评】此题考查了圆周角定理的推论,即检验半圆的方法,90°的圆周角所对的弦是直径,所对的弧是半圆.9.【分析】先由a>0,得出函数有最小值,再根据点A、B、C到对称轴的距离的大小与抛物线的增减性解答.【解答】解:∵抛物线y=ax2﹣2ax+1=a(x﹣1)2﹣a+1(a>0),∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵a>0,∴抛物线开口向上,∵点A、B、C到对称轴的距离分别为3、1、2,∴y1>y3>y2.故选:B.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.【分析】连接OB,OA,得出△AOB是等边三角形,求出S△AOB和S扇形AOB,那么阴影面积=(S扇形AOB﹣S△AOB)×6,代入计算即可.【解答】解:如图,连接OB,OA,作OM⊥AB于点M,则OM=.∵∠AOB==60°,AO=OB,∴BO=AB=AO,AM=AB=AO,OM=,∴,∴AO=1,∴BO=AB=AO=1,∴S△AOB=AB×OM=×1×=,∵S扇形AOB==,∴阴影部分面积是:(﹣)×6=π﹣.故选:A.【点评】此题主要考查了正六边形和圆以及扇形面积求法,注意圆与多边形的结合得出阴影面积=(S扇形AOB﹣S△AOB)×6是解题关键.11.【分析】利用弧长公式,分别计算出L1,L2,L3,,的长,寻找其中的规律,确定L2011的长.【解答】解:L1==L2==L3==L4==按照这种规律可以得到:L n=∴L2011=.故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出L2011的长.12.【分析】根据图象的位置即可判断①,根据图象得出当x<﹣1时,M=﹣x2+1,当﹣1<x<0时,M=x+1,即可判断②,求出M=﹣2时,对应的x的值,即可判断③,根据二次函数的最值即可判断④.【解答】解:∵从图象可知:当x>0时,y1<y2,∴①错误;∵当x<0时,x值越大,M值越大;,∴②正确;∵抛物线与x轴的交点为(﹣1,0)(1,0),由图可知,x<﹣1或x>1时,M=y1=﹣x2+1,当M=﹣2时,﹣x2+1=﹣2,解得x=,故③正确;∵由图可知,x=0时,M有最大值为1,故④正确,故选:C.【点评】本题考查了二次函数的图象和性质的应用,主要考查学生的理解能力和观察图形的能力.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接写在横线上.13.【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案是:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.14.【分析】证明∠DCE=∠A即可解决问题.【解答】解:∵∠A+∠BCD=80°,∠BCD+∠DCE=180°,∴∠DCE=∠A,∵∠A=70°,∴∠DCE=70°,故答案为70°.【点评】本题考查圆内接四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】根据菱形的性质和含30°的直角三角形的性质解答即可.【解答】解:∵菱形ABCD的对角线交于坐标原点O,边AD∥x轴,OA=4,∠ABC=120°,∴∠AOD=90°,∠ADO=60°,∴∠OAD=30°,∴点A的坐标为(﹣2,2),∴点C的坐标是(2,﹣2),故答案为:(2,﹣2),【点评】本题考查了菱形的性质.含30°的直角三角形的性质,熟记各种特殊几何图形的判断方法和性质是解题的关键.16.【分析】成绩就是当高度y=0时x的值,所以解方程可求解.【解答】解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.【点评】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.17.【分析】连接OC,作直角△ABO斜边中线OE,连接ED,当DE、AE共线时AD取最大值.【解答】解:由题意知OB=10连接OC,作直角△ABO斜边中线OE,连接ED,则DE=OC=2,AE=OB=5.因为AD<DE+AE,所以当DE、AE共线时AD=AE+DE最大为7cm.故答案为:7.【点评】本题考查最值问题.将AD转化为AE和DE的数量关系是解答关键.18.【分析】把已知条件转化为抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,利用函数图象得到当x=0时,y>0,即﹣k+2>0;当x=1时,y<0,即2﹣k﹣1﹣k+2<0;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0;然后分别解不等式,最后确定它们的公共部分即可.【解答】解:∵关于x的一元二次方程2x2﹣(k+1)x﹣k+2=0有两个实数根x1,x2,∴抛物线y=2x2﹣(k+1)x﹣k+2=0与x轴的两交点的横坐标为x1,x2,如图,当x=0时,y>0,即﹣k+2>0,解得k<2;当x=1时,y<0,即2﹣k﹣1﹣k+2<0,解得k>;当x=2时,y>0,即8﹣2k﹣2﹣k+2>0,解得k<;∴k的范围为<k<2.故答案为<k<2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.三、解答题:本大题共7个小题,共86分.解答应写出文字说明,证明过程或演算步骤.19.【分析】(1)根据绝对值的性质、二次根式的性质、零指数幂、二次根式的混合运算法则计算;(2)利用配方法求解即可.【解答】解:(1)原式=1﹣(2﹣)+2﹣=1﹣2++2﹣=3﹣;(2)整理得:x2﹣4x=7,则x2﹣4x+4=7+4,即(x﹣2)2=11,∴x﹣2=±,∴x1=2+、x2=2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=﹣,由此计算即可;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;(2)根据根与系数的关系得到x1+x2=5,x1x2=6﹣p2,再利用x1=4x2,可先求出x2=1,则可得到x1=4,然后根据x1x2=6﹣p2求p的值.【解答】(1)证明:原方程可化为x2﹣5x+6﹣p2=0,∵△=(﹣5)2﹣4×(6﹣p2)=4p2+1>0,∴不论p为任何实数,方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=5,x1x2=6﹣p2,∵x1=4x2,∴4x2+x2=5,解得x2=1,∴x1=4,∴6﹣p2=4×1,∴p=±.【点评】此题考查根与系数的关系和一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.22.【分析】(1)解析式中令y=0求出x的值,确定出A与B坐标,化为顶点形式确定出顶点坐标即可;(2)连接AD,CD,与x轴交于点E,分别作DG⊥x轴,CF⊥x轴,如图所示,把x=4代入抛物线解析式确定出C纵坐标,三角形ACD面积等于三角形AED面积加上三角形AEC面积,求出即可.【解答】解:(1)令y=0,得到x2﹣4x+3=0,解得:x=1或x=3,即A(1,0),B(3,0),抛物线y=x2﹣4x+3=(x﹣2)2﹣1,顶点D(2,﹣1);(2)连接AD,CD,与x轴交于点E,分别作DG⊥x轴,CF⊥x轴,如图所示,将x=4代入抛物线解析式得:y=3,即C(4,3),∴CF=3,设直线CD解析式为y=kx+b,把C(4,3),D(2,﹣1)代入得:,解得:,即直线CD解析式为y=2x﹣5,令y=0,得到x=2.5,即E(2.5,0),AE=1.5,则S△ACD=S△AED+S△AEC=AE?DG+AE?CF=×1.5×1+×1.5×3=3.【点评】此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.23.【分析】(1)分别根据当0<x≤20时,y=800,当20<x≤40时,设BC满足的函数关系式为y=kx+b,分别求出即可;(2)利用当0<x≤20时,老王获得的利润为:w=(800﹣280)x,当20<x≤40时,老王获得的利润为w=(﹣20x+12 00﹣280)x分别求出即可.【解答】解:(1)当0<x≤20时,y=800;当20<x≤40时,设BC满足的函数关系式为y=kx+b,解得:,∴y与x之间的函数关系式为:y=﹣20x+1200;(2)当0<x≤20时,老王获得的利润为:w=(800﹣280)x=520x≤10400,此时老王获得的最大利润为10400元.当20<x≤40时,老王获得的利润为w=(﹣20x+12 00﹣280)x=﹣20(x2﹣46x)=﹣20(x﹣23)2+10580.∴当x=23时,利润w取得最大值,最大值为10580元.∵10580>10400,∴当小王租赁的商铺数量为23时,开发商在这次租赁中每个月所获的利润W最大,最大利润是10580元.【点评】此题主要考查了二次函数的应用以及分段函数的应用,根据数形结合以及分类讨论得出是解题关键.24.【分析】(1)结论:△ADC是等边三角形.想办法证明DA=DC,∠ADC=60°即可解决问题.(2)如图1﹣1中,在BA上截取BE,使得BE=BA.证明△ABE是等边三角形,△BAC≌△DAE (SAS)即可解决问题.(3)结论:BC﹣AB=BE.如图2中,连接EA,EC,作EF⊥BE交BC于点F.想办法证明△BEF,△AEC都是等腰直角三角形,△BEA≌△FEC(SAS)即可解决问题.【解答】(1)解:结论:△ADC是等边三角形.理由:如图1中,连接OA,OC,作OH⊥AC于H.∵OH⊥AC,∴AH=CH=AC=,在Rt△AOH中,∵OA=2,AH=,∴sin∠AOH=,∴∠AOH=60°,∵OA=OC,OH⊥AC,∴∠AOC=2∠AOH=120°,∴∠ADC=∠AOC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD,∴△ADC是等边三角形.(2)证明:如图1﹣1中,在BA上截取BE,使得BE=BA.∵△ADC是等边三角形,∴∠ACD=∠DAC=60°,AC=AD,∴∠ABE=∠ACD=60°,∵BA=BE,∴△ABE是等边三角形,∴AB=AE,∠BAE=60°,∴∠BAE=∠CAD,∴∠BAC=∠DAE,∴△BAC≌△DAE(SAS),∴BC=DE,∴BD=BE+DE=BA+BC.(3)解:结论:BC﹣AB=BE.理由:如图2中,连接EA,EC,作EF⊥BE交BC于点F.∵AC是直径,∴∠ABC=∠CBN=∠AEC=90°,∵BE平分∠CBN,∴∠EBC=∠CBN=45°,∴∠EAC=∠EBC=45°,△BEF,△AEC都是等腰直角三角形,∴EB=EF,EA=EC,∠BEF=∠AEC,∴∠BEA=∠FEC,∴△BEA≌△FEC(SAS),∴AB=CF,∴BC=BF+CF=BE+AB,∴BC﹣AB=BE.【点评】本题属于圆综合题,考查了等边三角形的判定和性质,等腰直角三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.【分析】(1)由点A,B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)分∠PAC=90°或∠PCA=90°两种情况考虑:①当∠PAC=90°时,设PA交y轴于点D,由点A,C的坐标可得出∠CAO=45°,结合∠PAC=90°可得出∠DAO=45°,进而可得出点D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,联立直线AD与抛物线的解析式成方程组,通过解方程组可求出点P的坐标;②当∠PCA=90°时,同理,直线PC 的解析式,联立直线PC与抛物线的解析式成方程组,通过解方程组可求出点P的坐标.此问得解;(3)由⊙P与x轴相切且与抛物线的对称轴相交,可得出点P的纵坐标为﹣2,利用二次函数图象上点的坐标特征即可求出点P的坐标,过点P作PE⊥MN,垂足为点E,通过解直角三角形可求出ME的长度,再利用等腰三角形的三线合一可得出MN的长度.【解答】解:(1)设抛物线解析式为y=ax2+bx+c(a≠0),将A(3,0),B(﹣1,0),C(0,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3.(2)分∠PAC=90°或∠PCA=90°两种情况考虑,如图1所示.①当∠PAC=90°时,设PA交y轴于点D.∵OA=OC,∴∠CAO=45°,又∵∠PAC=90°,∴∠DAO=45°,∴OD=OA=3,∴点D的坐标为(0,3).设直线AD的解析式为y=kx+d(k≠0),将A(3,0),D(0,3)代入y=kx+d,得:,解得:,∴直线AD的解析式为y=﹣x+3.联立直线AD与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(﹣2,5);②当∠PCA=90°时,同理,直线PC的解析式为y=﹣x﹣3.联立直线PC与抛物线的解析式成方程组,得:,解得:,(舍去),∴点P的坐标为(1,﹣4).综上所述:点P的坐标为(﹣2,5)或(1,﹣4).(3)存在,由题意可知:点P的纵坐标为﹣2.当y=﹣2时,x2﹣2x﹣3=﹣2,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,﹣2)或(1+,﹣2).过点P作PE⊥MN,垂足为点E,如图2所示.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∴PE=1+﹣1=或PE=1﹣(1﹣)=.在Rt△PEM中,PE=,PM=2,∴ME==.∵PM=PN,∴ME=NE,∴MN=2ME=2.∴点P的坐标为(1﹣,﹣2)或(1+,﹣2),抛物线的对称轴所截的弦MN的长度为2.【点评】本题考查了待定系数法求二次函数解析式、等腰直角三角形、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、切线的性质、解直角三角形以及等腰三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)分∠PAC=90°或∠PCA=90°两种情况,求出点P的坐标;(3)利用解直角三角形及等腰三角形的三线合一,求出MN的长度.。
绵阳市2018年高三信息卷(一)答案(理工类)

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
四川省绵阳中学2023-2024学年高三上学期一诊模拟(三)数学(理科)试题

D. 1 2016
7.已知函数
f (x) sin(x )
π 2
π 2
在
3π 8
,
7π 8
内单调递减,x
3π 8
是函数
f (x)
的一条对称轴,且函数
y
f
x
π 8
为奇函数,则
f
7π 24
(
)
A. 3
2B. 1C.1 2D. 3 2
8.设等比数列an 的公比为 q,其前 n 项和为 Sn ,前 n 项积为 Tn ,且满足条件 a1 1,
C.“ b2 ac ”是“ a, b, c ”成等比数列的充分必要条件 D.设 a,b R ,则“ a 0 ”是“ ab 0 ”的必要不充分条件 4.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了 数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点 A 是球体建筑物与水 平地面的接触点(切点),地面上 B,C 两点与点 A 在同一条直线上,且在点 A 的同侧, 若在 B,C 处分别测量球体建筑物的最大仰角为 60°和 20°,且 BC=100 m ,则该球体建 筑物的高度约为( )(cos10°≈0.985)
O1
1,
π 2
,O2
1,
3π 2
,M
是半圆弧
C1
上的一个动点, N
是半圆弧
C2
上的
一个动点.
