2020年陕西省高三教学质量检测卷(一)数学(文科)及答案
2020年陕西省汉中市高考数学一模试卷(文科)(含解析)

2020年陕西省汉中市高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A =[1, 2],B ={x ∈Z|x 2−2x −3<0},则A ∩B =( ) A.[1, 2] B.(−1, 3) C.{1} D.{1, 2}2.z =5i1−2i (i 是虚数单位)则z 的共轭复数为( ) A.2−i B.2+i C.−2−i D.−2+i3.已知向量a →,b →满足|a →|=1,a →⋅b →=−2,则a →⋅(2a →−b →)=() A.4 B.−4 C.0 D.24.已知sin(α−π2)=2sinα,则tan2α的值为( ) A.−43 B.−34C.165D.125.函数y =x 33x −1的图象大致是( )A. B.C. D.6.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______________.7.已知函数f(x)={(12)x ,x ≥0f(x +2),x <0,则f(log 215)=()A.516B.54C.52D.58.地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.AB.BC.DD.E9.已知函数f(x)=sin(ωx+π6)(ω>0)的最小正周期为π,若f(x)在x∈[0, t)时函数值没有最小值,则实数t的范围是()A.(0,π6] B.(0,23π] C.(π3,5π6] D.(π3,23π]10.已知函数f(x)是定义在R上的奇函数,f(32+x)=f(x−32),且x∈(−32,0)时,f(x)=log2(−3x+1),则f(2020)=()A.4 B.log27 C.2 D.−211.若双曲线C:x 2a2−y2b2=1(a>0,b>0)的一条渐近线被曲线(x−2)2+y2=2所截得的弦长为2.则该双曲线的离心率为()A.√3B.2√33C.√5 D.2√5512.已知函数f(x)=14x2+12x+a(x<0),g(x)=lnx(x>0),其中a∈R.若f(x)的图象在点A(x1, f(x1))处的切线与g(x)的图象在点B (x2, g(x2))处的切线重合,则a的取值范围是()A.(−1+ln2, +∞)B.(−1−ln2, +∞)C.(−34,+∞) D.(ln2−ln3, +∞)二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.曲线y =x 3−2x +4在(1, 3)处的切线的倾斜角为________.14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为√15,b −c =2,cosA =−14,则a 的值为________2√6.15.正四棱锥P −ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面上,如果V P−ABCD =163,则球O 的体积是________323π.16.已知函数f(x)=log a (x +3)−1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中mn >0,则1m+1+2n 的最小值为________.三、解答题(共70分,解答写出文字说明、证明过程或演算步骤,第17~21题为必考题,第22~23题为选考题)17.已知等差数列{a n }满足a 4=7,2a 3+a 5=19. (1)求通项a n ;(2)设{b n −a n }是首项为2,公比为2的等比数列,求数列{b n }通项公式及前n 项和T n .18.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x ¯和中位数a(a 的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5, 7, 5),[7.5, 8.5)的学生中抽取9名参加座谈会. (i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),(n =a +b +c +d). 临界值表:19.如图,在四面体PABC中,PA=PC=AB=BC=5,AC=6,PB=4√2,线段AC,AP的中点分别为O,Q.(1)求证:平面PAC⊥平面ABC;(2)求四面体POBQ的体积.20.已知椭圆x 2a2+y2b2=1(a>b>0)的长轴长是短轴长的√3倍,焦距为2√2.(1)求椭圆的方程;(2)已知定点E(−1, 0),若直线y=kx+2(k≠0)与椭圆交于C,D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.21.已知函数f(x)=lnx+ax−1(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)的图象与x轴相切,求证:对于任意互不相等的正实数x1,x2,都有f(x2)−f(x1)x2−x1<1x1+1x2.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线C1的参数方程为{x=−√33ty=2+√63t(其中t为参数).以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=3sinθ.(1)求C1和C2的直角坐标方程;(2)设点P(0, 2),直线C1交曲线C2于M,N两点,求|PM|2+|PN|2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x−2|+|x−3|.(1)求不等式f(x)<2的解集;(2)若f(x)≥a|2x+1|的解集包含[3, 5],求实数a的取值范围.2020年陕西省汉中市高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A =[1, 2],B ={x ∈Z|x 2−2x −3<0},则A ∩B =( ) A.[1, 2] B.(−1, 3) C.{1} D.{1, 2}【解答】 ∵集合A =[1, 2],B ={x ∈Z|x 2−2x −3<0}={x ∈Z|−1<x <3}={0, 1, 2}, ∴A ∩B ={1, 2}.2.z =5i1−2i (i 是虚数单位)则z 的共轭复数为( ) A.2−i B.2+i C.−2−i D.−2+i【解答】∵z =5i1−2i =5i(1+2i)(1−2i)(1+2i)=5i(1+2i)5=−2+i ,∴z ¯=−2−i .3.已知向量a →,b →满足|a →|=1,a →⋅b →=−2,则a →⋅(2a →−b →)=() A.4 B.−4 C.0 D.2【解答】向量a →,b →满足|a →|=1,a →⋅b →=−2,所以:a →⋅(2a →−b →)=2|a →|2−a →⋅b →=2+2=4, 4.已知sin(α−π2)=2sinα,则tan2α的值为( ) A.−43 B.−34C.165D.12【解答】解:由sin(α−π2)=−cosα=2sinα, 可得:tanα=−12, 故tan2α=2tanα1−tan 2α=−43. 故选A .5.函数y =x 33x −1的图象大致是( )A. B.C. D.【解答】函数的定义域为{x|x ≠0},排除A . 当x →−∞时,y →+∞,排除B ,当x →+∞时,x 3<3x −1,此时y →0,排除D ,6.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______________. 【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有C 42=6种方法,红色和紫色的花在同一花坛,有2种方法, 红色和紫色的花不在同一花坛,有4种方法, 所以所求的概率为46=23. 故答案为:23. 7.已知函数f(x)={(12)x ,x ≥0f(x +2),x <0,则f(log 215)=()A.516 B.54C.52D.5【解答】根据题意,函数f(x)={(12)x ,x ≥0f(x +2),x <0,又由log 215=−log 25,则−3<log 215=−log 25<−2, 则f(log 215)=f(−log 25)=f(2−log 25)=f(4−log 25)=f(log 2165)=(12)log 2165=2log 2516=516,8.地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是()A.AB.BC.DD.E【解答】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.9.已知函数f(x)=sin(ωx+π6)(ω>0)的最小正周期为π,若f(x)在x∈[0, t)时函数值没有最小值,则实数t的范围是()A.(0,π6] B.(0,23π] C.(π3,5π6] D.(π3,23π]【解答】由题意,2πω=π,得ω=2.∴f(x)=sin(2x+π6).当x∈[0, t)时,2x+π6∈[π6, 2t+π6),∵f(x)在[0, t)上没有最小值,∴5π6<2t+π6≤3π2,∴π3<t≤2π3,∴t的取值范围为:(π3, 2π3],10.已知函数f(x)是定义在R上的奇函数,f(32+x)=f(x−32),且x∈(−32,0)时,f(x)=log2(−3x+1),则f(2020)=()A.4 B.log27 C.2 D.−2【解答】根据题意,f(x)满足f(32+x)=f(x−32),即f(x+3)=f(x),函数f(x)是周期为3的周期函数,则f(2020)=f(1+2019)=f(1),又由f(x)为奇函数,则f(1)=−f(−1)=−log2(3+1)=−2,故选:D.11.若双曲线C:x 2a2−y2b2=1(a>0,b>0)的一条渐近线被曲线(x−2)2+y2=2所截得的弦长为2.则该双曲线的离心率为()A.√3B.2√33C.√5 D.2√55【解答】双曲线C:x 2a −y2b=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x−2)2+y2=2的圆心(2, 0),半径为√2,双曲线的一条渐近线被圆(x−2)2+y2=2所截得的弦长为2,可得圆心到直线的距离为:√(√2)2−12=1=√22,4b2c=4c2−4a2c=1,解得:e=ca =2√33,12.已知函数f(x)=14x2+12x+a(x<0),g(x)=lnx(x>0),其中a∈R.若f(x)的图象在点A(x1, f(x1))处的切线与g(x)的图象在点B (x2, g(x2))处的切线重合,则a的取值范围是()A.(−1+ln2, +∞)B.(−1−ln2, +∞)C.(−34,+∞) D.(ln2−ln3, +∞)【解答】由题意知,x 1<0<x 2,当x 1<0时,函数f(x)在点A (x 1, f(x 1))处的切线方程为y −(14x 12+12x 1+a)=(12x 1+12)(x −x 1);当x 2>0时,函数g(x)在点B (x 2, g(x 2))处的切线方程为y −lnx 2=1x 2(x −x 2).两直线重合的充要条件是1x 2=12x 1+12①,lnx 2−1=−14x 12+a ②,得a =lnx 2+(1x 2−12)2−1=−ln 1x 2+(1x 2−12)2−1,令t =1x 2,由①及x 1<0<x 2知,则0<t <12,且a =t 2−t −lnt −34,设ℎ(t)=t 2−t −lnt −34(0<t <12), 则ℎ′(t)=2t −1−1t =2t 2−t−1t=(t+1)(2t−1)t ,当t ∈(0, 12)时,ℎ′(t)<0,ℎ(t)在(0, 12)为减函数, 则ℎ(t)>ℎ(12)=ln2−1,又t →0时,ℎ(t)→+∞. ∴a >ln2−1,则a 的取值范围是(ln2−1, +∞).二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)曲线y =x 3−2x +4在(1, 3)处的切线的倾斜角为________. 【解答】y′=3x 2−2,切线的斜率k =3×12−2=1. 故倾斜角为45∘.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为√15,b −c =2,cosA =−14,则a 的值为________2√6. 【解答】由于cosA =−14,则π2<A <π, 利用sin 2A +cos 2A =1,解得sinA =√154, 由于△ABC 的面积为√15,所以12bcsinA =√15,解得bc =8. 由于b −c =2,所以(b −c)2=4,整理得b 2+c 2=20,所以a 2=b 2+c 2−2bccosA =20+2×8×14=24, 解得a =2√6.正四棱锥P −ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面上,如果V P−ABCD =163,则球O 的体积是________323π. 【解答】如图,正四棱锥P −ABCD 底面的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,点P 在球面上,∴PO ⊥底面ABCD ,PO =R ,S ABCD =2R 2,VP −ABCD =163,∴13⋅2R 2⋅R =163,解得:R =2,球O 的体积:V =43πR 3=323π,已知函数f(x)=log a (x +3)−1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中mn >0,则1m+1+2n 的最小值为________. 【解答】由f(x)=log a (x +3)−1知,f(x)过定点A(−2, −1). 因为点A 在直线mx +ny +4=0上,所以2m +n =4, 又mn >0,所以m >0,n >0, 所以1m+1+2n =(1m+1+2n )(m+13+n6)=23+n6(m+1)+2(m+1)3n≥23+2√n6(m+1)⋅2(m+1)3n=43,当且仅当n6(m+1)=2(m+1)3n,即m =12,n =3时取等号,所以1m+1+2n 的最小值为43.三、解答题(共70分,解答写出文字说明、证明过程或演算步骤,第17~21题为必考题,第22~23题为选考题) 已知等差数列{a n }满足a 4=7,2a 3+a 5=19. (1)求通项a n ;(2)设{b n −a n }是首项为2,公比为2的等比数列,求数列{b n }通项公式及前n 项和T n . 【解答】解:(1)∵a 4=7,2a 3+a 5=19. {a +3d =7,2(a 1+2d)+a 1+4d =19,解得d =2,a 1=1, ∴a n =2n −1.(2)∵{b n −a n }是首项为2,公比为2的等比数列, ∴b n −a n =2n , ∴b n =2n +2n −1,∴T n =(2+22+...+2n )+[1+3+...+(2n −1)] =2(1−2n )+1+2n −1⋅n=2n+1+n 2−2.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x ¯和中位数a(a 的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5, 7, 5),[7.5, 8.5)的学生中抽取9名参加座谈会. (i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),(n =a +b +c +d). 临界值表:【解答】该组数据的平均数x ¯=6×0.03+7×0.1+8×0.2+9×0.35+10×0.19+11×0.09+12×0.04=9⋯⋯⋯⋯⋯⋯⋯⋯因为0.03+0.1+0.2+0.35=0.68>0.5,所以中位数a ∈[8.5, 9.5), 由0.03+0.1+0.2+(a −8.5)×0.35=0.5,解得a =0.5−0.330.35+8.5≈8.99;(i)每周阅读时间为[6, 5, 7.5)的学生中抽取3名,每周阅读时间为[7.5, 8.5)的学生中抽取6名.………………………………理由:每周阅读时间为[6, 5, 7.5)与每周阅读时间为[7.5, 8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.……………………(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200×(0.03+0.1+0.2)=66人,超过8.5小时的共有200−66=134人. 于是列联表为:………… K 2的观测值k =200×(40×74−26×60)266×134×100×100≈4.432>3.841,……所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.… 如图,在四面体PABC 中,PA =PC =AB =BC =5,AC =6,PB =4√2,线段AC,AP的中点分别为O,Q.(1)求证:平面PAC⊥平面ABC;(2)求四面体POBQ的体积.【解答】证明:因为PA=PC,O是AC的中点,所以PO⊥AC,在Rt△PAO中,PA=5,OA=3,且PA为直角三角形的斜边,由勾股定理,得PO=4,因为BA=BC,O是AC的中点,所以BO⊥AC.在Rt△BAO中,因为BA=5,OA=3,由勾股定理,得BO=4.因为PO=4,OB=4,PB=4√2,有PO2+OB2=PB2,则PO⊥OB,且BO∩AC=O,BO,AC⊂平面ABC,所以PO⊥平面ABC,而PO⊂平面PAC,故平面PAC⊥平面ABC.由(1)可知平面PAC⊥平面ABC.因为平面ABC∩平面PAC=AC,BO⊥AC,BO⊂平面ABC,所以BO⊥平面PAC,因为在△AOP中,Q是AP的中点所以S△PQ0=12S△PA0=3,所以V P−OBQ=V B−POQ=13S△PQ0⋅BO=13×12S△PA0×4=13×3×4=4.已知椭圆x 2a2+y2b2=1(a>b>0)的长轴长是短轴长的√3倍,焦距为2√2.(1)求椭圆的方程;(2)已知定点E(−1, 0),若直线y=kx+2(k≠0)与椭圆交于C,D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【解答】解:(1)依题意c=√2,{a =√3b,a 2−b 2=2,解得{a =√3,b =1, ∴椭圆方程是x 23+y 2=1; (2)假若存在这样的k 值,由{y =kx +2,x 2+3y 2=3得(1+3k 2)x 2+12kx +9=0. ∴Δ=(12k)2−36(1+3k 2)>0①,设C(x 1, y 1),D(x 2, y 2),则{x 1+x 2=−12k1+3k 2,x 1x 2=91+3k 2,②而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4. 要使以CD 为直径的圆过点E(−1, 0), 即CE ⊥DE ,则y 1x1+1⋅y 2x2+1=−1,即y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0③,将②式代入③整理解得k =76,经验证,k =76,使①成立. 故存在k =76,使得以CD 为直径的圆过点E . 已知函数f(x)=lnx +ax −1(a ∈R). (Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)的图象与x 轴相切,求证:对于任意互不相等的正实数x 1,x 2,都有f(x 2)−f(x 1)x 2−x 1<1x 1+1x 2.【解答】(1)函数f(x)的定义域为(0, +∞),f ′(x)=1x +a =ax+1x.当a ≥0时,f ′(x)>0,f(x)在(0, +∞)上单调递增;…………………………当a <0时,由f ′(x)=0,得x =−1a . 若x ∈(0,−1a ),f ′(x)>0,f(x)单调递增; 若x ∈(−1a ,+∞),f ′(x)<0,f(x)单调递减 综合上述:当a ≥0时,f(x)在(0, +∞)上单调递增; 当a <0时,f(x)在(0,−1a )单调递增,在(−1a ,+∞)上单调递减.………………(2)证明:由(Ⅰ)知,当a≥0时,f(x)在(0, +∞)上单调递增,不满足条件.当a<0时,f(x)的极大值为f(−1a)=−ln(−a),由已知得−ln(−a)=0,故a=−1,此时f(x)=lnx−x+ 1.……………………不妨设0<x1<x2,则f(x2)−f(x1)x2−x1<1x1+1x2等价于ln x2x1<x2x1−x1x2+x2−x1,即证:ln x2x1−x2x1+x1x2<x2−x1⋯⋯⋯⋯⋯⋯⋯令g(x)=lnx−x+1x(x> 1),………………………………………………………故g(x)在(1, +∞)单调递减,所以g(x)<g(1)=0<x2−x1.所以对于任意互不相等的正实数x1,x2,都有f(x2)−f(x1)x2−x1<1x1+1x2成立.…[选修4-4:坐标系与参数方程]在直角坐标系xOy中,直线C1的参数方程为{x=−√33ty=2+√63t(其中t为参数).以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=3sinθ.(1)求C1和C2的直角坐标方程;(2)设点P(0, 2),直线C1交曲线C2于M,N两点,求|PM|2+|PN|2的值.【解答】直线C1的参数方程为{x=−√3t3y=2+√63t(其中t为参数),消去t可得√2x+y−2=0.由ρcos2θ=3sinθ,得ρ2cos2θ=3ρsinθ,代入x=ρcosθ,y=ρsinθ,得曲线C2的直角坐标方程为x2=3y;将直线C1的参数方程{x=−√33ty=2+√63t代入x2=3y,得t2−3√6t−18=0,设M,N对应的参数分别为t1,t2,则t 1+t 2=3√6,t 1t 2=−18,∴|PM|2+|PN|2=(t 1+t 2)2−2t 1t 2=90. [选修4-5:不等式选讲]已知函数f(x)=|x −2|+|x −3|. (1)求不等式f(x)<2的解集;(2)若f(x)≥a|2x +1|的解集包含[3, 5],求实数a 的取值范围. 【解答】f(x)={2x −5,x >31,2≤x ≤35−2x,x <2 ,由f(x)<2,解得32<x <72,即不等式f(x)<2的解集是{x|32<x <72};f(x)≥a|2x +1|的解集包含[3, 5],即当x ∈[3, 5]时不等式恒成立, 当x ∈[3, 5]时,f(x)=2x −5,f(x)≥a|2x +1|,即2x −5≥a(2x +1), 因为2x +1>0,所以2x−52x+1≥a ,令g(x)=2x−52x+1=1−62x+1,x ∈[3, 5],易知g(x)在[3, 5]上单调递增, 所以g(x)的最小值为17,因此a ≤17,即a 的取值范围为a ∈(−∞,17].。
2020陕西高新一中高三3月质量检测数学(文)(含解析)

A.2
B.4
C.6
D.8
7.函数 f (x) sin x x 2 2 | x | 的大致图象为 ( ) x
8. 命题 p:x,y∈R, x2 y2 2, ,命题 q:x,y∈R, |x|+|y|<2,则 p 是 q 的( )
A.充分非必要条件 C.必要充分条件
B.必要非充分条件 D.既不充分也不必要条件
正方形,其面积称为弦实。图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、
黄实.由 2×勾×股+(股一勾)2=4×朱实+黄实=弦实,化简得勾 2+股 2=弦 2 .若图中勾股形的勾股比为1: 2, 向弦图
Байду номын сангаас
内随机抛掷 100 颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为(参考数据: 2 1.41, 3 1.73 )()
正方体 ABCD A1B1C1D1 被平面α截得的截面面积为()
A. 3 6
B.2 6
C.5
D. 5 3 4
12.若对于任意的 0 x1 x2
a, 都有 x2 ln x1 x1 ln x2 x1 x2
1, 则 a 的最大值为( )
A.2e
B. e
C. 1
D.1
2
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
用分层抽样的方法从样本的一级品和特级品中抽取 6 个,其中一级品有 2 个. (1)求 m、n 的值,并估计这批龙眼干中特级品的比例; (2)已知样本中的 100 个龙眼干约 500 克,该农场有 500 千克龙眼干待出售,商家提出两种收购方案: 方案 A:以 60 元/千克收购; 方案 B:以级别分装收购,每袋 100 个,特级品 40 元/袋、级品 30 元/袋、二级品 20 元/袋、三级品 10 元/袋.用 样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由。
2020届陕西省西安市长安一中高三上学期第一次质量检测数学(文)试题(解析版)

2020届陕西省西安市长安一中高三上学期第一次质量检测数学(文)试题一、单选题1.已知集合{}11A x N x =∈-<≤,{}11B x Z x =∈-≤<,则A B =( )A .{}1,0-B .∅C .{}0D .()1,1-【答案】C【解析】化简集合A ,B ,求交集即可. 【详解】{}{}110,1A x N x =∈-<≤=,{}11={1,0}B x Z x =∈-≤<-,{0}A B ∴=,故选:C. 【点睛】本题主要考查了集合的交集运算,属于容易题.2.已知复数1i z =--(i 为虚数单位),z 为复数z 的共轭复数,则2z z +的虚部为( ) A .i B .3C .1D .3i【答案】B【解析】根据复数的乘法及加法运算化简,由复数概念即可求解. 【详解】1i z =--,22(1)(1)13z z i i i ∴+=--+-+=-+, ∴复数的虚部为3,故选:B . 【点睛】本题主要考查了复数的运算,复数的概念,属于容易题.3.如图,有四个形状的游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,要想增加中奖机会,则应选择的游戏盘是( )A .B .C .D .【答案】B【解析】根据几何概型的概率公式,要使中奖率增加,则转盘的阴影面积与转盘面积比最大即可. 【详解】根据几何概型的概率公式可知,中奖的概率等于阴影部分面积与游戏转盘面积之比, 由图形知,则A 转盘的中奖概率小于12,B 转盘的中奖概率是34,C 转盘的中奖概率是58,D 转盘的中奖概率是23, 故选:B . 【点睛】本题主要考查几何概型的概率计算,属于容易题.4.已知著名的狄利克雷函数() 1,0,R x Q f x x Q ∈⎧=⎨∈⎩,其中R 为实数集,Q 为有理数集,若m R ∈,则()()()f f f m 的值为( )A .0B .1C .0或1D .无法求【答案】B【解析】分别讨论m Q ∈和R m Q ∈可求解. 【详解】若m Q ∈,则()1f m =,()()()()()()111f f f m f f f ∴===,若R m Q ∈,则()0f m =,()()()()()()011f f f m f f f ∴===,故选:B . 【点睛】本题以狄利克雷函数为载体,考查了函数的概念与性质的应用问题,属于容易题.5.以()0,02p F p ⎛⎫> ⎪⎝⎭为焦点的抛物线C 的准线与双曲线()2220x y a a -=>两条渐近线相交于M 、N 两点,若OMN ∆的面积为4,则抛物线C 的标准方程为( ) A .28y x = B .28x yC .24x y =D .28x y =【答案】D【解析】根据抛物线的准线方程,以及双曲线的渐近线方程,得出OMN 为等腰直角三角形,根据面积为4列式计算,得出p 的值,即可得出抛物线的标准方程. 