(1)若 O2ON
π 3
,求点
N
的极坐标;
(2)若点 K 是射线 π 0 与圆 O 的交点,求 MOK 面积的取值范围.
3
23.选修 4-5:不等式选讲
已知函数 f (x) x 2 a , g(x) x 4 , a R .
四川省绵阳市东辰国际学校2017-2018学年高三上学期第二次月考数学试卷(理科) Word版含解析

2017-2018学年四川省绵阳市东辰国际学校高三(上)第二次月考数学试卷(理科)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={﹣2,﹣1,1,2,4},B={y|y=log2|x|﹣3,x∈A},则A∩B=()A.{﹣2,﹣1,0}B.{﹣1,0,1,2}C.{﹣2,﹣1}D.{﹣1,0,1} 3.已知命题p:e x>1,命题q:log2x<0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法错误的是()A.若命题p:∃x∈R,x2﹣x+1=0,则¬p:∀x∈R,x2﹣x+1≠0B.若命题p:∃x∈R,cosx=1,q:∀x∈R,x2﹣x+1>0,则“p∧¬q”为假命题.C.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”D.“”是“θ=30°”的充分不必要条件5.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)6.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.7.设变量x ,y 满足约束条件,则目标函数z=x +6y 的最大值为( )A .3B .4C .18D .408.《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第八日所走里数为( )A .150B .160C .170D .1809.函数f (x )=|x |+(其中a ∈R )的图象不可能是( )A .B .C .D .10.定义在实数集R 上的函数y=f (x )的图象是连续不断的,若对任意的实数,存在常数使得f (t +x )=﹣tf (x )恒成立,则称f (x )是一个“关于t 函数”,下列“关于t 函数”的结论正确的是( )A .f (x )=2不是“关于t 函数”B .f (x )=x 是一个“关于t 函数”C .“关于函数”至少有一个零点D .f (x )=sin πx 不是一个“关于t 函数”11.已知函数f (x )=,若方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+的取值范围是( )A .(﹣1,+∞)B .(﹣1,1]C .(﹣∞,1)D .[﹣1,1)12.定义在(0,+∞)上的函数f (x )满足f (x )>0,且2f (x )<xf ′(x )<3f (x )对x ∈(0,+∞)恒成立,其中f ′(x )为f (x )的导函数,则( )A .<<B .<<C .<<D .<<二.填空题化简求值:()+lg﹣1g25=.14.已知=(1,2),=(x,1),若∥(﹣),则|+|=.15.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量Pmg/L与时间th间的关系为P=P0e﹣kt,如果在前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要小时.16.已知函数f(x)=(x2﹣1)(x2+ax+b)的图象关于直线x=3对称,则函数f(x)的值域为.三.解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.19.设函数f(x)=log4(4x+1)+ax(a∈R).(1)若函数f(x)是定义在R上的偶函数,求a的值;(2)若不等式f(x)+f(﹣x)≥mt+m对任意x∈R,t∈[﹣2,1]恒成立,求实数m的取值范围.20.设函数f(x)=+lnx,g(x)=x3﹣x2﹣3.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)如果对于任意的,都有x1f(x1)≥g(x2)成立,试求实数a的取值范围.21.已知函数f(x)=+x2﹣x(其中e=2.71828…).(1)求f(x)在(1,f(1))处的切线方程;(2)若函数g(x)=ln[f(x)﹣x2+x]﹣b的两个零点为x1,x2,证明:g′(x1)+g′(x2)>g′().[选修4-1:几何证明选讲]22.如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2016-2017学年四川省绵阳市东辰国际学校高三(上)第二次月考数学试卷(理科)参考答案与试题解析一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.【解答】解:∵复数==1+i,∴复数对应的点的坐标是(1,1)∴复数在复平面内对应的点位于第一象限,故选A.【点评】本题考查复数的实部和虚部的符号,是一个概念题,在解题时用到复数的加减乘除运算,是一个比较好的选择或填空题,可能出现在高考题的前几个题目中.2.已知集合A={﹣2,﹣1,1,2,4},B={y|y=log2|x|﹣3,x∈A},则A∩B=()A.{﹣2,﹣1,0}B.{﹣1,0,1,2}C.{﹣2,﹣1}D.{﹣1,0,1}【考点】交集及其运算.【分析】由集合A,求出集合B,由此利用交集的定义能求出A∩B.【解答】解:∵集合A={﹣2,﹣1,1,2,4},∴B={y|y=log2|x|﹣3,x∈A}={﹣2,﹣1,﹣3},∴A∩B={﹣2,﹣1}.故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.3.已知命题p:e x>1,命题q:log2x<0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由e x>1,得x>0,由log2x<0,得0<x<1,所以则p是q的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的运用,比较基础.4.下列说法错误的是()A.若命题p:∃x∈R,x2﹣x+1=0,则¬p:∀x∈R,x2﹣x+1≠0B.若命题p:∃x∈R,cosx=1,q:∀x∈R,x2﹣x+1>0,则“p∧¬q”为假命题.C.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”D.“”是“θ=30°”的充分不必要条件【考点】命题的真假判断与应用;特称命题;命题的否定;必要条件、充分条件与充要条件的判断.【分析】A.由非命题的定义即可得出;B.取x=2kπ(k∈Z)满足等式,可知p是真命题;q:利用二次函数的单调性可判断出出是真命题,再利用“非命题”和“且命题”即可判断出.C.利用否命题的意义即可得出;D.由“θ=30°”⇒“”,反之不成立,再利用充分必要条件即可判断出.【解答】解:A.命题p:∃x∈R,x2﹣x+1=0,由非命题的意义可得:¬p:∀x∈R,x2﹣x+1≠0,正确;B.由命题p:∃x∈R,cosx=1,是真命题,例如x=2kπ(k∈Z)满足等式;q:∀x∈R,x2﹣x+1=>0,是真命题,则¬q是假命题,可得“p∧¬q”为假命题,因此B正确;C.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”,正确;D.由“θ=30°”⇒“”,反之不成立,因此“”是“θ=30°”的必要不充分条件,因此不正确.综上可知:只有D是错误的.故选:D.【点评】本题综合考查了简易逻辑的有关知识、三角函数的性质、二次函数的单调性等基础知识与基本技能方法,属于基础题.5.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【考点】函数单调性的性质;其他不等式的解法.【分析】由题义知分段函数求值应分段处理,利用函数的单调性求解不等式.【解答】解:由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选C【点评】此题重点考查了分段函数的求值,还考查了利用函数的单调性求解不等式,同时一元二次不等式求解也要过关.6.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.【解答】解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.7.设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()A.3 B.4 C.18 D.40【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+6y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即A(0,3)将A(0,3)的坐标代入目标函数z=x+6y,得z=3×6=18.即z=x+6y的最大值为18.故选:C.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.8.《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第八日所走里数为()A.150 B.160 C.170 D.180【考点】等差数列的前n项和.【分析】由题意可知,该男子每日走的路程构成等差数列,且a1+a4+a7=390,S9=1260,利用等差数列的性质求得a4,a5的值,进一步求得公差,则答案可求.【解答】解:由题意可知,该男子每日走的路程构成等差数列,且a1+a4+a7=390,S9=1260,则,∴a4=130,a5=140,∴d=a5﹣a4=10,则a8=a5+3d=140+30=170.故选:C.【点评】本题考查等差数列的性质,考查了等差数列的前n项和,是基础的计算题.9.函数f(x)=|x|+(其中a∈R)的图象不可能是()A.B.C.D.【考点】函数的图象.【分析】分三种情况讨论,根据函数的单调性和基本不等式即可判断.【解答】解:当a=0时,f(x)=|x|,且x≠0,故A符合,当x>0时,且a>0时,f(x)=x+≥2,当x<0时,且a>0时,f(x)=﹣x+在(﹣∞,0)上为减函数,故B符合,当x<0时,且a<0时,f(x)=﹣x+≥2=2,当x>0时,且a<0时,f(x)=x+在(0,+∞)上为增函数,故D符合,故选:C.【点评】本题考查了函数图象的识别,关键是分类讨论,利用基本不等式和函数的单调性,属于中档题.10.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意的实数,存在常数使得f(t+x)=﹣tf(x)恒成立,则称f(x)是一个“关于t函数”,下列“关于t函数”的结论正确的是()A.f(x)=2不是“关于t函数”B.f(x)=x是一个“关于t函数”C.“关于函数”至少有一个零点D.f(x)=sinπx不是一个“关于t函数”【考点】函数恒成立问题.【分析】根据“关于t函数的概念”可知,只有存在常数t,使得f(t+x)+tf(x)=0恒成立即可.依此逐项求t即可.【解答】解:对于A:f(x)=2时,令t=﹣1,可知f(x﹣1)=﹣(﹣1)f(x)=f(x)=2.故该函数是一个“关于﹣1函数”,所以A错;对于B:对于函数f(x)=x,假设存在t,使得该函数是“关于t函数”,即x+t+tx=0恒成立,即(t﹣1)x+t=0恒成立,因此需满足,无解.所以B错;对于C:因为是“关于函数”,所以f(x+)=﹣f(x)恒成立,不妨取x=x0,且f(x0),所以,所以,故在区间(x0,x0+)必有零点.故C正确.对于D:当t=1时,有sinπ(x+1)=sin(πx+π)=﹣sinπx恒成立.即t=1,所f(x)=sinπx 是一个“关于1函数”.故D错误.故选C.【点评】本题是一个新定义题目,要注意给的定义式是一个恒等式,需要在解题时引起注意.11.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞)B.(﹣1,1]C.(﹣∞,1)D.[﹣1,1)【考点】函数的零点与方程根的关系.【分析】作函数f(x)=的图象如下,由图象可得x1+x2=﹣2,x3x4=1;1<x4≤2;从而化简x3(x1+x2)+,利用函数的单调性求取值范围.【解答】解:作函数f(x)=,的图象如下,由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;故x3(x1+x2)+=﹣+x4,其在1<x4≤2上是增函数,故﹣2+1<﹣+x4≤﹣1+2;即﹣1<﹣+x4≤1;故选B.【点评】本题考查了分段函数的应用,属于中档题.12.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x ∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则()A.<<B.<<C.<<D.<<【考点】利用导数研究函数的单调性.【分析】分别构造函数g(x)=,x∈(0,+∞),h(x)=,x∈(0,+∞),利用导数研究其单调性即可得出.【解答】解:令g(x)=,x∈(0,+∞),g′(x)=,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴f(x)>0,0<,∴g′(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增,∴<,∴<.