【详解】抛物线C 的准线为2py =-,双曲线222(0)x y a a -=>, 两条渐近线为y x =±,OMN ∴为等腰直角三角形,则2114224OMNp Sp p =⋅⋅==, 4p ∴=,抛物线C 的标准方程为28x y =, 故选:D . 【点睛】本题主要考查了双曲线和抛物线的性质及几何意义,属于容易题. 6.已知,x y 的对应值表为:且,x y 线性相关,由于表格污损,y 的对应值看不到了,若6119.2ii y==∑,且线性回归直线方程为0.6y x a =+,则8x =时,y 的预报值为( ) A .6.1 B .22.1C .12.6D .3.5【答案】A【解析】求出,x y ,由线性回归方程必经过点(,x y )即得a ,代入8x =求解即可.由表格知,196x =, 6119.2ii y==∑3.2y ∴=,代入0.6y x a =+得:193.20.66a =⨯+, 1.3a ∴=,则回归方程为0.6 1.3y x =+, 当8x =时,0.68 1.3 6.1y =⨯+=, 故选:A . 【点睛】本题主要考查了线性回归方程,线性回归方程的性质、应用, 属于中档题.7.如图所示的程序框图是求3333---的值的程序,则判断框中应填入( )A .1i ≥B .5i ≤C .5i >D .7i ≤【答案】B【解析】根据框图,模拟程序的运算即可求解. 【详解】由程序框图得,3S =1i =,满足条件得33S =-3i =,满足条件得333S =--, 5i =,满足条件3333S =---, 7i =,否,输出S 的值,结束程序,因此判断框应该是5i ≤, 故选:B .本题主要考查了算法的程序框图,基本逻辑结构中的循环结构,属中档题.8.已知命题:p x R ∀∈,40x x +≥,则下列判断正确的是( )A .:p x R ⌝∀∈,40x x +<是真命题B .:p x R ⌝∀∈,40x x +≤是假命题 C .0:p x R ⌝∃∈,4000x x +≥是真命题 D .0:p x R ⌝∃∈,4000x x +<是假命题【答案】D【解析】根据命题p 的真假及含量词的命题的否定即可求解. 【详解】命题p 是真命题,p ∴⌝是假命题,且命题的否定为:,4000x x +<,故选:D . 【点睛】本题考查了全称量词命题的否定及真假判定,属于容易题.9.如图所示,是一个几何体的三视图,则该几何体的体积为( )A .83π-B .283π-C .8π-D .82π-【答案】B【解析】根据三视图可得几何体的形状及数据,计算即可求值. 【详解】由三视图知,该几何体为一个正方体挖去两个半圆锥得到的几何体,∴体积为3211222128323V ππ=-⨯⨯⋅⨯=-,故选:B . 【点睛】本题考查由三视图求体积,考查学生的计算能力,确定直观图的形状是关键属于中档题.10.已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,且面积2S =,2c a=,则角B 等于( )A .6π B .4π C .3π D .2π 【答案】C【解析】由三角形面积公式得211csin sin24S a B c B ==,又由2S =可得221sin4c B =化简得sin 16B π⎛⎫+= ⎪⎝⎭即可.【详解】2ca=, 211csin sin 24S a B c B ∴==,又2S =,221sin4c B ∴= 即221sin4c B =cos 2B B +=,sin 16B π⎛⎫+= ⎪⎝⎭,7666B πππ<+<, 62B ππ∴+=,则3B π=,故选:C . 【点睛】本题考查同角三角函数的基本关系,辅助角公式,三角形面积公式,考查运算化简的能力,属于中档题.11.已知函数()2cos 3f x x πω⎛⎫=+ ⎪⎝⎭()0ω>的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,将()f x 的图象向右平移6π个单位得到函数()g x 的图象,()g x 的图象与y 轴交于点A ,与x 轴在y 右侧的第一个交点为B ,则AOB ∆(O 为坐标原点)的面积为( ) A .4π B .2π C .πD .14【答案】A【解析】根据题目条件,逐步分析,首先得出()f x 的解析式,再变换为()g x 的解析式,求出点A 、B ,易得AOB 的面积. 【详解】由题设知,()f x 的周期为π,22ππωω∴=⇒=,则()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,将()f x 的图象向右平移6π个单位得到,()2cos 22cos 263g x x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,()02g ∴=,即()0,2A ,()g x 的图象与x 轴在y 右侧的第一个交点为B ,,04B π⎛⎫∴ ⎪⎝⎭,1122244AOBSOA OB ππ=⋅=⨯⨯=, 故选:A . 【点睛】本题主要考查了函数sin()y A x ωϕ=+的图像与性质,属于中档题.12.已知椭圆()2222:10x y C a b a b+=>>的左右焦点为1F 、2F ,O 为坐标原点,M 为椭圆上一点,1F M 与y 轴交于一点N ,且2OM OF =,则椭圆C 的离心率为( )A .13B .3C .2D 1【答案】D【解析】由椭圆的性质可先求得ON =,故可得130NF O ∠=︒,再由椭圆的定义得a ,c 的关系,故可得答案. 【详解】21||OM OF OF ==,1290F MF ∴∠=︒,又2OF =,3ON c ∴=,则11tan ON NFO OF ∠==, 130NF O ∴∠=︒,则2MF c =,1MF =,2c a +=, 1e ∴=,故选:D . 【点睛】本题主要考查椭圆的离心率,考查椭圆定义的运用,属于中档题.二、填空题13.已知平面内的点()2,0A ,(),B x y ,()1,3C ,若四边形OABC (O 为坐标原点)是平行四边形,则向量OB 的模为______.【答案】【解析】由OB OA OC =+得出向量的坐标,再求模即可. 【详解】由向量的平行四边形法则知,()()()2,01,33,3OB OA OC =+=+=,23OB ∴==故答案为: 【点睛】本题考查了向量的模和平面向量的坐标运算,属于容易题.14.设不等式组11y x y x ⎧+≤⎪⎨-≤⎪⎩表示的平面区域为M ,则M 的面积是______.【答案】2【解析】作出不等式组所表示的区域,即可求解. 【详解】作出不等式组11y x y x ⎧+≤⎪⎨-≤⎪⎩表示的可行域如图所示,则M 为正方形ABCD 2,M ∴的面积是2.故答案为:2. 【点睛】本题考查线性规划所表示的可行域面积问题,属于中档题. 15.sin 75tan195=______. 62-【解析】根据诱导公式化简即可求值. 【详解】sin 75tan195cos15tan15sin15=︒︒=︒,62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 62sin 75tan1954-∴=, 故答案为:624【点睛】本题主要考查了诱导公式,两角差的正弦公式,属于容易题.16.已知函数()1y f x =-的图象关于()1,0对称,且函数()y f x =在[)0,+∞上单调递减,若[]1,x e ∈时,不等式()()()2ln 121ln 12f m x f f x m --≤++-恒成立,则实数m 的取值范围是______. 【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】由条件利用函数的奇偶性和单调性,可得12ln 111ln 2m x m x --≥⇒≥+在[]1,x e ∈时恒成立,故解得m 的取值范围.【详解】函数()1y f x =-的图象关于()1,0对称,∴函数()y f x =的图象关于()0,0对称,即函数()y f x =为奇函数,不等式()()()212112f m lnx f f lnx m --≤++-变为:()()()211221f m lnx f lnx m f ---+-≤,即()()()212121f m lnx f m lnx f --+--≤,()()211f m lnx f --≤,又()f x 函数在[)0,+∞上单调递减,()f x ∴在R 上单调递减,则12ln 111ln 2m x m x --≥⇒≥+在[]1,x e ∈时恒成立, 11ln 2y x =+在[]1,e 上递增,max 131ln 22y e ∴=+=,故32m ≥.故答案为:3,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题主要考查函数的奇偶性和单调性的综合应用,属于难题.三、解答题17.在“互联网+”时代的今天,移动互联快速发展,智能手机(Smartphone )技术不断成熟,尤其在5G 领域,华为更以1970件专利数排名世界第一,打破了以往由美、英、日垄断的前三位置,再次荣耀世界,而华为的价格却不断下降,远低于苹果;智能手机成为了生活中必不可少的工具,学生是对新事物和新潮流反应最快的一个群体之一,越来越多的学生在学校里使用手机,为了解手机在学生中的使用情况,对某学校高二年级100名同学使用手机的情况进行调查,针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如下的数据:(1)求表中a 的值;(2)从该学校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于3.5小时的概率?若能,请算出这个概率;若不能,请说明理由;(3)若从使用手机1小时和7小时的两组中任取两人,调查问卷,看看他们对使用手机进行娱乐活动的看法,求这2人都使用7小时的概率.【答案】(1)25%(2)抽取到高二的学生能估计,概率为0.53,抽取到高一高三的学生不能估计(3)115【解析】()1由已知易知100410311612225a =------=%%%%%%%%;()2分情况讨论,当抽到的是高二年级时可以估计,若抽到高一、高三的同学则不能估计;()3抽取6人中编号,写出所有基本事件,找出满足事件A 的结果数,求解.【详解】()1由题设知,100410311612225a =------=%%%%%%%%. ()2样本是从高二年级抽取的,∴根据抽取的样本只能估计该校高二年级学生每天使用手机进行娱乐活动的平均时间,不能估计全校学生情况. 若抽取的同学是高二年级的学生,则可以估计这名同学每天平均使用手机小于3.5小时的概率大约为:0.040.10.310.080.53+++=;若抽到高一、高三的同学则不能估计;()3由题设知,使用1小时的人共有:10044⨯=%人,设为A ,B ,C ,D ,使用7小时的共有10022⨯=%人,设为a ,b ,从中任选2人有:AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba ,Bb ,CD ,Ca ,Cb ,Da ,Db ,ab 共15种情况,其中,这2人都使用7小时的只有ab ,∴所求概率为115P =. 【点睛】本题考查样本估计总体,古典概型求概率,属容易题.18.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,且2n S n =,12b =,1112n n b a a b a +=+-.(1)求数列{}n b 的通项公式;(2)若n T 是数列{}n b 的前n 项和,是否存在正整数n ,使2019n n S T +=,若存在,求出正整数n 的值;若不存在,说明理由.【答案】(1)24n b n =-+(2)存在正整数n 的值为673.【解析】()1取1n =,2时求得首项1a ,2a ,代入1112n n b a a b a +=+-,整理得到数列{}n b 是等差数列,再求通项公式;()2由等差数列求和公式求得数列{}n b 的前n 项和为T n ,结合2n S n =,再带入数值可求. 【详解】()21n S n =,11a ∴=,221413a S S =-=-=,代入1112n n b a a b a +=+-得,12n n b b +=-,又12b =,∴数列{}n b 是以2为首项,以2-为公差的等差数列,故24n b n =-+;()2由()1知,()()12224322n n n b b n n T n n +-+===-,又2n S n =,2233n n S T n n n n ∴+=+-=,由2019n n S T +=得,32019n =,673n ∴=,故存在正整数n 的值为673. 【点睛】本题考查了数列递推式,考查了数列的函数特性,属于中档题.19.如图,在半圆柱W 中,12,O O 分别为两底面半圆的圆心,平面ABCD 是半圆柱的轴截面,M 、N 分别是两底面半圆弧的中点.(1)求证:平面BMC ⊥平面2MNO ;(2)求半圆柱的体积与四棱锥M ABCD -的体积的比值. 【答案】(1)证明见解析(2)34π【解析】(1)由面面垂直的判定定理可得; (2)根据圆柱、四棱锥的体积公式计算即可求解. 【详解】()1证明:M 、N 分别是上下底面圆弧的中点,//MN AB ∴,又平面ABCD 是半圆柱的轴截面,∴四边形ABCD 是矩形,则BC AB ⊥,BC MN ∴⊥,2O 为底面半圆的圆心,N 是底面半圆弧的中点, 2BC O N ∴⊥,又2MN O N N ⋂=,BC ∴⊥平面2MNO ,BC BMC ⊂平面, ∴平面BMC ⊥平面2MNO ;()2设半圆柱的底面半径为r ,圆柱的高为AB ,∴半圆柱的体积为2112V r AB π=⋅,连结1MO ,由题设知,1MO ⊥平面ABCD ,∴四棱锥M ABCD -的体积为2211122333ABCD V S MO r AB r r AB =⋅=⋅⋅⋅=⋅, 则半圆柱的体积与四棱锥M ABCD -的体积的比值为:2122132243r AB V V r AB ππ⋅==⋅. 