令h(x)=,x∈(0,+∞),h′(x)=,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴h′(x)=<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴>,∴<.综上可得:<<,故选:B.【点评】本题考查了利用导数研究其单调性极值与最值、构造函数法,考查了推理能力与计算能力,属于中档题.二.填空题(2015涪城区校级模拟)化简求值:()+lg﹣1g25=0.【考点】有理数指数幂的化简求值;有理数指数幂的运算性质.【分析】根据指数幂的运算法则进行化简即可【解答】解:原式=:()+lg=+lg=2﹣2=0.故答案为:0【点评】本题主要考查指数幂和对数的基本运算,比较基础.14.已知=(1,2),=(x,1),若∥(﹣),则|+|=.【考点】平行向量与共线向量.【分析】利用向量坐标运算性质、向量共线定理即可得出.【解答】解:=(1﹣x,1).∵∥(﹣),∴2(1﹣x)﹣1=0,解得x=.∴=.则|+|==.故答案为:.【点评】本题考查了向量坐标运算性质、向量共线定理,考查了推理能力与计算能力,属于基础题.15.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量Pmg/L与时间th间的关系为P=P0e﹣kt,如果在前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要15小时.【考点】指数函数的图象与性质.【分析】先利用函数关系式,结合前5个小时消除了l0%的污染物,求出k的值,从而得到过滤过程中废气的污染指数量Pmg/L与时间th间的关系为P=P0e﹣kt,当P=27.1%P0时,有27.1%P0=P0,求出t值得答案.【解答】解:由题意,前5个小时消除了l0%的污染物,∵P=P0e﹣kt,∴(1﹣10%)P0=P0e﹣5k,∴k=﹣ln0.9,则P=P0,消除27.1%的污染物,则27.1%P0=P0,即,解得:t=15.故答案为:15.【点评】本题主要考查函数模型的运用,考查学生的计算能力和分析问题的能力,属于中档题.16.已知函数f(x)=(x2﹣1)(x2+ax+b)的图象关于直线x=3对称,则函数f(x)的值域为[﹣36,+∞).【考点】利用导数求闭区间上函数的最值;函数的最值及其几何意义.【分析】根据函数的对称性,求出a,b值,得到函数的解析式,结合导数法求出最小值,可得答案.【解答】解:∵函数f(x)=(x2﹣1)(x2+ax+b)的图象关于直线x=3对称,∴f(6﹣x)=f(x),即[(6﹣x)2﹣1][(6﹣x)2+a(6﹣x)+b]=(x2﹣1)(x2+ax+b)解得:,故f(x)=(x2﹣1)(x2﹣12x+35),则令f′(x)=4(x﹣3)(x2﹣6x﹣1)=0,解得:x=3或x=3±.当x<3﹣,或3<x<3+时,f′(x)<0函数为减函数.当3﹣x<3,或x>3+时,f′(x)>0函数为增函数.∵f(3±)=﹣36.函数f(x)的值域为[﹣36,+∞)故答案为:[﹣36,+∞).【点评】本题考查的知识点是函数的最值及其几何意义,利用导数求函数的最值,难度中档.三.解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易18.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.【考点】三角函数的最值;三角函数的周期性及其求法.【分析】(1)由条件利用三角恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得f(x)最小正周期.(2)由条件利用正弦函数的定义域和值域,求得f(x)在区间上的最大值和最小值.【解答】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.【点评】本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于中档题.19.设函数f(x)=log4(4x+1)+ax(a∈R).(1)若函数f(x)是定义在R上的偶函数,求a的值;(2)若不等式f(x)+f(﹣x)≥mt+m对任意x∈R,t∈[﹣2,1]恒成立,求实数m的取值范围.【考点】函数奇偶性的性质;函数恒成立问题.【分析】(Ⅰ)由偶函数的定义f(﹣x)=f(x)恒成立可求;(Ⅱ)不等式f(x)+f(﹣x)≥mt+m对任意x∈R成立,等价于[f(x)+f(﹣x)]min≥mt+m,利用基本不等式可求得[f(x)+f(﹣x)]min,然后构造关于t的一次函数,利用一次函数的性质可求得m范围.【解答】解:(Ⅰ)由函数f(x)是定义在R上的偶函数,得f(x)=f(﹣x)恒成立,则,∴,∴(2a+1)x=0恒成立,则2a+1=0,故.(Ⅱ)=.当且仅当x=0时取等号,∴mt+m≤1对任意t∈[﹣2,1]恒成立,令h(t)=mt+m,由,解得,故实数m的取值范围是.【点评】本题考查函数奇偶性的性质、函数恒成立问题,考查转化思想,恒成立问题常转化为函数最值解决.20.设函数f(x)=+lnx,g(x)=x3﹣x2﹣3.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)如果对于任意的,都有x1f(x1)≥g(x2)成立,试求实数a的取值范围.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)函数f(x)的定义域为(0,+∞),,对参数a讨论得到函数的单调区间.(Ⅱ)由题对于任意的,都有x1f(x1)≥g(x2)成立,则x1f(x1)≥g(x)max,然后分离参数,求出a的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),,当a≤0时,f'(x)>0,函数f(x)在区间(0,+∞)上单调递增;当a>0时,若,则f'(x)≥0,函数f(x)单调递增;若,则f'(x)<0,函数f(x)单调递减;所以,函数f(x)在区间上单调递减,在区间上单调递增.…(Ⅱ),,可见,当时,g'(x )≥0,g (x )在区间单调递增,当时,g'(x )≤0,g (x )在区间单调递减,而,所以,g (x )在区间上的最大值是1,依题意,只需当时,xf (x )≥1恒成立,即恒成立,亦即a ≥x ﹣x 2lnx ; …令,则h'(x )=1﹣x ﹣2xlnx ,显然h'(1)=0,当时,1﹣x >0,xlnx <0,h'(x )>0,即h (x )在区间上单调递增;当x ∈(1,2]时,1﹣x <0,xlnx >0,h'(x )<0,(1,2]上单调递减;所以,当x=1时,函数h (x )取得最大值h (1)=1, 故 a ≥1,即实数a 的取值范围是[1,+∞).…【点评】本题主要考查含参数的函数求单调区间的方法和利用导数求最值问题,属于难题,在高考中作为压轴题出现.21.已知函数f (x )=+x 2﹣x (其中e=2.71828…).(1)求f (x )在(1,f (1))处的切线方程;(2)若函数g (x )=ln [f (x )﹣x 2+x ]﹣b 的两个零点为x 1,x 2,证明:g ′(x 1)+g ′(x 2)>g ′().【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出函数的导数,求得切线的斜率和切点,运用点斜式方程可得切线的方程;(2)求出g (x )的解析式,求出导数,由零点的定义,运用换元法和构造函数法,结合分析法证明,以及函数的单调性,即可得到证明.【解答】解:(1)函数f (x )=+x 2﹣x 的导数为f ′(x )=+2x ﹣1,f (x )在(1,f (1))处的切线斜率为k=f ′(1)=1,切点为(1,),可得f (x )在(1,f (1))处的切线方程为y ﹣=x ﹣1,即为y=x ﹣1+;(2)证明:由题意知函数g (x )=lnx ﹣x ﹣b ,所以g ′(x )=﹣1,因为x 1,x 2是函数g (x )的两个零点,所以,相减得x 2﹣x 1=ln,令=t >1,则x 2=tx 1,即tx 1﹣x 1=lnt ,则x 1=,x 2=,要证g ′(x 1)+g ′(x 2)>g ′(),即证+>+1,即证+>+1,即证t ﹣﹣﹣lnt >0,令φ(t )=t ﹣﹣﹣lnt ,φ′(t )=1+﹣﹣=,令m (t )=t 4+t 3﹣4t 2+t +1,m ′(t )=4t 3+3t 2﹣8t +1,令h (t )=4t 3+3t 2﹣8t +1,h ′(t )=12t 2+6t ﹣8>0恒成立,m ′(t )在(1,+∞)递增,可得m ′(t )>m ′(1)=0, m (t )在(1,+∞)递增,m (t )>m (1)=0,即φ′(t )>0,φ(t )在(1,+∞)递增,φ(t )>φ(1)=0, 即原不等式成立.【点评】本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查不等式的证明,注意运用分析法,考查化简整理的运算能力,属于中档题.[选修4-1:几何证明选讲]22.如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.【考点】直线与圆的位置关系.【分析】(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.【解答】证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=ADAE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.【点评】本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.[选修4-4:坐标系与参数方程]23.(2015陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.【考点】点的极坐标和直角坐标的互化.【分析】(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.【解答】解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).【点评】本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2015陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.【考点】不等关系与不等式.【分析】(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.【解答】解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4【点评】本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.。
四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)

注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题.考试结束后,将答题卡交回.第Ⅰ卷(选择题,共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2A =--,(){}211B x x =+≤,则A B = ( )A. {}2,1--B. {}2,1,0-- C. []2,0- D. []22-,【答案】B 【解析】【分析】先求出集合B ,再根据集合交集运算即可得答案【详解】由()211x +≤,可得20x -≤≤,所以{}20B x x =-≤≤,所以A B = {}{}{}2,1,0,1,2202,1,0x x --⋂-≤≤=--.故选:B2. “22ac bc >”,是“a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件、必要条件的定义判断即得.【详解】若22ac bc >,则20,0c c ≠>,因此a b >,当a b >,0c =时,220ac bc ==,所以“22ac bc >”,是“a b >”的充分不必要条件.故选:A3. 已知0,0x y >>,且满足3x y xy +=-,则xy 的最小值为( )A. 3B. C. 6D. 9【答案】D 【解析】【分析】利用基本不等式化简已知条件,再解不等式求得xy 的范围,从而求得xy 的最小值.详解】3x y xy +=-≥)23310--=+≥,30,9xy -≥≥,当且仅当3x y ==时等号成立,所以xy 的最小值为9.故选:D4. 某公司根据近几年经营经验,得到广告支出与获得利润数据如下:广告支出x /万元258111519利润y /万元334550535864根据表中数据可得利润y 关于广告支出x 的经验回归方程为ˆ 1.6ˆ5yx a =+.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元 B. 32万元C. 36万元D. 40万元【答案】D 【解析】【分析】先得求数据的中心点()10,50.5,代入ˆ 1.6ˆ5yx a =+得ˆ34a =,再由ˆ100=y 求得40x =即得.【详解】258111519106x +++++==,33455053586450.56y +++++==,因ˆ 1.6ˆ5yx a =+过点()x y ,故ˆ50.5 1.6510a =⨯+,得ˆ34a =,【故当ˆ100=y时,341001.65x +=,得40x =,故选:D5. 