【点睛】本题考查了面面垂直的判定、棱柱、圆柱体积的计算,考查推理能力和计算能力,属中档题.20.已知函数()()1xf x x e =-,()()21g x a x =+,a R ∈.(1)令()()()h x f x g x =+,若函数()h x 在点()()0,0h 处的切线方程为2y kx =+,求函数()h x 的单调区间;(2)当1a =时,令()()()ln F x g x g x t x '=-+(t 为常数),若函数()F x 有两个极值点(),m n m n <,求证:()11ln 2042F n -<<. 【答案】(1)单调递减区间(),0-∞和()2,ln +∞,单调递增区间()0,ln2(2)证明见解析【解析】()1通过函数()h x 在点()()0,0h 处的切线方程求解的出()'2xh x xe x =-+,讨论x 的取值范围可确定()f x 的单调区间;()2函数()F x 由两个极值点m ,n 等价于()2220G x x x t =-+=有两个相异实根m ,n ,得出112n <<,()()222121222F n n n tlnn n n n n lnn =+-+=+-+-+,利用单调性即可证明不等式. 【详解】()1由题设知,()()()211x h x x e a x =-++,函数()h x 在点()()0,0h 处的切线方程为2y kx =+,∴(0)12h a =+=,即1a =()()()'1222x x x x h x e x e x xe x x e ∴=-+-+=-+=-,x ∈R ,令()'0h x =,则0x =或ln2x =,∴当0x <或ln 2x >时,()0h x '<,当0ln 2x <<时,()0h x '> ∴函数()h x 在(),0-∞和()2,ln +∞上单调递减,在()0,ln2上单调递增.() 2证明:当1a =时, ()21g x x =+,()212F x x x tlnx ∴=+-+,0x >,则()222'22t x x t F x x x x-+=-+=,0x >,令()222G x x x t =-+,则()G x 为开口向上且对称轴为12x =的抛物线, 由题设知,()0G x =在()0,∞+上有两个相异实根m ,()n m n <,102m >> 即2220n n t -+=且112n <<,222t n n ∴=-+,112n <<,()()222121222F n n n tlnn n n n n lnn =+-+=+-+-+,()()()'22422242F n n n lnn n n lnn ∴=-+-+-+=-+,112n <<, ()420n lnn ∴-+>,则函数()F x 在1,12⎛⎫⎪⎝⎭上单调递增,则()()112F F n F ⎛⎫<<⎪⎝⎭,即()11ln2042F n -<<.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.21.已知圆()22:11F x y +-=,动点(),M x y ()0y ≥,线段FM 与圆F 交于点N ,MH x ⊥轴,垂足为H ,MN MH =.(1)求动点M 的轨迹C 的方程;(2)设()()000,2P x y y >为曲线C 上的一点,过点P 作圆F 的两条切线,12,k k 分别为两切线的斜率,若12311k k =,求点P 的坐标. 【答案】(1)24x y =(2)()±【解析】()1利用抛物线的概念及标准方程直接得结论;()2 设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F到切线的距离为1d ==,化简后利用根与系数的关系即可求解. 【详解】()1圆F 的圆心为()0,1F ,半径为1,1MF MN ∴=+,又MH x ⊥轴,垂足为H ,MN MH =,∴动点()(),0M x y y ≥到点()0,1F 等于到直线1y =-的距离.故动点()(),0M x y y ≥的轨迹是以()0,1F 为焦点的抛物线, 则12p=, 2p ∴=,则动点M 的轨迹C 的方程是24x y =;()2设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F到切线的距离为1d ==,化简得,()()2220000012120x k x y k y y ---+-=,两切线斜率分别为1k ,2k ,200122021y yk k x -∴=-,由题设知,2002023111y y x -=-,又()00,P x y 为曲线C 上的一点, 由()1知,2004x y =,2000234111y y y -∴=-,即20113430y y -+=, 解得,0111y =或03y =, 02y >,03y ∴=,则0x =± ∴点P的坐标为()±.【点睛】本题考查了抛物线的概念及标准方程和定点与定值问题.属于中档题.22.直角坐标系xOy 中,曲线1C 的参数方程为24x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆2C 的极坐标方程为24cos 2sin 40ρρθρθ+-+=.(1)求曲线1C 的普通方程和2C 的直角坐标方程; (2)过曲线2C 的圆心且倾斜角为4π的直线l 交曲线1C 于A 、B 两点,求22C A C B ⋅的值.【答案】(1)24y x =;22(2)(1)1x y ++-=(2)152【解析】()1消去参数及利用极坐标与直角坐标互化方法,写出曲线1C ,2C 的普通方程;()2由直线l 的参数方程代入24y x =整理得221502t -+=,再运用几何意义可得答案. 【详解】()1由24x t y t=⎧⎨=⎩消去参数t 得,曲线1C 的普通方程为24y x =;222x y ρ=+,x cos ρθ=,y sin ρθ=,∴圆2C 的直角坐标方程为224240x y x y ++-+=,即22(2)(1)1x y ++-=;()2曲线2C 的圆心为()2,1-,直线l 的倾斜角为4π, ∴直线l的参数方程为22(12x t ty t⎧=-+⎪⎪⎨⎪=+⎪⎩为参数), 将其代入24y x =整理得,22150t +=, 设A ,B 对应的参数分别为1t ,2t , 则2212152C A C B t t ⋅==. 【点睛】本题考查曲线的普通方程、直角坐标方程的求法,考查圆的标准方程的法,直角坐标方程、极坐标方程、参数方程的互化等基础知识,属于中档题. 23.已知函数()223x a a f x x -+++=.(1)当0a =时,若()f x m ≥恒成立,求m 的最大值; (2)()15f -<,求实数a 的取值范围. 【答案】(1)3(2)11a <<-【解析】()1当0a =时,()3f x x x =++,根据绝对值三角不等式可得()3f x ≥,则3m ≤;()()221122f a a -=+++,原不等式即为24220a a -++<,讨论1a ≤-,1a >-两种情况分别求解即可.【详解】()1当0a =时,()3f x x x =++,()333x x x x ++≥-+=,()3f x ∴≥,则3m ≤,m 的最大值为3;()()22211123122f a a a a -=--+-++=+++,()15f ∴-<即为24220a a -++<,当1a ≤-时,24220a a ---<,即2260a a --<,解得11a -<<,11a ∴-,当1a >-时,24220a a -++<,即2220a a +-<,解得11a --<<-11a ∴-<<-+,综上,实数a 的取值范围是11a <<-. 【点睛】本题考查绝对值不等式及不等式恒成立问题,属于中档题.。
2020-2021学年陕西省西安市长安一中高三(上)第一次质检数学(文科)试题Word版含解析

2020-2021学年陕西省西安市长安一中高三(上)第一次质检数学(文科)试题一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知z1=sinθ﹣i,z2=﹣cosθi,若z1﹣z2是纯虚数,则tanθ=()A.B.C.D.2.(5分)若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有()A.1个B.2个C.3个D.4个3.(5分)已知平面向量满足||=3,||=2,,的夹角为60°,若,则实数m的值为()A.1 B.C.2 D.34.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=05.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.236.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.8.(5分)如果执行如图的程序框图,输入x=﹣2,h=0.5,那么输出的各个数的和等于()A.3 B.3.5 C.4 D.4.59.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.10.(5分)随机地向半圆0<y<(a为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴的夹角小于的概率为()A.B.C.D.11.(5分)设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.12.(5分)已知f(x)=x2+3x+1,g(x)=+x,若h(x)=f(x)﹣g(x)恰有两个零点,则实数a 的取值为()A.1 B.C.1或D.二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2﹣a2)>f(a),则实数a的取值范围是.14.(5分)已知△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是.15.(5分)若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= .16.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.(1)求B的大小;(2)设∠BAC的平分线AD交BC于D,AD=2,BD=1,求cosC的值.18.(12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生表2:女生等级优秀合格尚待改进等级优秀合格尚待改进频数15 x 5 频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.05 0.05 0.01k0 2.706 3.8416.63519.(12分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.20.(12分)已知椭圆C:+=1(a>b>0),离心率是,原点与C直线x=1的交点围成的三角形面积是.(1)求椭圆方程;(2)若直线l过点(,0)与椭圆C相交于A,B两点(A,B不是左右顶点),D是椭圆C的右顶点,求∠ADB是定值.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.[选修4-4;坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知实数m,n满足:关于x的不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R(1)求m,n的值;(2)若a,b,c∈R+,且a+b+c=m﹣n,求证:++.2020-2021学年陕西省西安市长安一中高三(上)第一次质检数学(文科)试题参考答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知z1=sinθ﹣i,z2=﹣cosθi,若z1﹣z2是纯虚数,则tanθ=()A.B.C.D.【分析】z1﹣z2=﹣i是纯虚数,可得sinθ﹣=0,﹣cosθ≠0,再利用同角三角函数基本关系式即可得出.【解答】解:z1﹣z2=﹣i是纯虚数,∴sinθ﹣=0,﹣cosθ≠0,∴sinθ=,cosθ=,则tanθ==﹣.故选:B.【点评】本题考查了纯虚数的定义、三角函数求值,考查了推理能力与计算能力,属于基础题.2.(5分)若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有()A.1个B.2个C.3个D.4个【分析】由A∪B={1,3,x}得到集合B是集合A的真子集,所以得到x2,等于3或x,分别求出x的值,经检验即可得到满足题意x的个数.【解答】解:因为A∪B={1,3,x},A={1,3,x},B={1,x2},所以x2=3或x2=x,解得x=±或x=0,x=1(舍去),即满足条件的有3个.故选C.【点评】此题考查学生掌握并集的定义,以及理解集合元素的互异性,是一道基础题.3.(5分)已知平面向量满足||=3,||=2,,的夹角为60°,若,则实数m的值为()A.1 B.C.2 D.3【分析】由两个向量的数量积的定义求出,再由可得=0可求m【解答】解:∵||=3,||=2,,的夹角为60°∴=||||cos60°=3×2cos60=3又∵∴==9﹣3m=0∴m=3故选D【点评】本题考查两个向量的数量积的定义,数量积公式的应用,两个向量垂直的性质.4.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.5.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【分析】判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.【解答】解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.