下列选项中,既是增函数,也是奇函数的是( )A. 2y x -= B. 1y x x=+C. sin y x x =-D. 1ln1x y x -=+【答案】C 【解析】【分析】分别判断函数的奇偶性和单调性即可.【详解】对于A ,令()2f x x -=,0x ≠,()()()22fx x x fx ---=-==,所以2y x -=是偶函数,故A 错误;对于B ,1y x x=+在(),1∞--和()1,+∞上单调递增,在()1,0-和()0,1上单调递减,故B 错误;对于C ,令()sin g x x x =-,R x ∈,()()()()sin sin g x x x x x g x -=---=--=-,所以sin y x x =-是奇函数,又1cos 0y x '=-≥,所以sin y x x =-是R 上的增函数,故C 正确;对于D ,令()1ln1x h x x -=+,()(),11,x ∈-∞-⋃+∞,则()()()11201111x x h x x x x x '+-⎛⎫'=⋅=> ⎪-+-+⎝⎭,所以函数1ln 1x y x -=+在(),1∞--和()1,+∞上单调递增,但在定义域上不单调,故D 错误.故选:C.6. 已知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,则1cos21cos2θθ-=+( )A. 9 B. 3C.13D.19【答案】B 【解析】【分析】根据两角和正切公式结合已知条件可求出tan θ=.【详解】由题意知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,的故πtan tan3tan 0π1tan tan 3θθθ++=-,解得tan θ=或tan θ=(舍去),则2221cos22sin tan 31cos22cos θθθθθ-===+,故选:B7. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=(e 是自然对数的底数,0P ,k 为正的常数).如果前9h 消除了20%的污染物,那么消除60%的污染物需要的时间约为( )(参考数据:lg 20.301≈)A. 33h B. 35h C. 37h D. 39h【答案】C 【解析】【分析】根据给定条件,求出常数k ,然后再令0.4P =即可解出t .【详解】依题意,900(120%)ekP P --=,解得1ln 0.89k =-,即900.8t P P =,当0(160%)P P =-时,9000.40.8tP P =,即90.80.4t=,解得9lg 0.49(2lg 21)9(120.301)37lg 0.83lg 21130.301t --⨯==≈≈--⨯,所以污消除60%的污染物需要的时间约为37h .故选:C8. 已知函数()()()()2231,0,e 3,0x x x f x g x mx x x ⎧-+≤⎪==⎨->⎪⎩,若关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,则实数m 的取值范围是( )A. 30,2⎛⎤⎥⎝⎦B. 2e 0,2⎛⎤ ⎥⎝⎦C. (]2e,0- D. ()3,00,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】【分析】判断函数的单调性,作出函数图象,结合题意列出相应不等式组,即可求得答案.【详解】令()()2e3,0xh x xx =->,则()()()e 31x h x x x +'=-,当01x <<时,ℎ′(x )<0,则ℎ(x )在(0,1)上单调递减;当1x >时,ℎ′(x )>0,则ℎ(x )在(1,+∞)上单调递增;令()()231,0k x x x =-+≤,则其图象为开口向下,对称轴为1x =-的抛物线;由关于x 的不等式()()()0x f x g x -<,可知0x ≠,当0x >时,()()f x g x <,即有()()h x g x <;当0x <时,()()f x g x >,即有()()k x g x >;作出函数图象如图:要使关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,显然0m ≤不能满足题意,故需满足()()()()02222m h g k g ⎧>⎪≥⎨⎪-≤-⎩,即20e 232m m m>⎧⎪≥⎨⎪-≤-⎩,解得302m <≤,即m 的取值范围为30,2⎛⎤⎥⎝⎦,故选:A【点睛】关键点睛:解答本题的关键在于作出函数图象,从而列出相应不等式组,求得答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知数列{a n }的前n 项和为n S ,且116,6n n a a S +==+,则( )A. 342S = B. 2n nS a <C. {}n S 是等比数列 D. 存在大于1的整数n ,k ,使得n kS a =【答案】AB 【解析】【分析】通过n a 与n S 的关系,作差得到数列{}n a 是以6为首项,2为公比的等比数列,进而逐项判断即可.【详解】由16n n a S +=+,可得16,2n n a S n -=+≥两式相减可得:12,2n n a a n +=≥,又2211612,2a a S a =+==,所以数列{}n a 是以6为首项,2为公比的等比数列,所以162n n a -=⨯,626nn S =⨯-,所以3362642S =⨯-=,A 正确;262n n a =⨯,所以2n n S a <,B 正确;由626nn S =⨯-,可得1236,18,42S S S ===,显然3212S S S S ≠,可判断{}n S 不是等比数列,C 错误;若n k S a =,即162662n k -⨯-=⨯,也即1221n k --=,显然不存在大于1的整数,n k ,使得等式成立,D 错误;故选:AB10. 已知函数()22sin cos0)222xxxf x ωωωω=-+>在[)0,π上有且仅有4个零点,则( )A.1114,33ω⎛⎤∈⎥⎝⎦B. 令()π6g x f x ⎛⎫=+⎪⎝⎭,存在ω,使得()g x '为偶函数C. 函数()f x 在()0,π上可能有3个或4个极值点D. 函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增【答案】ABD 【解析】【分析】利用二倍角和辅助角公式化简得到()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,根据()f x 在[)0,π上有且仅有4个零点,可确定πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,进而解得111433ω<≤,再根据其范围结合函数图象和平移知识等逐一判断即可.【详解】()2π2sincossin 2sin (0)2223xxxf x x x x ωωωωωωω⎛⎫=-=+=+> ⎪⎝⎭对于A , [)0,πx ∈,πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在[)0,π上有且仅有4个零点,所以π4ππ5π3ω<+≤,解得111433ω<≤,∴1114,33ω⎛⎤∈ ⎥⎝⎦,故A 正确;对于B ,()π6g x f x ⎛⎫=+⎪⎝⎭ππππ2sin 2sin 6363x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()ππ2cos 63g x x ωωω'⎛⎫=++ ⎪⎝⎭为偶函数,则πππ,63k k ω+=∈Z ,即62,k k ω=-∈Z ,∵0,ω>∴取4ω=,()8cos 4g x x '=-为偶函数,满足题意,故B 正确;对于C ,x ∈(0,π),πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,(]ππ4π,5π3ω+∈,∴函数()f x 在()0,π上可能有4个或5个极值点, 故C 不正确;对于D ,若ππ,3535x ⎛⎫∈-⎪⎝⎭,则πππππ,3353353x ωωω⎛⎫+∈-++ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,∴ππ7π8πππ46π7π,,,353353535310515ωω⎡⎫⎛⎤-+∈+∈⎪ ⎢⎥⎣⎭⎝⎦,∴函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增. 故D 正确;故选:ABD.11. 已知函数()f x 的定义域为R ,()f x 不恒为0,且()()222f x f y x y x y f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则( )A. ()0f 可以等于零 B. ()f x 的解析式可以为:()cos2f x x =C. 曲线f (x−1)为轴对称图形 D. 若()11f =,则201()20k f k ==∑【答案】BCD【解析】【分析】利用赋值法可得()00f =或()01f =,分类讨论可得()01f =,判断A ;.有一只判断出函数的奇偶性,可判断B ;结合B 的分析以及图象的平移可判断C ;判断出(){}f k 是以()11f =为首项,0为公差的等差数列,即可判断D.【详解】令0x y ==,可得()()000000222f f f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,可得()()200f f =,解得()00f =或()01f =,当()00f =时,则可得()()0222f x f x x x x x f f ++-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,则()0f x =,与()f x 不恒为0矛盾,所以()01f =,故A 错误;令y x =-,可得()()()()()()20,f x f x f f x f x f x +-=∴-=,所以()f x 为偶函数,因为()cos 2f x x =是偶函数,所以()f x 的解析式可以为:()cos2f x x =,故B 正确;因为()f x 为偶函数,所以()f x 的图象关于直线0x =对称,所以()1f x -关于直线1x =对称,所以曲线()1f x -为轴对称图形,故C 正确;令2,x k y k =+=,则可得()()2222222f k f k k f f +++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以()()()*221,N f k f k f k k ++=+∈,又()()2022222f f f f +⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,解得()21f =,所以(){}f k 是以()11f =为首项,0为公差的等差数列,所以201()20k f k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:采用赋值法是解抽象函数的一种有效方法,多领会其思路.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12. 记ABC V 内角A ,B ,C 的对边分别为a ,b ,c .已知()22,3,cos 3b c B C ==+=-,则a =______.【解析】【分析】结合三角形内角和、诱导公式与余弦定理计算即可得解.【详解】由()()2cos cos πcos 3B C B C A ⎡⎤+=-+=-=-⎣⎦,故2cos 3A =,则22222cos 491253a b c bc A =+-=+-⨯=,故a =..13. 已知函数()|ln|2||f x x m =+-,m 为正的常数,则()f x 的零点之和为________.【答案】8-【解析】【分析】根据给定条件,探讨函数的对称性,再结合零点的意义即可求解得答案.【详解】函数()f x 的定义域为{R |2}x x ∈≠-,由()0f x =,得|ln|2||x m +=,令函数()|ln|2||g x x =+,(4)|ln|42|||ln |2||()g x x x g x --=--+=+=,则函数()y g x =图象关于直线2x =-对称,在同一坐标系内作出直线(0)y m m =>与函数()y g x =的图象,如图,直线(0)y m m =>与函数()y g x =的图象有4个交点,令其横坐标从左到右依次为1234,,,x x x x ,观察图象得14234x x x x +=+=-,所以()f x 的零点之和为8-.故答案为:8-14. 若2x =是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,则实数a 的取值范围为________.【答案】2e a <-【解析】【分析】根据函数的导数,对a 分类讨论,再结合()0f x '=的根,分类讨论,分析函数的极大值点即可得出答案.【详解】()()()()()e222e xx f x x a x x a =-+-=-+',当0a ≥时,e 0x a +>,当2x <时,f ′(x )<0,当2x >时,f ′(x )>0,所以()f x 在(),2∞-上单调递减,在()2,∞+上单调递增,所以2x =是函数的极小值点,不符合题意;当0a <时,令()0f x '=,可得()122,ln x x a ==-,若()2ln a <-,即2e a <-时,则2x <时,f ′(x )>0,函数()f x 单调递增,()2ln x a <<-时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+- ⎪⎝⎭的极大值点,符合题意;若()2ln a >-即20e a >>-时,则2x >时,f ′(x )>0,函数()f x 单调递增,()ln 2a x -<<时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极小值点,不符合题意;若()2ln a =-即2e a =-时,则R x ∈时,f ′(x )≥0,函数()f x 单调递增,函数()f x 无极值点,不符合题意.综上,当2e a <-时,2是函数()f x 的极大值点.故答案为:2e a <-【点睛】关键点点睛:首先观察导函数,当0a ≥时,分析函数单调性判断2是否为极大值点,当0a <时,根据()0f x '=的两根大小分类,由导数的正负得函数的单调性,再由单调性判断极大值点是否为2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 近年来,解放军强军兴军的深刻变化,感召了越来越多的高中优秀青年学子献身国防,投身军营.2024年高考,很多高考毕业学生报考了军事类院校.从某地区内学校的高三年级中随机抽取了900名学生,其中男生500人,女生400人,通过调查,有报考军事类院校意向的男生、女生各100名.(1)完成给出的列联表,并分别估计该地区高三男、女学生有报考军事类院校意向的概率;有报考意向无报考意向合计男学生女学生合计(2)根据小概率值0.10α=的独立性检验,能否认为学生有报考军事类院校的意愿与性别有关.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++ ++++.α0.250.150.100.050.0250.0100.0050.001xα1.3232.072 2.7063.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,男生有报考军事类院校意向的概率为15,女生有报考军事类院校意向的概率为1 4(2)能认为学生有报考军事类院校的意愿与性别有关【解析】【分析】(1)先填写22⨯列联表,再根据古典概型概率计算公式求得正确答案.(2)计算2χ的知识,从而作出判断.【小问1详解】根据已知条件,填写22⨯列联表如下:有报考意向无报考意向合计男学生100400500女学生100300400合计200700900男生有报考军事类院校意向的概率为1001 5005=,女生有报考军事类院校意向的概率为1001 4004=.【小问2详解】()22900100300400100 3.214 2.072200700400500χ⨯-⨯=≈>⨯⨯⨯,所以能认为学生有报考军事类院校的意愿与性别有关.16. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知1sin 2a C =,且cos cos 1a C c A +=,(1)求ABC V 的面积;(2)若π4B =,求A .【答案】(1)14; (2)π8或5π8.【解析】【分析】(1)根据给定条件,利用余弦定理及三角形面积公式求解即得.(2)利用正弦定理,结合和角的正弦公式、二倍角公式求解即得.【小问1详解】在ABC V 中,由余弦定理及cos cos 1a C c A +=,得222222122a b c b c a a c ab bc+-+-⋅+⋅=,整理得1b =,而1sin 2a C =,所以ABC V 的面积11sin 24S ba C ==.【小问2详解】由(1)及正弦定理得1πsin sin sin 4a b A B ===a A =,于1sin 2A C =1sin(2π)4A A +=,12cos )A A A +=,即22sin cos 12sin A A A =-,因此sin 2cos 2A A =,即tan 21A =,由3π04A <<,得3π022A <<,解得π24A =或5π24A =,所以π8A =或5π8A =.17. 已知数列{}{},n n a b 满足()1n n n a nb +=,且1n a +是n b 与1n b +的等比中项.(1)若124a a +=,求1b 的值;(2)若12a =,设数列{}{},n n a b 的前n 项和分别为,n n S T .(ⅰ)求数列{}{},n n a b 的通项公式;(ⅱ)求n n T S -.【答案】(1)2(2)(ⅰ)()1n a n n =+,()21n b n =+(ⅱ)()32n n n n T S +-=【解析】【分析】(1)先得112b a =,2232b a =,利用1n a +是n b 与1n b +的等比中项可得;(2)(ⅰ)先求得1n n n b a n+=,利用1n a +是n b 与1n b +的等比中项可得12n n n a a n ++=,由累乘法可得()1n a n n =+,进而可得()21n b n =+;(ⅱ)先得1n n n a b -=+,利用等差数列前n 项和公式可得()32n n T S n n +-=.【小问1详解】由()1n n n a nb +=可得112b a =,2232b a =,由题意可知2a 是1b 与2b 的等比中项,故2212a b b =,可得22123a a a =,即213a a =,又因124a a +=,故11a =,故1122b a ==【小问2详解】(ⅰ)由()1n n n a nb +=得1n n n b a n +=,由题意可得1211121n n n n n n n a a a n n b b ++++++==⋅,得12n n n a a n ++=,故12n n a n a n++=,故()1112211321121n n n n n a a a a n n n n a n n a a a ---=⨯⨯⨯⨯+⨯⨯⨯=+--= ,()211n n n b a n n+==+,故()1n a n n =+,()21n b n =+(ⅱ)()()2111n n b n a n n n =+-=-++,()()1212n n n n T b b b a a a S =+++-++-()()()1122n n b a b a b a =-+-++- ()231n =++++ ()212n n++=()32n n +=18. 已知函数()3221f x x ax a x =+--.(1)当5a =-时,则过点()0,2的曲线()f x 的切线有几条?并写出其中一条切线方程;(2)讨论()f x 的单调性;(3)若()f x 有唯一零点,求实数a 的取值范围.【答案】(1)有3条切线,322y x =-+(2)答案见解析 (3)⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)根据导数的几何意义,设出切点得出切线斜率,列方程组分析解得个数即可;(2)求出导函数,对a 分类讨论即可得出函数单调区间;(3)根据函数的单调性,结合当x →+∞时,()f x →+∞,利用极大值建立不等式求解.【小问1详解】当5a =-时,()325251f x x x x =---,()231025f x x x =--',设切点为()00,x y ,因为切线过点(0,2),所以切线斜率存在,故可设切线方程为2y kx =+,则3200002002525131025kx x x x k x x ⎧+=---⎨=--⎩,化简可得()2200021330x x x --+=,即()()200012330x x x ---=,由2002330x x --=的判别式9240∆=+>知方程有2个不等实根且不为1,故()()200012330x x x ---=有3个不等的实根,所以切线有3条,其中一条切点横坐标为1,故3102532k =--=-,所以切线方程为322y x =-+.【小问2详解】()()()22323f x x ax a x a x a =+-=-+',当0a =时,()230f x x ='≥,所以函数R 上单调递增;当0a >时,3a a -<,所以x a <-或3ax <时,f ′(x )>0,()f x 单调递增,当3aa x -<<时,f ′(x )<0,()f x 单调递减;当0a <时,3aa ->,所以x a >-或3a x <时,f ′(x )>0,()f x 单调递增,当3ax a <<-时,f ′(x )<0,()f x 单调递减;综上,0a =时,()f x 在R 上单调递增,无递减区间;当0a >时,()f x 在(),a ∞--和,3a ∞⎛⎫+ ⎪⎝⎭上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()f x 在,3a ∞⎛⎫- ⎪⎝⎭和(),a ∞-+上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减.【小问3详解】当0a =时,3()1f x x =-,函数仅有1个零点1;当0a >时,由(2)知,()f x 的极大值为()f a -,且当x →+∞时,()f x →+∞,若()f x 有唯一零点,则333()10f a a a a -=-++-<,解得1a <,故()0,1a ∈,当0a <时,由(2)知,()f x 的极大值为3a f ⎛⎫⎪⎝⎭,同理,若()f x 有唯一零点,则3510327a f a ⎛⎫=--< ⎪⎝⎭,解得a >,故a ⎛⎫∈ ⎪ ⎪⎝⎭,综上,实数a的取值范围⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:对于含参数的函数,研究单调区间的关键在于对导函数的特点分析,本题导函数为二次函数,所以分析的重点在于导函数零点的关系,在根据函数有唯一零点求参数的时候,利用函数的极大值点建立不等式是解题关键.19. 已知函数()2ln 3f x x x x a =+-+,()f x 在(]0,1上的最大值为3ln24-.在(1)求实数a 的值;(2)若数列{}n a 满足()1231n n n n a a f a a +=+-,且143a =.(ⅰ)当2,n n ≥∈Z 时,比较n a 与1的大小,并说明理由;(ⅱ)求证:1312nii a=-<∑.【答案】(1)a =2(2)(1)1n a >,理由见详解;(2)证明见详解【解析】【分析】(1)利用导数判断()f x 的单调性求出最大值得解;(2)(i )由已知结合基本不等式可得1ln 12nn na a a +≥+,利用数学归纳法证明1n a >,()2,Z n n ≥∈,(ii )先构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a ,将所证明的式子放缩求和证明.【小问1详解】()()()121123x x f x x x x--'=+-=Q ,(]0,1x ∈,当102x <<时,10x -<,210x -<,()0f x '∴>,则()f x 在10,2⎛⎫⎪⎝⎭上单调递增,当112x ≤≤时,10x -≤,210x -≥,()0f x '∴≤,则()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,()max 11133ln ln 222424f x f a ⎛⎫∴==+-+=- ⎪⎝⎭,解得2a =所以实数a 的值为2.【小问2详解】(i )由(1)知,()2ln 32f x x x x =+-+,所以212ln 3231n n n n n n a a a a a a +=+-++-,即21ln 12n n n na a a a +++=,212n n a a +≥Q ,1ln 12nn na a a +∴≥+,.下面用数学归纳法证明1n a >,()2,Z n n ≥∈,当2n =时,143a =,1214lnln 3111823a a a ∴≥+=+>,假设()2,Z n k k k =≥∈时,命题成立,则1k a >,当1n k =+时,有1ln 112kk ka a a +≥+>成立,所以上述命题对2,Z n n ≥∈,均有1n a >成立.(ii )当1n =时,13112a -=<成立,当2n ≥时,令()ln 1x x x ϕ+=,则()2ln xx x ϕ-'=,当01x <<时,()0x ϕ'>,当1x >时,()0x ϕ'<,所以()x ϕ在()0,1上单调递增,在()1,+∞上单调递减,则()()11x ϕϕ<=,所以()()21ln 11ln 1112222n n n nn n n n n n a a a a a a a a a a ϕ+⎛⎫++++==+=+< ⎪⎝⎭,即11112n n a a +-<-,又由(i )知1n a >,则()11112+-<-n n a a ,()()()121313111ni n i a a a a =∴-=-+-++-⎡⎤⎣⎦∑L ()121111311222n a -⎡⎤⎛⎫<-++++ ⎪⎢⎥⎝⎭⎣⎦L 111123211322n n -⎛⎫=⨯⨯=- ⎪⎝⎭,102n >Q ,1112n ∴-<,12122n⎛⎫∴-< ⎪⎝⎭,即1312ni i a =-<∑,得证.【点睛】关键点点睛:本题最后小问证明的关键是构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a .。
四川省绵阳市南山实验高中2017-2018学年高考数学一诊试卷(文科) Word版含解析