【点评】本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.7.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A【点评】本题主要考查余弦函数的对称性.属基础题.8.(5分)如果执行如图的程序框图,输入x=﹣2,h=0.5,那么输出的各个数的和等于()A.3 B.3.5 C.4 D.4.5【分析】按照程序框图的流程,判断出x的值是否满足判断框中的条件,求出所有输出的y值,再将各值加起来.【解答】解:第一次输出y=0;第二次输出y=0;第三次输出0;第四次输出y=0;第经过第五次循环输出y=0;第六次输出y=0.5;第七次输出y=1;第八次输出y=1;第九次输出y=1各次输出的和为0+0+0+0+0+0.5+1+1+1=3.5故选B【点评】本题考查解决程序框图的循环结构,常用的方法是求出前几次循环的结果找规律.9.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选A【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)随机地向半圆0<y<(a为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴的夹角小于的概率为()A.B.C.D.【分析】因为点落在圆内任何区域的概率与区域的面积成正比,【解答】解:半圆0<y<(a为正常数)内掷一点,原点与该点的连线与x轴的夹角小于的区域如图:点落在圆内任何区域的概率与区域的面积成正比,则;故选A.【点评】本题考查了几何概型的概率求法,首先正确画出满足条件的区域,利用面积比求概率是关键.11.(5分)设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.【分析】利用双曲线的定义和已知即可得出|PF1|,|PF2|,进而确定最小内角,再利用余弦定理和离心率计算公式即可得出.【解答】解:不妨设|PF1|>|PF2|,则|PF1|﹣|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.则∠PF1F2是△PF1F2的最小内角为30°,∴﹣,∴(2a)2=(4a)2+(2c)2﹣,化为=0,解得.故选C.【点评】熟练掌握双曲线的定义、离心率计算公式、余弦定理是解题的关键.12.(5分)已知f(x)=x2+3x+1,g(x)=+x,若h(x)=f(x)﹣g(x)恰有两个零点,则实数a 的取值为()A.1 B.C.1或D.【分析】问题转化为a=x3+x2﹣x(x≠1)的交点问题,令h(x)=x3+x2﹣x,(x≠1),画出函数h(x)的图象,结合图象求出a的值即可.【解答】解:联立y=f(x)和y=g(x)得 x2+3x+1=+x,整理可得 a=x3+x2﹣x,且 x≠1.令函数h(x)=x3+x2﹣x,可得函数h(x)的极值点在﹣1和处,画出h(x)的草图,如图示:当x=﹣1时,h(x)=1;当x=时,h(x)=﹣,故当a=1时,y=a和y=h(x)1个交点,因为(1,1)不在h(x)上,不满足条件.故当a=﹣时,结合图象可得y=a和y=h(x)恰有2个交点.综上,只有当a=﹣时,才能满足y=a和y=h(x)恰有2个j交点,故选:B.【点评】本题考查了函数的交点问题,考查数形结合思想以及转化思想,是一道中档题.二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2﹣a2)>f(a),则实数a的取值范围是(﹣2,1).【分析】题意可先判断出f(x)=x2+2x=(x+1)2﹣1在(0,+∞)上单调递增,根据奇函数的对称区间上的单调性可知,f(x)在(﹣∞,0)上单调递增,从而可比较2﹣a2与a的大小,解不等式可求a的范围.【解答】解:∵f(x)=x2+2x=(x+1)2﹣1在(0,+∞)上单调递增,又∵f(x)是定义在R上的奇函数,根据奇函数的对称区间上的单调性可知,f(x)在(﹣∞,0)上单调递增,∴f(x)在R上单调递增.∵f(2﹣a2)>f(a),∴2﹣a2>a,解不等式可得,﹣2<a<1,故答案为:(﹣2,1).【点评】本题主要考查了奇函数在对称区间上的单调性相同(偶函数对称区间上的单调性相反)的性质的应用,一元二次不等式的求解,属于基础试题.14.(5分)已知△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是钝角三角形.【分析】利用正弦定理化简已知不等式可得a2+b2<c2,进而利用余弦定理可求cosC<0,结合C的范围即可判断得解.【解答】解:△ABC中,由正弦定理可得>0,∴sinA=,sinB=,sinC=.∵asinA+bsinB<csinC,∴+<,即a2+b2<c2.∴cosC=<0.∵0<C<π,∴<C<π.∴角C为钝角.∴△ABC的形状是钝角三角形.故答案为:钝角三角形.【点评】本题主要考查了正弦定理,余弦定理,余弦函数的图象和性质在解三角形中的应用,熟练掌握正弦定理和余弦定理是解题的关键,属于基础题.15.(5分)若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= 32 .【分析】根据“f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A”求出A点坐标,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解【解答】解:由f(x)=2sin(x+)=0,可得x+=kπ,∴x=6k﹣2,k∈Z∵2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0∴(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故答案为:32.【点评】本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.16.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(﹣∞,2﹣2]∪[2+2,+∞).【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤()2,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故答案为:(﹣∞,2﹣2]∪[2+2,+∞).【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.(1)求B的大小;(2)设∠BAC的平分线AD交BC于D,AD=2,BD=1,求cosC的值.【分析】(1)利用余弦定理可得:cosB=﹣,B∈(0,π),可得B.(2)在△ABD中,由正弦定理可得:=,解得sin∠BAD.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD.可得sin∠BAC=.可得cosC=cos(60°﹣∠BAC).【解答】解:(1)在△ABC中,∵a2+c2=b2﹣ac,即a2+c2﹣b2=﹣ac.∴cosB==﹣=﹣,B∈(0,π),可得B=.(2)在△ABD中,由正弦定理可得:=,解得sin∠BAD==.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD=1﹣×2×=.∴sin∠BAC===.∴cosC=cos(60°﹣∠BAC)=+=.【点评】本题考查了正弦定理余弦定理、和差公式、同角三角函数基本关系式、角平分线的性质,考查了推理能力与计算能力,属于中档题.18.(12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生表2:女生等级优秀合格尚待改进等级优秀合格尚待改进频数15 x 5 频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.05 0.05 0.01k0 2.706 3.8416.635【分析】(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.【解答】解:(1)设从高一年级男生中抽出m人,则=,m=25,∴x=25﹣20=5,y=20﹣18=2,表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10种.设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6种.∴P(C)==,故所求概率为.男生女生总计优秀15 15 30非优秀10 5 15总计25 20 45(2)∵1﹣0.9=0.1,p(k2>2.706)=0.10,而K2====1.125<2.706,所以没有90%的把握认为“测评结果优秀与性别有关”.思路点拨(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.【点评】本考查了独立检验思想在实际问题中的应用,属于中档题.19.(12分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.【分析】(1)要证CF⊥平面MDF,只需证CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即证MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面积S△CDE,对应三棱锥的高MD,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD⊥平面ABCD,PD⊂平面PCD,∴平面PCD⊥平面ABCD;又平面PCD∩平面ABCD=CD,MD⊂平面ABCD,MD⊥CD,∴MD⊥平面PCD,CF⊂平面PCD,∴CF⊥MD;又CF⊥MF,MD、MF⊂平面MDF,MD∩MF=M,∴CF⊥平面MDF;(2)∵CF⊥平面MDF,∴CF⊥DF,又∵Rt△PCD中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF∥DC,∴=,即=,∴DE=,∴PE=,∴S△CDE=CD•DE=;MD===,∴V M﹣CDE=S△CDE•MD=××=.【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.20.(12分)已知椭圆C:+=1(a>b>0),离心率是,原点与C直线x=1的交点围成的三角形面积是.(1)求椭圆方程;(2)若直线l过点(,0)与椭圆C相交于A,B两点(A,B不是左右顶点),D是椭圆C的右顶点,求∠ADB是定值.【分析】(1)由椭圆的离心率公式e===,点P(1,y)(y>0),根据三角形的面积公式即可求得y值,代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)当l斜率不存在时,,;当l斜率存在时,设直线方程,代入椭圆方程,利用韦达定理y1+y2及y1•y2,求得=(x1﹣2,y1),=(x2﹣2,y2),•=x1•x2﹣2(x1+x2)+y1•y2+4=0,,∠ADB是定值..【解答】解:(1)由题意可知:e===,整理得:a2=b2,由直线x=1与椭圆相交,交点P(1,y)(y>0),由题意可知:•1•2y=,解得:y=,将P(1,)代入椭圆方程,,解得b2=3,a2=4,∴椭圆的方程为:,.(2)当l斜率不存在时,,∴,∴;当l斜率存在时,设直线,由得(196+147m2)y2+84my﹣576=0,∵l与C有两个交点A(x1,y1),B(x2,y2),∴△>0,且,∴,∵=(x1﹣2,y1),=(x2﹣2,y2),•=x1•x2﹣2(x1+x2)+y1•y2+4,=+,==0,∴,综上.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及向量数量积的坐标表示,考查计算能力,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.[选修4-4;坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】解法一:(Ⅰ)由参数方程消去参数α,得椭圆的普通方程,由极坐标方程,通过两角和与差的三角函数转化求解出普通方程即可求出直线l的倾斜角.(Ⅱ)设出直线l的参数方程,代入椭圆方程并化简,设A,B两点对应的参数分别为t1,t2,利用参数的几何意义求解即可.解法二:(Ⅰ)同解法一.(Ⅱ)利用直线l的普通方程与椭圆的方程联立,设A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可.【解答】解法一:(Ⅰ)由消去参数α,得,即C的普通方程为.(2分)由,得ρsinθ﹣ρcosθ=2,…(*)(3分)将代入(*),化简得y=x+2,(4分)所以直线l的倾斜角为.(5分)(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),(7分)代入并化简,得.(8分).设A,B两点对应的参数分别为t1,t2,则,所以t1<0,t2<0,(9分)所以.(10分)解法二:(Ⅰ)同解法一.(5分)(Ⅱ)直线l的普通方程为y=x+2.由消去y得10x2+36x+27=0,(7分)于是△=362﹣4×10×27=216>0.设A(x1,y1),B(x2,y2),则,,所以x1<0,x2<0,(8分)故.(10分)【点评】本小题考查直线的极坐标方程和参数方程、椭圆的参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等[选修4-5:不等式选讲]23.已知实数m,n满足:关于x的不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R(1)求m,n的值;(2)若a,b,c∈R+,且a+b+c=m﹣n,求证:++.【分析】(1)若不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R,故3x2﹣6x﹣9=0时,x2+mx+n=0,进而由韦达定理得到答案;(2)运用重要不等式a+b≥2,结合累加法和三个数的完全平方公式,即可得证.【解答】(1)解:∵不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R,令3x2﹣6x﹣9=0,得x=﹣1,或x=3,故x=﹣1,或x=3时,x2+mx+n=0,则x=﹣1和x=3为方程x2+mx+n=0的两根,故﹣1+3=2=﹣m,﹣1×3=﹣3=n,解得:m=﹣2,n=﹣3,当m=﹣2,n=﹣3时,不等式|x2+mx+n|≤|3x2﹣6x﹣9|即为|x2﹣2x﹣3|≤3|x2﹣2x﹣3|,即有|x2﹣2x﹣3|≥0,则解集为R,故m=﹣2,n=﹣3;(2)证明:若a,b,c∈R+,且a+b+c=m﹣n=1,由a+b≥2,b+c≥2,c+a≥2.累加得,2a+2b+2c≥2+2+2,两边同时加a+b+c,可得3(a+b+c)≥a+b+c+2+2+2,即有3(a+b+c)≥(++)2,即++≤=.(当且仅当a=b=c时取得等号)则++≤成立.【点评】本题考查不等式的解法和运用,主要考查不等式的恒成立转化为求函数的最值,同时考查二次方程的韦达定理的运用,运用均值不等式和累加法是证明不等式的关键.。