四川省绵阳市南山实验高中2017-2018学年高考数学一诊试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)已知全集U=R,集合A={x|y=ln(3x﹣1)},B={y|y=sin(x+2)},则(∁U A)∩B=()A.(,+∞)B.(0,]C.D.∅2.(5分)若角α的终边在直线y=﹣2x上,且sinα>0,则cosα和tana的值分别为()A.,﹣2 B.﹣,﹣C.﹣,﹣2 D.﹣,﹣23.(5分)设,为向量,则|•|=||||是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知等差数列{a n},且a4+a10=12﹣a7,则数列{a n}的前13项之和为()A.24 B.39 C.52 D.1045.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.B.C.D.6.(5分)在△ABC中,M是BC的中点,AM=1,点P在AM上且满足,则等于()A.B.C.D.7.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象与直线y=b(0<b <A)的三个相邻交点的横坐标分别是2、4、8,则f(x)的单调递增区间为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)8.(5分)已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(﹣∞,0)时,xf′(x)<f(﹣x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=(log2)f(log2),则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.a>c>b9.(5分)设定义在R上的偶函数f(x)满足f(1﹣x)=f(x+1),且当x∈时,f(x)=x3,若方程f(x)﹣cos x﹣a=0(a<0)无解,则实数a的取值范围是()A.(﹣∞,﹣2)B.(﹣∞,﹣2]C.(﹣∞,﹣1]D.(﹣∞,﹣1)10.(5分)已知正方形ABCD的边长为1,P、Q分别为边AB,DA上的点,若∠PCQ=45°,则△APQ面积的最大值是()A.2﹣B.3﹣2C.D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)化简求值:()+lg﹣1g25=.12.(5分)已知函数f(x)的图象是两条线段(如图,不含端点),则f(f())=.13.(5分)已知sinα﹣cosα=,0≤α≤π,则sin(+2α)=.14.(5分)已知实数a<0,b<0,且ab=1,那么的最大值为.15.(5分)设x∈R,用表示不超过x的最大整数,称函数f(x)=为高斯函数,也叫取整函数.现有下列四个命题:①高斯函数为定义域为R的奇函数;②“”≥“”是“x≥y”的必要不充分条件;③设g(x)=()|x|,则函数f(x)=的值域为{0,1};④方程=的解集是{x|1≤x<5}.其中真命题的序号是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2cos2x+2sinxcosx+a,且当时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调增区间;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函数y=g(x),求方程g(x)=2在区间上的所有根之和.17.(12分)已知函数f(x)=x2+bx为偶函数,数列{a n}满足a n+1=f(a n﹣1)+1,且a1=3,a n>1.(Ⅰ)设b n=log2(a n﹣1),证明:数列{b n+1}为等比数列;(Ⅱ)设c n=n(2b n﹣1),求数列{c n}的前n项和S n.18.(12分)如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.19.(12分)已知函数f(x)=()x,x∈,函数g(x)=f2(x)﹣2af(x)+3的最小值为h(a).(1)求h(a)的解析式;(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为时,值域为?若存在,求出m,n的值;若不存在,请说明理由.20.(13分)已知函数f(x)=ax3+bx2+cx+a2(a>0)的单调递减区间是(1,2),且满足f (0)=1.(1)求f(x)的解析式;(2)对任意m∈(0,2],关于x的不等式f(x)<m3﹣mlnm﹣mt+3在x∈<e(其中n∈N*,e x是自然对数的底).四川省绵阳市南山实验高中2015届高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)已知全集U=R,集合A={x|y=ln(3x﹣1)},B={y|y=sin(x+2)},则(∁U A)∩B=()A.(,+∞)B.(0,]C.D.∅考点:交、并、补集的混合运算.专题:集合.分析:求出A中x的范围确定出A,求出B中y的范围确定出B,根据全集U=R求出A 的补集,找出A补集与B的交集即可.解答:解:由A中y=ln(3x﹣1),得到3x﹣1>0,即x>,∴A=(,+∞),∵全集U=R,∴∁U A=(﹣∞,],由B中y=sin(x+2),得到﹣1≤y≤1,∴B=,则(∁U A)∩B=.故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)若角α的终边在直线y=﹣2x上,且sinα>0,则cosα和tana的值分别为()A.,﹣2 B.﹣,﹣C.﹣,﹣2 D.﹣,﹣2考点:同角三角函数间的基本关系.专题:三角函数的求值.分析:由角α的终边在直线y=﹣2x上,且sinα>0,得到α为第二象限角,利用同角三角函数间的基本关系求出cosα和tana的值即可.解答:解:∵角α的终边在直线y=﹣2x上,且sinα>0,∴α为第二象限角,则tanα=﹣2,cosα=﹣=﹣.故选:D.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)设,为向量,则|•|=||||是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;向量的模;平行向量与共线向量.专题:平面向量及应用.分析:利用向量的数量积公式得到•=,根据此公式再看与之间能否互相推出,利用充要条件的有关定义得到结论.解答:解:∵•=,若a,b为零向量,显然成立;若⇒cosθ=±1则与的夹角为零角或平角,即,故充分性成立.而,则与的夹角为为零角或平角,有.因此是的充分必要条件.故选C.点评:本题考查平行向量与共线向量,以及充要条件,属基础题.4.(5分)已知等差数列{a n},且a4+a10=12﹣a7,则数列{a n}的前13项之和为()A.24 B.39 C.52 D.104考点:等差数列的性质;等差数列的前n项和.专题:等差数列与等比数列.分析:直接利用等差数列的性质结合已知求得a7=3,然后由S13=13a7得答案.解答:解:在等差数列{a n}中,由a4+a10=12﹣a7,得3a7=12,a7=4.∴S13=13a7=13×4=52.故选:C.点评:本题考查了等差数列的性质,考查了等差数列的和,是基础题.5.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值范围是()A.B.C.D.考点:简单线性规划的应用;平面向量数量积的运算.专题:数形结合.分析:先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入•分析比较后,即可得到•的取值范围.解答:解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值范围为解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值范围为故选:C点评:本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.6.(5分)在△ABC中,M是BC的中点,AM=1,点P在AM上且满足,则等于()A.B.C.D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:根据向量加法的几何意义,得出=2,从而所以=.解答:解:如图因为M是BC的中点,根据向量加法的几何意义,=2,又,所以==.故选:A.点评:本题考查向量加法的几何意义,向量数量积的计算,属于基础题.7.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象与直线y=b(0<b <A)的三个相邻交点的横坐标分别是2、4、8,则f(x)的单调递增区间为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)考点:正弦函数的单调性.专题:三角函数的图像与性质.分析:由题意可得,第一个交点与第三个交点的差是一个周期;第一个交点与第二个交点的中点的横坐标对应的函数值是最大值.从这两个方面考虑可求得参数ω、φ的值,进而利用三角函数的单调性求区间.解答:解:与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8知函数的周期为T==2(﹣),得ω=,再由五点法作图可得•+φ=,求得φ=﹣,∴函数f(x)=Asin(x﹣).令2kπ﹣≤x﹣≤2kπ+,k∈z,求得x∈(k∈Z),故选:B.点评:本题主要考查正弦函数的图象性质,充分体现了转化、数形结合思想,属于基础题.8.(5分)已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(﹣∞,0)时,xf′(x)<f(﹣x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=(log2)f(log2),则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.a>c>b考点:函数的单调性与导数的关系;函数奇偶性的性质.专题:函数的性质及应用;导数的概念及应用.分析:根据条件构造函数,利用函数的奇偶性和单调性之间的关系,即可得到结论.解答:解:∵函数y=f(x)是定义在实数集R上的奇函数,∴当x∈(﹣∞,0)时,xf′(x)<f(﹣x)等价为xf′(x)+f(x)<0,构造函数g(x)=xf(x),则g′(x)=xf′(x)+f(x)<0,∴当x∈(﹣∞,0)时,函数g(x)单调递减,且函数g(x)是偶函数,∴当x∈(0,+∞)时,函数g(x)单调递增,则a=f()=g(),b=f(1)=g(1),c=(log2)f(log2)=g(log2)=g(﹣2)=g(2),∵1<2,∴g(1)<g()<g(2),即b<a<c,故选:A.点评:本题主要考查函数值的大小比较,根据函数的奇偶性构造函数,利用导数研究函数的单调性是解决本题的关键.9.(5分)设定义在R上的偶函数f(x)满足f(1﹣x)=f(x+1),且当x∈时,f(x)=x3,若方程f(x)﹣cos x﹣a=0(a<0)无解,则实数a的取值范围是()A.(﹣∞,﹣2)B.(﹣∞,﹣2]C.(﹣∞,﹣1]D.(﹣∞,﹣1)考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据函数的奇偶性和单调性之间的关系,推出函数的周期性,求出函数的最值即可得到结论.解答:解:由f(x)﹣cos x﹣a=0得f(x)﹣cos x=a,设g(x)=f(x)﹣cos x,∵定义在R上的偶函数f(x),∴g(x)也是偶函数,当x∈时,f(x)=x3,∴g(x)=x3﹣cos x,则此时函数g(x)单调递增,则g(0)≤g(x)≤g(1),即﹣1≤g(x)≤1,∵偶函数f(x)满足f(1﹣x)=f(x+1),∴f(1﹣x)=f(x+1)=f(x﹣1),即f(x)满足f(x+2)=f(x),即函数的周期是2,则函数g(x)在R上的值域为,若方程f(x)﹣cos x﹣a=0(a<0)无解,即g(x)=f(x)﹣cos x=a无解,则a<﹣1,故选:D点评:本题主要考查抽象函数的应用,根据条件判断函数的单调性和周期性,以及求出函数的值域是解决本题的关键.10.(5分)已知正方形ABCD的边长为1,P、Q分别为边AB,DA上的点,若∠PCQ=45°,则△APQ面积的最大值是()A.2﹣B.3﹣2C.D.考点:三角形的面积公式.专题:直线与圆;立体几何.分析:如图所示,C(1,1).设P(a,0),Q(0,b),0<a,b<1.可得k PC=,k PQ=1﹣b.利用到角公式、一元二次不等式的解法、三角形的面积计算公式即可得出.解答:解:如图所示,C(1,1).设P(a,0),Q(0,b),0<a,b<1.则k PC=,k PQ=1﹣b.∵∠PCQ=45°,∴tan45°===1,化为2+ab=2a+2b,∴2+ab,化为,解得(舍去),或,当且仅当a=b=2﹣时取等号.∴.∴△APQ面积=ab≤3﹣2,其最大值是3.故选:B.点评:本题考查了“到角公式”、一元二次不等式的解法、三角形的面积计算公式、斜率计算公式,考查了推理能力与计算能力,属于难题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)化简求值:()+lg﹣1g25=0.考点:有理数指数幂的化简求值;有理数指数幂的运算性质.专题:函数的性质及应用.分析:根据指数幂的运算法则进行化简即可解答:解:原式=:()+lg=+lg=2﹣2=0.故答案为:0点评:本题主要考查指数幂和对数的基本运算,比较基础.12.(5分)已知函数f(x)的图象是两条线段(如图,不含端点),则f(f())=.考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:由图象可得函数f(x)=.即可得出.解答:解:由图象可得函数f(x)=.