2020届高考数学陕西省文数试题含解析

陕西省高考文科数试模拟题一一、选择题(每题一个选项,每题5分共60分)1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D2.设z是复数z的共轭复数,且(1﹣2i)z=5i,则|z|=()A.3 B.5 C.√3D.√53.一个体积可忽略不计的小球在边长为2的正方形区域内随机滚动,则它在离4个顶点距离都大于1的区域内的概率为()A.π4B.1−π4C.π2−1D.2π4.在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2b cos C”是“△ABC是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.如图,在底面边长为1,高为2的正四棱柱ABCD﹣A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P﹣BCD的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.56.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.12D.17.已知两个非零单位向量e1→,e2→的夹角为θ,则下列结论不正确的是()A.∀θ∈R,(e1→+e2→)⊥(e1→−e2→)B.e1→在e2→方向上的投影为sinθC.e1→2=e2→2D.不存在θ,使e1→•e2→=√28.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q)C.(非p)∧q D.p∧(非q)9.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是()A.(x﹣2)2+(y﹣1)2=1 B.(x﹣2)2+(y+1)2=1C.(x+2)2+(y﹣1)2=1 D.(x﹣3)2+(y﹣1)2=110.抛物线y2=ax(a>0)的准线与双曲线C:x28−y24=1的两条渐近线所围成的三角形面积为2√2,则a的值为()A.8 B.6 C.4 D.211.函数y=sin(2x+π3)的图象经下列怎样的平移后所得的图象关于点(−π12,0)中心对称()A.向左平移π12B.向右平移π12C.向左平移π6D.向右平移π612.已知定义在R上的函数f(x)满足f(3﹣x)=f(3+x),且对任意x1,x2∈(0,3)都有f(x2)−f(x1)x2−x1<0,若a=2−√3,b=log23,c=e ln4,则下面结论正确的是()A.f(a)<f(b)<f(c)B.f(c)<f(a)<f(b)C.f(c)<f(b)<f(a)D.f(a)<f(c)<f(b)二、填空题(每小题5分,每题5分共20分)13.若sin(π2+α)=−35,α∈(0,π),则sinα=.14.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为.15.已知正方体内切球的体积为36π,则正方体的体对角线长为.16.已知椭圆x2a12+y2b12=1(a1>b1>0)与双曲线x2a22−y2b22=1(a2>0,b2>0)有公共的左、右焦点F1,F2,它们在第一象限交于点P,其离心率分别为e1,e2,以F1,F2为直径的圆恰好过点P,则1e12+1e22=.三.解答题:(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项等比数列{a n}满足a1+a2=6,a3﹣a2=4.(1)求数列{a n}的通项公式;(2)记b n=1log2a n log2a n+1,求数列{b n}的前n项和T n.18.(12分)销售某种活海鲜,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为Y元.(Ⅰ)求Y关于x的函数关系式;(Ⅱ)结合直方图估计利润Y不小于800元的概率.19.(12分)如图1,在平面多边形BCDEF中,四边形ABCD为正方形,EF∥AB,AB=2EF=2,沿着AB 将图形折成图2,其中∠AED=90°,AE=ED,H为AD的中点.(1)求证:EH⊥BD;(2)求四棱锥D﹣ABFE的体积.20.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)上的点到两个焦点的距离之和为23,短轴长为12,直线l与椭圆C交于M、N两点.(I)求椭圆C的方程;(II)若直线l与圆O:x2+y2=125相切,证明:∠MON为定值.21.(12分)已知函数f(x)=lnx+a(1﹣x).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:{x =tcosαy =1+tsinα(t 为参数,α∈[0,π)),曲线C 的极坐标方程为:ρ=4sinα. (1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于P ,Q 两点,若|PQ|=√15,求直线l 的斜率. [选修4-5:不等式选讲]23.设函数f (x )=|x +1|+|x ﹣2|. (1)求不等式f (x )≤3 的解集;(2)当x ∈[2,3]时,f (x )≥﹣x 2+2x +m 恒成立,求m 的取值范围.一、选择题(每题一个选项,每题5分共60分)1.【详解详析】因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B . 故选:B .2.【详解详析】由(1﹣2i )z =5i ,得z =5i1−2i =5i(1+2i)(1−2i)(1+2i)=−2+i , ∴|z |=|z |=√5. 故选:D .3.【详解详析】以四个顶点为圆心,1为半径作圆,当小球在边长为2的正方形区域内随机滚动,离顶点的距离不大于1,其面积为π, ∵边长为2的正方形的面积为4,∴它在离4个顶点距离都大于1的区域内的概率为P =4−π4=1−π4.故选:B .4.【详解详析】∵当a =2b cos C 时, ∴cos C =a2b ∵cos C =a 2+b 2−c 22ab∴a2b =a 2+b 2−c 22ab,化简整理得b =c∴△ABC 为等腰三角形.反之,“△ABC 是等腰三角形,不一定有b =c , 从而a =2b cos C 不一定成立.则“a =2b cos C ”是“△ABC 是等腰三角形”的充分不必要条件. 故选:A .5.【详解详析】三棱锥P ﹣BCD 的正视图是底面边长为1,高为2的三角形,面积为:1; 三棱锥P ﹣BCD 的假视图也是底面边长为1,高为2的三角形,面积为:1; 故三棱锥P ﹣BCD 的正视图与侧视图的面积之和为2, 故选:A .6.【详解详析】由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,∴这组样本数据完全正相关,故其相关系数为1, 故选:D .7.【详解详析】∵|e 1→|=|e 2→|=1,∴(e 1→+e 2→)⋅(e 1→−e 2→)=e 1→2−e 2→2=1−1=0,∴(e 1→+e 2→)⊥(e 1→−e 2→),∴A 正确;e 1→在e 2→方向上的投影为|e 1→|cosθ=cosθ,∴B 错误;显然e 1→2=e 2→2,∴C正确;e 1→⋅e 2→=cosθ<√2,∴不存在θ,使e 1→•e 2→=√2,∴D 正确. 故选:B .8.【详解详析】根据线面平行的判定,我们易得命题p :若直线a ∥b ,直线b ⊂平面α,则直线a ∥平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题q :若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题;故:A 命题“p ∧q ”为假命题; B 命题“p ∨(¬q )”为假命题; C 命题“(¬p )∧q ”为真命题; D 命题“p ∧(¬q )”为假命题.故选:C .9.【详解详析】设圆心坐标为(a ,b )(a >0,b >0), 由圆与直线4x ﹣3y =0相切,可得圆心到直线的距离d =|4a−3b|5=r =1,化简得:|4a ﹣3b |=5①,又圆与x 轴相切,可得|b |=r =1,解得b =1或b =﹣1(舍去),把b =1代入①得:4a ﹣3=5或4a ﹣3=﹣5,解得a =2或a =−12(舍去), ∴圆心坐标为(2,1),则圆的标准方程为:(x ﹣2)2+(y ﹣1)2=1. 故选:A .10.【详解详析】抛物线y 2=ax 的准线为x =−a4, 双曲线C :x 28−y 24=1的两条渐近线为y =±√22x ,可得两交点为(−a 4,√28a ),(−a 4,−√28a ), 即有三角形的面积为12•a 4•√24a =2√2, 解得a =8, 故选:A .11.【详解详析】假设将函数y =sin (2x +π3)的图象平移ρ个单位得到:y =sin (2x +2ρ+π3)关于点(−π12,0)中心对称∴将x =−π12代入得到:sin (−π6+2ρ+π3)=sin (π6+2ρ)=0 ∴π6+2ρ=k π,∴ρ=−π12+kπ2,当k =0时,ρ=−π12 故选:B .12.【详解详析】根据题意,定义在R 上的函数f (x )满足f (3﹣x )=f (3+x ),则函数f (x )关于直线x =3对称,c =e ln 4=4,f (c )=f (4)=f (2), 又由对任意x 1,x 2∈(0,3)都有f(x 2)−f(x 1)x 2−x 1<0,则函数f (x )在(0,3)上为减函数,若a =2−√3=3,b =log 23,则有0<a <1<b <2,则f (c )<f (b )<f (a ),。
2020年陕西省咸阳市高考数学一模试卷(文科)

2020年陕西省咸阳市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|22}A x N x =∈-<<,{1B =-,1,2,3},则(A B =I ) A .{1}B .{0,1}C .{0,1,2}D .{0,1,2,3}2.(5分)设21z i i =+g ,则(z = ) A .2i +B .2i -C .2i -+D .2i --3.(5分)记n S 是等比数列{}n a 的前n 项和,若20S =,则公比(q = ) A .0B .1-C .1D .无法确定4.(5分)已知(1,2)a =r ,(1,0)b =r ,则|2|(a b +=r r )A B .7 C .5 D .255.(5分)“0x >”是“20x x +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.(5分)椭圆2221x my -=的一个焦点坐标为(0,,则实数(m = ) A .23B .25 C .23-D .25-7.(5分)函数cos()4y x ππ=-的单调递增区间是( )A .13[2,2]()44k k k Z -+∈B .37[2,2]()44k k k Z ++∈C .31[2,2]()44k k k Z -+∈D .15[2,2]()44k k k Z ++∈8.(5分)已知121(0,0)x y x y+=>>,则2x y +的最小值为( )A .10B .9C .8D .79.(5分)设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和②B .②和③C .③和④D .①和④10.(5分)有编号为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ) A .827B .56C .23 D .1311.(5分)设函数()x f x x e =g ,则( ) A .()f x 有极大值1eB .()f x 有极小值1e-C .()f x 有极大值eD .()f x 有极小值e -12.(5分)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( ) AB.2C.2-D二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线y x lnx =g在点(1,0)处的切线的方程为 . 14.(5分)若变量x ,y 满足约束条件:22022020x y x y x y -+⎧⎪--⎨⎪++⎩…„…,则32z x y =+的最大值是 .15.(5分)已知22cos sin 2sin()(0x x A x b A ωϕ+=++>,0)ω>,则A = ,b = . 16.