∴=,=.∴f(f())==.故答案为:.点评:本题考查了直线的方程、分段函数的性质,考查了数形结合的思想方法,属于基础题.13.(5分)已知sinα﹣cosα=,0≤α≤π,则sin(+2α)=.考点:二倍角的余弦;运用诱导公式化简求值.专题:三角函数的求值.分析:把所给的条件两边平方,写出正弦和余弦的积,判断出角在第一象限,求出两角和的结果,解方程组求出正弦和余弦值,进而用二倍角公式得到结果.解答:解:∵sinα﹣cosα=,①0≤x≤π∴1﹣2sinαcosα=,∴2sinαcosα=,∴α∈(0,)∴1+2sinαcosα=,∴sinα+cosα=,②由①②得sinα=,co sα=,∴sin(+2α)=cos2α=2cos2α﹣1==﹣,故答案为:﹣.点评:本题考查三角函数同角的三角函数关系,二倍角公式的应用,解题的关键是分析角的范围,关键正弦值和余弦值的积,判断范围.14.(5分)已知实数a<0,b<0,且ab=1,那么的最大值为﹣1.考点:基本不等式.专题:常规题型.分析:将整理得到,利用基本不等式即可求得的最大值.解答:解:由于ab=1,则又由a<0,b<0,则,故,当且仅当﹣a=﹣b即a=b=﹣1时,取“=”故答案为﹣1.点评:本题考查基本不等式的应用,牢记不等式使用的三原则为“一正,二定,三相等”.15.(5分)设x∈R,用表示不超过x的最大整数,称函数f(x)=为高斯函数,也叫取整函数.现有下列四个命题:①高斯函数为定义域为R的奇函数;②“”≥“”是“x≥y”的必要不充分条件;③设g(x)=()|x|,则函数f(x)=的值域为{0,1};④方程=的解集是{x|1≤x<5}.其中真命题的序号是②③④.(写出所有真命题的序号)考点:命题的真假判断与应用.专题:综合题;函数的性质及应用.分析:①,举例说明,高斯函数f(x)=中,f(﹣1.1)≠﹣f(1.1),可判断①错误;②,利用充分必要条件的概念,举例如≥,但4.1<4.5,说明“”≥“”是“x≥y”的必要不充分条件;③,作出g(x)=()|x|的图象,利用高斯函数f(x)=可判断函数f(x)=的值域为{0,1};④,方程=⇔+1=,通过对0≤<1,1≤<2,2≤<3三种情况的讨论与相应的的取值范围的讨论可得原方程的解集是{x|1≤x<5},从而可判断④正确.解答:解:对于①,f(﹣1.1)==﹣2,f(1.1)==1,显然f(﹣1.1)≠﹣f(1.1),故定义域为R的高斯函数不是奇函数,①错误;对于②,“”≥“”不能⇒“x≥y”,如≥,但4.1<4.5,即充分性不成立;反之,“x≥y”⇒“”≥“”,即必要性成立,所以“”≥“”是“x≥y”的必要不充分条件,故②正确;对于③,设g(x)=()|x|,作出其图象如下:由图可知,函数f(x)=的值域为{0,1},故③正确;对于④,===﹣1,即+1=,显然,>,即x>﹣1;(1)当0≤<1,即﹣1≤x<3时,=0,+1=1;要使+1=,必须1≤<2,即1≤x<3,与﹣1≤x<3联立得:1≤x<3;(2)当1≤<2,即3≤x<7时,=1,+1=2;要使+1=,必须2≤<3,即3≤x<5,与3≤x<7联立得:3≤x<5;(3)当2≤<3,即7≤x<11时,=2,+1=3;要使+1=,必须3≤<4,即5≤x<7,与7≤x<11联立得:x∈∅;综上所述,方程=的解集是{x|1≤x<5},故④正确.故答案为:②③④.点评:本题考查高斯函数的性质,综合考查函数的奇偶性、指数函数的图象与性质、充分必要条件的概念、方程思想与分类讨论思想的综合应用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=2cos2x+2sinxcosx+a,且当时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调增区间;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函数y=g(x),求方程g(x)=2在区间上的所有根之和.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换;复合三角函数的单调性.专题:计算题;三角函数的图像与性质.分析:(1)利用三角函数中的恒等变换应用,可求得f(x)=2sin(2x+)+a+1,x∈时f(x)的最小值为2,可求得a,利用正弦函数的单调性可求f(x)的单调增区间;(2)利用函数y=Asin(ωx+φ)的图象变换,可求得g(x)=2sin(4x﹣)+1,依题意,g(x)=2得sin(4x﹣)=,x∈,可求得x=或,从而可得答案.解答:解:(1)f(x)=2cos2x+2sinxcosx+a=cos2x+1+sin2x+a=2sin(2x+)+a+1,∵x∈,∴2x+∈,∴f(x)min=a+2=2,故a=0,∴f(x)=2sin(2x+)+1,由2kπ﹣≤2x+≤2kπ+(k∈Z),解得:kπ﹣≤x≤kπ+(k∈Z),故f(x)的单调增区间是(k∈Z),(2)g(x)=2sin+1=2sin(4x﹣)+1,由g(x)=2得sin(4x﹣)=,则4x﹣=2kπ+或2kπ+(k∈Z),解得x=+或+,(k∈Z);∵x∈,∴x=或,故方程所有根之和为+=.点评:本题考查:三角函数中的恒等变换应用,考查函数y=Asin(ωx+φ)的图象变换,突出考查正弦函数的单调性,考查综合运算能力,属于难题.17.(12分)已知函数f(x)=x2+bx为偶函数,数列{a n}满足a n+1=f(a n﹣1)+1,且a1=3,a n>1.(Ⅰ)设b n=log2(a n﹣1),证明:数列{b n+1}为等比数列;(Ⅱ)设c n=n(2b n﹣1),求数列{c n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(1)利用函数f(x)=x2+bx为偶函数,可得b,根据数列{a n}满足a n+1=2f(a n﹣1)+1,可得b n+1+1=2(b n+1),即可证明数列{b n+1}为等比数列;(2)由c n=n(2b n﹣1)=2n•2n﹣3n,利用错位相减可求数列的和.解答:(Ⅰ)证明:∵函数f(x)=x2+bx为偶函数,∴f(﹣x)=f(x),∴b=0∵a n+1=2f(a n﹣1)+1,∴a n+1﹣1=2(a n﹣1)2,∵b n=log2(a n﹣1),∴b n+1=1+2b n,∴b n+1+1=2(b n+1)∴数列{b n+1}是以2为首项,以2为公比的等比数列(Ⅱ)解:由(Ⅰ)得,b n+1=2n,∴b n=2n﹣1,∴c n=n(2b n﹣1)=2n•2n﹣3n,∴S n=2×(1•2+2•22+…+n•2n)﹣,∴令T=1•2+2•22+…+n•2n,2T n=1•22+2•23+…+(n﹣1)•2n+n•2n+1两式相减可得,﹣T n=2+22+23+…+2n﹣n•2n+1=(1﹣n)•2n+1﹣2∴T n=(n﹣1)•2n+1+2,∴S n=(n﹣1)•2n+2+4﹣.点评:本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式,错位相减求数列的和的应用是求解的关键.18.(12分)如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.考点:函数模型的选择与应用.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,=sinθ.可得MN=0N﹣0M=.可得矩形PNMQ的面积y=PN•NM=,再利用倍角公式、两角和差的正弦公式即可得出.(Ⅱ)当=时,y取得最大值,θ=.可得A=.由cosB=,可得.由正弦定理可得:.利用两角和差的正弦公式可得sinC=sin (A+B)=sinAcosB+cosAsinB.由正弦定理可得:.在△ABD中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA.解答:解:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,==sinθ.∴MN=0N﹣0M=.∴矩形PNMQ的面积y=PN•NM==3sinθcosθ﹣==﹣,.(Ⅱ)当=时,y取得最大值,θ=.∴A==.∵cosB=,∴=.由正弦定理可得:,∴==2.sinC=sin(A+B)=sinAcosB+cosAsinB=+=.由正弦定理可得:,∴==.在△ABD中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA=+12﹣2××=13.∴BD=.D为AC中点,求BD的值.点评:本题综合考查了直角三角形的边角关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理余弦定理,考查了推理能力与计算能力,属于难题.19.(12分)已知函数f(x)=()x,x∈,函数g(x)=f2(x)﹣2af(x)+3的最小值为h(a).(1)求h(a)的解析式;(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为时,值域为?若存在,求出m,n的值;若不存在,请说明理由.考点:函数单调性的性质;函数最值的应用.分析:(1)g(x)为关于f(x)的二次函数,可用换元法,转化为二次函数在特定区间上的最值问题,定区间动轴;(2)由(1)可知a≥3时,h(a)为一次函数且为减函数,求值域,找关系即可.解答:解:(1)由,已知,令设f(x)=t,则g(x)=y=t2﹣2at+3,则g(x)的对称轴为t=a,故有:①当时,g(x)的最小值h(a)=②当a≥3时,g(x)的最小值h(a)=12﹣6a③当时,g(x)的最小值h(a)=3﹣a2综上所述,(2)当a≥3时,h(a)=﹣6a+12,故m>n>3时,h(a)在上为减函数,所以h(a)在上的值域为.由题意,则⇒,两式相减得6n﹣6m=n2﹣m2,又m≠n,所以m+n=6,这与m>n>3矛盾,故不存在满足题中条件的m,n的值.点评:本题主要考查一次二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,“定轴动区间”、“定区间动轴”.20.(13分)已知函数f(x)=ax3+bx2+cx+a2(a>0)的单调递减区间是(1,2),且满足f (0)=1.(1)求f(x)的解析式;(2)对任意m∈(0,2],关于x的不等式f(x)<m3﹣mlnm﹣mt+3在x∈,不等式f(x)<m3﹣mlnm﹣mt+3在x∈恒成立,再分离参数转化求函数最值问题即可.解答:解:(1)由已知得,f′(x)=3ax2+2bx+c,∵函数f(x)=ax3+bx2+cx+a2的单调递减区间是(1,2),∴由f′(x)<0,得1<x<2,∴f′(x)=3ax2+2bx+c=0的两个根分别是1和2,且a>0,从f(0)=a2=1且a>0可得a=1,又,解得,∴f(x)=x3﹣x2+6x+1.(2)由(1)得,f′(x)=3x2﹣9x+6=3(x﹣1)(x﹣2),当x∈恒成立,也即mt<m3﹣mlnm对任意m∈(0,2]恒成立,即t<m2﹣lnm对任意m∈(0,2]恒成立,设h(m)=m2﹣lnm,m∈(0,2],则t<h(m)min,h′(m)=m﹣==,令h′(m)=0,得m=1或m=﹣1(舍),当m∈(0,2]时,h′(m)与h(m)的变化情况如下表:m (0,1) 1 (1,2) 2h′(m)﹣0 +h(m)↘极小值↗2﹣ln2∴m=1时,h(m)min=h(m)极小值=,所以t<,即实数t的取值范围为t<.点评:本题主要考查利用导数研究函数的单调性、函数的最值求解、不等式恒成立等问题,考查运算求解能力,考查方程思想、化归与转化思想,综合性强,难度大.21.(14分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)过原点分别作函数f(x)与g(x)的切线,且两切线的斜率互为倒数,证明:a=0或1<a<2;(Ⅲ)求证:(1+)(1+)(1+)…<e(其中n∈N*,e x是自然对数的底).考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;数列的求和.专题:计算题;证明题;导数的综合应用.分析:(Ⅰ)求函数的导数即可求函数f(x)的单调区间;(Ⅱ)根据导数的几何意义,求出切线的斜率,建立条件关系即可得到结论;(Ⅲ)利用ln(x+1)≤x在}=ln(1+)+ln(1+)+ln(1+)+…+ln<++…+=2(++…+)=2()<1,则有(1+)(1+)(1+)…<e.点评:本题主要考查函数的单调区间的求解,以及导数的几何意义,考查导数的基本运算,考查不等式的证明要借助所给函数构造不等式,利用它进行放缩证明,本题难度比较大,是一道综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年四川省绵阳市高三(上)一诊数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={x€ Z| (x-4)(x+1)V O} , B={2, 3, 4},则A H B=()A. (2, 4)B. {2, 4}C. {3}D. {2, 3}2. (5分)若x>y,且x+y=2,贝U下列不等式成立的是()A. x2v y2B. —C. x2> 1D. y2v 1x y3. (5 分)已知向量;=(x- 1 , 2) , b = (x, 1),且;// 匸,贝U | ;+匸| =()A.匚B. 2C. 2 匚D. 3 匚4. (5 分)若t血(a-牛)=2,则tan2 a()A.- 3B. 3C.