(5分)秦九韶是我国古代的数学家,他的《数学九章》概括了宋元时期中国传统数学的主要成就.秦九韶算法是一种将一元n 次多项式的求值问题转化为n 个一次式的算法,其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法,在西方被称作霍纳算法.121210()n n n n n n f x a x a x a x a x a ----=+++⋯++ 改写成以下形式:121210()n n n n n n f x a x a x a x a x a ----=+++⋯++ 1231210()n n n n n n a x a x a x a x a -----=+++⋯++ 2313210(())n n n n a x a x a x a x a x a ---=++⋯++++M1210((()))n n n a x a x a x a x a --=⋯+++⋯++若5432()(23)(13)(13)(13)(13)1f x x x x x x =+++++++++-,则(23)f -= . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(2sin ,3)2B m =r ,(cos ,cos )2B n B =r,且m n ⊥r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,3b =,求ABC ∆的面积.18.(12分)如图,长方体1111ABCD A B C D -中,E 是棱11D C 的中点,2AB =,11BC BB ==. (Ⅰ)求证:11B C DE ⊥; (Ⅱ)求三棱锥11E DB C -的体积.19.(12分)某单位利用“学习强国”平台,开展网上学习,实行积分制.为了了解积分情况,随机调查了50名员工,得到这些员工学习得分频数分布表: 得分 [0,10) [10,20)[20,30) [30,40) [40,50)人数51015137(Ⅰ)求这些员工学习得分的平均数(同一组中的数据用该组区间的中点值为代表); (Ⅱ)用分层抽样的方法从得分在[10,20)和[20,30)的员工中选取5人.从选取的5人中,再任选取2人,求得分在[10,20)和[20,30)中各有1人的概率. 20.(12分)已知函数()()f x lnx ax a R =-∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求实数a 的取值范围.21.(12分)如图,已知抛物线2:8C y x =的焦点是F ,准线是l . (Ⅰ)写出焦点F 的坐标和准线l 的方程;(Ⅱ)已知点(8,8)P ,若过点F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N 求证:MF NF ⊥.(二)选考题:共10分,考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上将所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 的参数方程23(2sin x y βββ⎧=⎪⎨=⎪⎩为参数).直线l 的参数方程3cos (1sin x t t y t αα⎧=⎪⎨=+⎪⎩为参数).(Ⅰ)求曲线C 在直角坐标系中的普通方程;(Ⅱ)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为(2,)6π时,求直线l 的倾斜角.[选修4-5:不等式选讲]23.已知函数()||(2)|2|()f x x a x x x a =--+--. (Ⅰ)当2a =时,求不等式()0f x <的解集;(Ⅱ)若(0,2)x ∈时()0f x …,求a 的取值范围.2020年陕西省咸阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|22}A x N x =∈-<<,{1B =-,1,2,3},则(A B =I ) A .{1}B .{0,1}C .{0,1,2}D .{0,1,2,3}【解答】解:集合{|22}{0A x N x =∈-<<=,1},{1B =-,1,2,3}, 则{1}A B =I , 故选:A .2.(5分)设21z i i =+g ,则(z = ) A .2i +B .2i -C .2i -+D .2i --【解答】解:由21z i i =+g ,得212(12)()2i i i z i i i ++-===--. 故选:B .3.(5分)记n S 是等比数列{}n a 的前n 项和,若20S =,则公比(q = ) A .0B .1-C .1D .无法确定【解答】解:1(1)0a q +=,解得1q =-. 故选:B .4.(5分)已知(1,2)a =r ,(1,0)b =r ,则|2|(a b +=rr )A B .7 C .5 D .25【解答】解:Q (1,2)a =r,(1,0)b =r , ∴2(3,4)a b +=rr , ∴|2|5a b +=rr .故选:C .5.(5分)“0x >”是“20x x +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:由20x x +>,解得0x >,或1x <-.∴ “0x >”是“20x x +>”的的充分不必要条件,故选:A .6.(5分)椭圆2221x my -=的一个焦点坐标为(0,,则实数(m = ) A .23B .25 C .23-D .25-【解答】解:椭圆2221x my -=的标准方程为:221112y x m +=-,一个焦点坐标为(0,,,解得25m =-,故选:D .7.(5分)函数cos()4y x ππ=-的单调递增区间是( )A .13[2,2]()44k k k Z -+∈B .37[2,2]()44k k k Z ++∈C .31[2,2]()44k k k Z -+∈D .15[2,2]()44k k k Z ++∈【解答】解:解224k x k πππππ--剟得,312244k x k -+剟, ∴函数cos()4y x ππ=-的单调递增区间是31[2,2]()44k k k Z -+∈. 故选:C . 8.(5分)已知121(0,0)x y x y+=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【解答】解:Q121x y +=,且0x >,0y >,∴1242(2)()2248x y x y x y xyy x +=++=++++=…,当且仅当4x y y x=,即24y x ==时取等号,2x y ∴+的最小值为8.故选:C .9.(5分)设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α则m n ⊥; ②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和②B .②和③C .③和④D .①和④【解答】解:①根据线面垂直的性质定理,可知①正确; ②根据面面平行的性质定理和线面垂直的性质定理,可知②正确;③若//m α,//n α,则m 与n 的位置关系是平行、相交或异面,即③错误; ④若m α⊥,αβ⊥,则//m β或m β⊂,即④错误. 故选:A .10.(5分)有编号为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ) A .827B .56C .23 D .13【解答】解:有编号为1,2,3的三个盒子和编号分别为1,2,3的三个小球, 每个盒子放入一个小球,基本事件总数336n A ==, 小球的编号与盒子编号全不相同包含的基本事件有: 编号为1,2,3的三个盒子对应的小球的编号分别为: 2,3,1或3,1,2,共有2个,则小球的编号与盒子编号全不相同的概率为2163p ==. 故选:D .11.(5分)设函数()x f x x e =g ,则( ) A .()f x 有极大值1eB .()f x 有极小值1e -C .()f x 有极大值eD .()f x 有极小值e -【解答】解:()(1)x f x x e '=+,当1x >-时,()0f x '>,函数单调递增,当1x <-时,()0f x '<,函数单调递减, 故当1x =-时,函数取得极小值1(1)f e --=-. 故选:B .12.(5分)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( ) A .22+B .22+C .22-D .22-【解答】解:设MN 与x 轴交于E ,因为四边形PQMN 为正方形,所以OEN ∆为等腰直角三角形,所以2OE NE ON ==,由题意可得半径ON c =, 所以N 坐标2(c ,2)c ,而N 是12F F 为直径的圆交双曲线C 的交点, 代入双曲线方程可得:2222122c c a b-=,而222b c a =-,整理可得:4224420c a c a -+=,离心率ce a=所以可得:42420e e -+=,解得222e =+,所以22e =+, 故选:A .二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线y x lnx =g在点(1,0)处的切线的方程为 10x y --= . 【解答】解:由()f x xlnx =,得 11y lnx x lnx x'=+=+g ,f ∴'(1)111ln =+=,即曲线()f x xlnx =在点(1,0)处的切线的斜率为1,则曲线()f x xlnx =在点(1,0)处的切线方程为01(1)y x -=⨯-, 整理得:10x y --=. 故答案为:10x y --=.14.(5分)若变量x,y满足约束条件:22022020x yx yx y-+⎧⎪--⎨⎪++⎩…„…,则32z x y=+的最大值是10.【解答】解:画出约束条件的可行域,32z x y=+得3122y x z=-+,当3122y x z=-+经过可行域的(2,2)B目标函数取得最大值:322210⨯+⨯=.故答案为:1015.(5分)已知22cos sin2sin()(0x x A x b Aωϕ+=++>,0)ω>,则A2,b=.【解答】解:22cos sin21cos2sin22)14x x x x xπ+=++++,则2A=,1b=,21.16.(5分)秦九韶是我国古代的数学家,他的《数学九章》概括了宋元时期中国传统数学的主要成就.秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法,其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法,在西方被称作霍纳算法.121210()n n nn n nf x a x a x a x a x a----=+++⋯++改写成以下形式:121210()n n nn n nf x a x a x a x a x a----=+++⋯++1231210()n n nn n na x a x a x a x a-----=+++⋯++2313210(())n nn na x a x a x a x a x a---=++⋯++++M1210((()))n n n a x a x a x a x a --=⋯+++⋯++若5432()(2(1(1(1(11f x x x x x x =++++++++-,则(2f -= 0 .【解答】解:5432()(2(1(1(1(11(((((f x x x x x x =++++++++-=2+ )11111x x x x x +++++++-则(20f =. 故答案为:0.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(2sin 2B m =r ,(cos ,cos )2B n B =r,且m n ⊥r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,b =ABC ∆的面积.【解答】解:(Ⅰ)Q m n ⊥r r ,∴2sin cos 022B BB =.化简得:tan B =,又0B π<<Q ,∴23B π=.(Ⅱ)由余弦定理2222cos b a c ac B =+-得,222112()2c c =+--,解之得:1c =.∴11sin 1122ABC S ac B ∆==⨯⨯=. 18.(12分)如图,长方体1111ABCD A B C D -中,E 是棱11D C 的中点,2AB =,11BC BB ==. (Ⅰ)求证:11B C DE ⊥; (Ⅱ)求三棱锥11E DB C -的体积.【解答】解:(Ⅰ)证明:1111ABCD A B C D -Q 是长方体,11B C ∴⊥平面11DCC D . 又DE ⊂Q 平面11DCC D ,11B C DE ∴⊥.(Ⅱ)2AB =Q ,E 是棱11D C 的中点,11EC ∴=,∴11111111111111111111332326E DB C B DEC DEC V V S B C DD EC B C --===⨯=⨯⨯⨯⨯=V g g g g .19.(12分)某单位利用“学习强国”平台,开展网上学习,实行积分制.为了了解积分情况,随机调查了50名员工,得到这些员工学习得分频数分布表: 得分 [0,10) [10,20)[20,30) [30,40) [40,50)人数51015137(Ⅰ)求这些员工学习得分的平均数(同一组中的数据用该组区间的中点值为代表); (Ⅱ)用分层抽样的方法从得分在[10,20)和[20,30)的员工中选取5人.从选取的5人中,再任选取2人,求得分在[10,20)和[20,30)中各有1人的概率. 【解答】解:(Ⅰ)记这50名员工学习得分的平均数为x , 则1(55151025153513457)26.450x =⨯⨯+⨯+⨯+⨯+⨯=. (Ⅱ)用分层抽样可知从[10,20)中选2人,记这2人分别为1a ,2a ; 从[20,30)中选3人,记这3人分别为1b ,2b ,3b . 