二D.4 45. (5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A. 13B. 14C. 15D. 166. (5 分)已知命题p: ? x o€ R,使得e x0< 0:命题q: a, b € R,若|a- 1| =| b -2|,则a - b= - 1,下列命题为真命题的是()A. pB. ?qC. p V qD. p A qIT7. (5 分)在厶ABC中,“C^”是“sinA=cos的”)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8. (5分)已知函数f (x)=sin? x+ ;cos? x (? >0)图象的最高点与相邻最低点的距离是若将y=f (x)的图象向右平移'个单位得到y=g (x)的图象,6则函数y=g (x)图象的一条对称轴方程是()115A. x=0B.: -二C. -二D.厂一9. (5分)已知0v a v b v 1,给出以下结论:- - .. ■;④ logj > log 」•则其中正确丄丄2 323的结论个数是( )A . 1个B. 2个C. 3个D. 4个10. (5分)已知x i 是函数f (x ) =x+1 - In (x+2)的零点,沁 是函数g (x ) =X-2ax+4a+4的零点,且满足| x i - X 2I < 1,则实数a 的最小值是( )A . 2-2 二B . 1 - 2 二 C.- 2D. - 111. (5分)已知a , b , c € R,且满足b 2+c 2=1,如果存在两条互相垂直的直线与 函数f (x ) =ax+bcosx+csinx 的图象都相切,贝U a+』"H c 的取值范围是( )A . [ - 2, 2]B. UW *E]C . - V'e V%] D . :勺匚】二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知变量x,y 满足约束条件r 亠®£-2,则z=2x+y 的最小值是 _________ .、x>l14 . (5分)已知偶函数f (x )在[0, +x )上单调递增,且f (2) =1,若f (2x+1) v 1,则x 的取值范围是 .15. (5分)在厶ABC 中,AB=2, AC=4 cosA=,过点A 作AM 丄BC,垂足为M ,Q 若点N 满足X 匕3二'I,贝U '*・■■■!= ___________ .16. (5分)如果{a n }的首项 a 1=2017,其前 n 项和 S n 满足 S h +S n -1=- n 2 (n € N* ,n 》2),贝U a 101= ____ .三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演12. (5分)若存在实数 中e 为自然对数的底数)A. {:} B [:*x ,使得关于 x 的不等式匚「+x 2- 2ax+a 2^— (其a 的取值集合为( )[——,+x )10成立,则实数 皿} D .算步骤.17. (12分)在厶ABC中,•-二工,D是边BC上一点,且辽m;, BD=2.(1)求/ ADC的大小;(2)若域凭蔦,求△ ABC的面积.18. (12分)设公差大于0的等差数列{a n}的前n项和为已知S B=15,且a i,a4, a i3成等比数列,记数列;的前n项和为T n.(I)求T n;(U)若对于任意的n € N*, tT n< a n+11恒成立,求实数t的取值范围.19. (12 分)若函数f (x) =Asin( ? x+©) (A>0,... . -一■■-—)的部分2T 2图象如图所示.(I)设x€( 0,一)且 f ( a)=,求sin 2a 的值;3 5(II)若x€ [,‘ ]且g (x) =2入f(x) +cos (4x-丄)的最大值为•’,求实12 12 3 2数入的值.20. (12分)已知函数f (x) =ke x-x3+2 (k€ R)恰有三个极值点x i,X2,X3, 且X|V x2v x3.(I)求k的取值范围:(II)求f (X2)的取值范围.21. (12分)已知函数f (x) =axlnx- x+l (a€ R),且f (x)>0.(I)求a;(II)求证:当,n€ N*时f 甘…--亠一v2ln2.n2+l n2 + 2 n Z+3 4n Z请考生在第22, 23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4 :极坐标与参数方程]22. (10分)在直角坐标系xOy中,曲线C的参数方程是「(a为参|y=4+5sina数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设^ ,■ • ■——,若l i,I2与曲线C分别交于异于原点的A,B] 6 2 3两点,求△ AOB的面积.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x- 1|+| 2x+3| .(1)解不等式f (x)> 6;(2)记f (x)的最小值是m,正实数a, b满足2ab+a+2b=m,求a+2b的最小值.20仃-2018学年四川省绵阳市高三(上)一诊数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1. (5分)设集合 A={x € Z| (x -4) (x+1)V O} , B={2, 3, 4},则 A H B=( )A . (2, 4) B. {2, 4} C. {3} D. {2, 3}【解答】 解:集合 A={x € Z| (x-4) (x+1 )V 0}={x € Z| - 1v x v 4}={0, 1, 2, 3},B={2, 3, 4}, 则 A H B={2, 3}, 故选:D2. (5分)若x >y ,且x+y=2,贝U 下列不等式成立的是( )A . x 2v y 2B .「C. x 2> 1 D . y 2v 1K y【解答】解x >y ,且x+y=2,••• x>2 - x, ••• x> 1,故x 2> 1正确, 故选:CA .匚 B. 2C. 2 二D.• x -仁2x , 解得x=- 1 ,•- + = (-2 , 2) + (- 1 , 1) = (- 3 , 3), 第5页(共20页)3. (5分)已知向量1= (x- 1 , 2),■■= (x , 1),且 1 // :■, 则 | ^ "| =( )【解答】解:I 尸(x - 1 , 2),=I| r + M 1「_「I' .I - = 3?,故选:D4. (5 分)若tanCCL^->2,则tan2 a==)A.- 3B. 3C.二D.44【解答】解:•••—= —可求tan a = 3,4 1+tanCl••• tan2 a= _「=「;=【1-tan21-(-3)24故选:D.5. (5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A. 13B. 14C. 15D. 16【解答】解:设该职工这个月实际用水为x立方米,•••每位职工每月用水不超过10立方米的,按每立方米3元水费收费,•••用水不超过10立方米的缴水费不超过30元,•••该职工这个月缴水费55元,•••该职工这个月实际用水超过10立方米,超过部分的水费=(x- 10)X 5,•••由题意可列出一元一次方程式:30+ (x- 10)X 5=55,解得:x=15,故选:C.6. (5 分)已知命题p: ? xo€ R,使得e x0< 0:命题q: a,b € R,若|a- 1| =| b -2|,则a - b= - 1,下列命题为真命题的是()A. pB. ?qC. p V qD. p A q【解答】解:由指数函数的值域为(0,+x)可得:命题p: ?勺€ R,使得e x0< 0为假命题,若|a—1|=|b - 2|,贝U a- 1=b— 2 或a-仁-b+2即a- b=- 1,或a+b=3,故命题q为假命题,故?q为真命题;p V q, p A q为假命题,故选:B7. (5 分)在厶ABC 中,“鈕”是“ sinA=cos的”)2A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:“C= ”“+B=》” “A= - B? sinA=cosB2 2 2反之sinA=cosB A+B=,或A= +B,“C=_”不一定成立,2 2 2TT••• A+B= 是sinA=cosB成立的充分不必要条件,2故选:A.8. (5分)已知函数f (x) =sin? x+ ;cos? x (? >0)图象的最高点与相邻最低点的距离是.=,若将y=f (x)的图象向右平移-个单位得到y=g (x)的图象,则函数y=g (x)图象的一条对称轴方程是( )115A. x=0B.:-二C.:-二D.Zoo【解答】解:•••函数 f (x) =sin?x+ _;cos?x=2sin (®x ) (? >0)图象的最3高点与相邻最低点的距离是.广,•设函数f (x)的周期为T,则(I ) 2+[2-( - 2) ]2= ( —) 2,解得:T=2,• T=2=,解得:3 = nco• f (x) =2sin ( n + ),31 1 IT=f (x—一)=2sin[ n (x—一)+ ] =2sin ( n• y=g (x)6 6 3•••当k=0时,函数y=g (x )图象的一条对称轴方程是:x=. 3故选:C.9. (5分)已知O v a v b v 1,给出以下结论: 丄 丄①■ L .1匕 匚 一-、_门二.】④logj >log2 3T J 2的结论个数是( )A . 1个B. 2个C. 3个D. 4个【解答】解:由O v a v b v 1,知: 在①中,d )a >d )b >d )b ,故①正确;2 2 3丄 丄丄 丄在②中,当a- , b='时, -,-,此时.,故②错误;在③中,门:「n >log a >b ,故③正确;- ----------------------------- 2 3 3在④中,当 a=—,bp 时,log ^-^v log^=1 .故④错误. 故选:B.10. (5分)已知x i 是函数f (x ) =x+1 - In (x+2)的零点,沁 是函数g (x ) =« -2ax+4a+4的零点,且满足| * - X 2| < 1,则实数a 的最小值是( A . 2-2 二 B . 1 - 2 二 C.- 2D. - 1【解答】解I : f'( x ) =1 - •当-2v x v- 1 时,f'(x )v 0,当 x >- 1 时,f'( x )> 0, •••当x=- 1时,f (x )取得最小值f (- 1) =0, •- f (x )只有唯一一个零点x=- 1,即X 1=- 1,T |X 1 - x 2| W 1 , •- 2 w x 2 = 0,• g (x )在[-2, 0]上有零点,(1)若厶=4a 2 - 4 (4a+4) =0,即卩 a=2± 2 ':, 此时g (x )的零点为x=a, 显然当a=2 - 2「符合题意;•令 n + =k n +, k € 乙解得:jJ .则其中正确2 3k €Z ,(2)若厶=4a2—4 (4a+4)>0,即a v2- 2 ~或a>2+2 匚,①若g (x)在[-2, 0]上只有一个零点,则g (- 2) g (0)< 0, --a=- 1,g(-2)>0g(0)>0②若g (x)在[-2, 0]上有两个零点,则出_2<a<Qa< 2 -2 灵或a> 2+2^2解得-K a v2 - 2综上,a的最小值为-1.故选:D.11. (5分)已知a, b, c€ R,且满足b2+c?=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csi nx的图象都相切,贝U a+电.屮幻.•:c的取值范围是( ) A. [- 2, 2] B. : PE “jG c. - Vc "扎]D. :: .■-::'【解答】解:•••函数 f (x) =ax+bcosx+csinx, b2+c2=1,••• f'(x) =a+ccosx- bsinx=a- sin (x- ©), 其中tan © =,b则 f (x)€ [a- 1, a+1],若存在两条互相垂直的直线与函数 f (x) =ax+bcosx+csinx的图象都相切,则存在k1, k2€ [a- 1, a+1],使k*2=- 1,由( a- 1) (a+1) =a2- 1 >- 1 得:a=0,则a^^b+血c=应in ( ©+B),其中tan 0故a+ 二=c€ [-二,二],故选:B./ x \ 2 112. (5分)若存在实数x,使得关于x的不等式「_+x2- 2ax+a2< (其中e为自然对数的底数)成立,则实数a的取值集合为()A. {-,} B [「)C {」} D.,心)【解答】解:不等式 -':-:+x2-2ax+a2w 1 ,9 10即为(x—a)2+ C - _)2< ——3 3 10表示点(x, 一)与(a,:)的距离的平方不超过,3 3 10即最大值为-•10由(a,卫)在直线I: y=-x上,3 3设与直线I平行且与y二一相切的直线的切点为(m, n),3可得切线的斜率为1 e m J ,3 3解得m=0, n=,3切点为(0, 1),由切点到直线I的距离为直线I上的点3与曲线y=‘的距离的最小值,3可得(0-a)2+ (■—a)2二丄,3 3 10解得a=,10则a的取值集合为{七}.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. (5分)已知变量x, y满足约束条件' s-3y<-2 ,则z=2x+y的最小值是3【解答】解:作出约束条件对应的平面区域如图:(阴影部分). 由z=2x+y 得y= - 2x+z,平移直线y=- 2x+z,由图象可知当直线y= - 2x+z经过点A时,直线y= - 2x+z的截距最小,此时z最小.由/弓。