从1a ,2a ,1b ,2b ,3b 中再任取2人的情况有:12a a ,11a b ,12a b ,13a b ,21a b ,22a b ,23a b ,12b b ,13b b ,23b b 共10种.其中得分在[10,20)和[20,30)中各有1人的情况有: 11a b ,12a b ,13a b ,21a b ,22a b ,23a b 共6种.记事件A 为“得分在[10,20)和[20,30)中各有1人”则63()105P A ==. 20.(12分)已知函数()()f x lnx ax a R =-∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求实数a 的取值范围.【解答】解:(Ⅰ)()f x lnx ax =-的定义域为(0,)+∞,1()f x a x'=-. ①当0a „时,由()0f x '>,知()f x 在(0,)+∞内单调递增. ②当0a >时,由()0f x '>,即10a x ->得10x a<<, 由()0f x '<,即10a x -<得1x a >,()f x ∴在1(0,)a 内单调递增;在1(,)a+∞内单调递减. 因此,①当0a „时,()f x 在(0,)+∞内单调递增.②当0a >时,()f x 在1(0,)a 内单调递增;在1(,)a+∞内单调递减.(Ⅱ)()f x 有两个零点. 即:方程0lnx ax -=有两个实根, 即:方程lnxa x=有两个实根, 即:函数y a =和()lnx g x x =有两个公共点,21()lnxg x x -'=. 由()0g x '>,即:210lnxx ->,0x e ∴<<. 由()0g x '<,即:210lnxx-<,x e ∴>. ∴1()()max g x g e e==. 又1()0g e e=-<,当1x >时,0lnxx>,∴10a e <<,∴当10a e<<时,()f x lnx ax =-有两个零点. 21.(12分)如图,已知抛物线2:8C y x =的焦点是F ,准线是l . (Ⅰ)写出焦点F 的坐标和准线l 的方程;(Ⅱ)已知点(8,8)P ,若过点F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N 求证:MF NF ⊥.【解答】解:()I 抛物线的焦点为(2,0)F , 准线l 的方程为:2x =-;(Ⅱ)由()I 知:设直线AB 的方程为:2()x my m R -=∈, 令1(A x ,1)y ,2(B x ,2)y ,228x myy x -=⎧⎨=⎩,消去x 得:28160y my --=, 由根与系数的关系得:1216y y =-.直线PB 方程为:228888y x y x --=--,22222888(8)8888y y x y x y y -+=-+=+-, 当2x =-时,228168y y y -=+,∴22816(2,)8y N y --+,同理得:11816(2,)8y M y --+.∴22816(4,)8y FN y -=-+u u u r ,11816(4,)8y FM y -=-+u u u u r , ∴212121122121212181681616(8)(8)(816)(816)80(16)80(1616)16088(8)(8)(8)(8)(8)(8)y y y y y y y y FN FM y y y y y y y y --+++--+-+=+⨯====++++++++u u u r u u u u r g ,∴FN FM ⊥u u u r u u u u r,MF NF ∴⊥.(二)选考题:共10分,考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上将所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C的参数方程(2sin x y βββ⎧=⎪⎨=⎪⎩为参数).直线l 的参数方程cos (1sin x t t y t αα⎧=⎪⎨=+⎪⎩为参数).(Ⅰ)求曲线C 在直角坐标系中的普通方程;(Ⅱ)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为(2,)6π时,求直线l 的倾斜角.【解答】解:()I 由曲线C的参数方程2sin x y ββ⎧=⎪⎨=⎪⎩,(β为参数).得:cos sin 2y ββ⎧=⎪⎪⎨⎪=⎪⎩∴曲线C 的参数方程化为普通方程为:221124x y +=.()II 解法一:中点极坐标(2,)6π化成直角坐标为.设直线l 与曲线C 相交于1(A x ,1)y ,2(B x ,2)y两点,1212122x x y y ++=. 则2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ②-①得222221210124x x y y --+=,化简得:211221123()y y x x x x y y -+=-==-+即tan l k α==. 又(0,)απ∈Q ,∴直线l 的倾斜角为56π.解法二:中点极坐标(2,)6π化成直角坐标为,将cos 1sin x t y t αα⎧=+⎪⎨=+⎪⎩分别代入221124x y +=,2(1sin )14t α++=.∴222(cos 3sin )(6sin )60t t αααα+++-=,∴120t t +==,即6sin 0αα--=.∴sin cos αα=,即tan α= 又(0,)απ∈Q ,∴直线l 的倾斜角为56π. [选修4-5:不等式选讲]23.已知函数()||(2)|2|()f x x a x x x a =--+--. (Ⅰ)当2a =时,求不等式()0f x <的解集; (Ⅱ)若(0,2)x ∈时()0f x …,求a 的取值范围.【解答】解:()I 当2a =时,()|2|(2)|2|(2)f x x x x x =--+--, 由()0f x <得|2|(2)|2|(2)0x x x x --+--<. ①当2x …时,原不等式可化为:22(2)0x -<, 解之得:x ∈∅.②当2x <时,原不等式可化为:22(2)0x --<, 解之得x R ∈且2x ≠,2x ∴<. 因此()0f x <的解集为:{|2}x x <.()II 当(0,2)x ∈时,()||(2)|2|()(2)[||()]f x x a x x x a x x a x a =--+--=----. 由()0f x …得(2)[||()]0x x a x a ----…, ||x a x a ∴--„,0x a ∴-…, a x ∴„,(0,2)x ∈,0a ∴„,∴的取值范围为(-∞,0].a。
2020年陕西省高考数学三模试卷(文科)(有答案解析)

由勾股定理可得 R2=( )2+d2=( )2+( -d)2,
∴d=0,R2= , ∴球的表面积为 4πR2=3π.
第 7 页,共 15 页
故选:B.
8.答案:B
解析:解:∵ln(1+ )=ln =ln(i+1)-lni,
∴i=1 时,S=ln2-ln1=ln2, i=2 时,S=ln2+ln3-ln2=ln3, i=3 时,S=ln3+ln4-ln3=ln4, i=4,S=ln4+ln5-ln4=ln5, 此时 i=5 不满足条件,输出 S=ln5, 即条件为 i≤4?, 故选:B. 根据程序框图进行模拟运算即可. 本题主要考查程序框图的识别和判断,利用条件进行模拟运算是解决本题的关键.
A.
B.
C.
D.
8. 执行如图所示的程序框图,则输出 S 的值为 ln5,则在判断框内 应填( )
A. i≤5? B. i≤4? C. i<6? D. i>5?
9. 一只蚂蚁从正方体 ABCD-A1B1C1D1 的顶点 A 处出发,经正方体的表面,按最短路线爬行到达顶 点 C1 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()
又∵y'=
故函数的单调区间呈周期性变化
第 8 页,共 15 页
分析四个答案,只有 C 满足要求 故选:C.
根据函数
的解析式,我们根据定义在 R 上的奇函数图象必要原点可以排除 A,再求出其
导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论. 本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我 们经常用的方法.
3.答案:A
2020年陕西省高考数学一模试卷(文科)(有解析)

2020年陕西省高考数学一模试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.已知全集U={−2,−1,0,1,2},A={y|y=|x|,x∈U},则∁U A=()A. {0,1,2}B. {−2,−1,0}C. {−1,−2}D. {1,2}2.已知i为虚数单位,m∈R,若复数(2−i)(m+i)在复平面内对应的点位于实轴上、则复数mi的1−i 虚部为()A. 1B. iC. −1D. −i3.条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法:①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;②2018年全年全国居民人均可支配收入的中位数约是平均数的86%;③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的70%.则上述说法中,正确的个数是()A. 0B. 1C. 2D. 34.《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得()A. 一鹿、三分鹿之一B. 一鹿C. 三分鹿之二D. 三分鹿之一5.在正三角形△ABC内任取一点P,则点P到A,B,C的距离都大于该三角形边长一半的概率为()A. 1−√3π6B. 1−√3π12 C. 1−√3π9 D. 1−√3π186. 已知函数f(x)满足f(x)+f(1−x)=1.执行如图所示的程序框图,输出的结果为A.20192B. 1010C.20212D. 201920207. 一个几何体的三视图如图所示,其体积为( )A. 116 B.116√3C. 32D. 128. 已知函数f(x)={(3a −1)x +4a,x <1a x ,x ≥1是(−∞,+∞)上的减函数,那么a 的取值范围是( )A. (0,1)B. (0,13)C. [16,13)D. (16,13)9. 已知F 1、F 2为双曲线C :x 2−y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( )A. 34 B. 14C. 45D. 3510. 函数的单调递增区间是( )A. [0,5π12]B. [π6,2π3]C. [π6,11π12] D. [2π3,11π12]11. 过抛物线x =14y 2的焦点F 的直线交抛物线于A ,B 两点,O 是坐标原点,抛物线的准线与x 轴交于点M ,若|AF|=4,则△AMB 的面积为( )A. 5√33B. 7√33C. 8√33D. 3√312.已知a,b∈R,直线y=ax+b+π2与函数f(x)=tan x的图象在x=−π4处相切,设g(x)=e x+bx2+a,若在区间[1,2]上,不等式m≤g(x)≤m2−2恒成立,则实数m有()A. 最大值eB. 最大值e+1C. 最小值−eD. 最小值e二、填空题(本大题共3小题,共15.0分)13.已知a⃗=(1,0), b⃗ =(2,1),则a⃗⋅b⃗ =______ .14.若sin(π3−α)=45,则cos(2α+π3)=______ .15.曲线f(x)=2x−1x在点(1,f(1))处的切线与圆x2+y2=R2相切,则R=______.三、多空题(本大题共1小题,共5.0分)16.在数列{a n}中,a3=12,a11=−5,且任意连续三项的和均为11,则a2017=(1);设S n是数列{a n}的前n项和,则使得S n≤100成立的最大整数n=(2).四、解答题(本大题共7小题,共82.0分)17.在四棱锥P−ABCD中,底面ABCD是直角梯形,AB//CD,BC⊥AB,PD=PA=CD=BC=12AB,PB=PC.(1)求证:平面PAD⊥平面PBD;(2)若三棱锥B−PCD的体积为2√23,求PC的长.18.在△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB=√3b.(1)求角A的大小;(2)若0<A<π2,a=6,且△ABC的面积S=73√3,求△ABC的周长.19.为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对300名学生做了问卷调查,列联表如下:已知在全部300人中随机抽取1人,抽到学习积极性不高的学生的概率为415.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .20. 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率e =√22,已知以坐标原点为圆心,椭圆短半轴长为半径的圆与直线x −y +2=0相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过F 1的直线l 与椭圆相交于不同的两点A 、B ,若F 2A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =6,求直线l 的方程.21. 已知函数f(x)=ax 2−lnx +1(a ∈R).(1)求函数f(x)的单调区间;(2)求证:当a =1时,f(x)>12x 2+32在(1,+∞)上恒成立.22.平面直角坐标系xOy中,曲线C的参数方程为{x=√3+2cosα(α为参数),在以坐标原点y=1+2sinαO为极点,x轴非负半轴为极轴的极坐标系中,点P在射线l:θ=π上,且点P到极点O的距离3为4.(Ⅰ)求曲线C的普通方程与点P的直角坐标;(Ⅱ)求▵OCP的面积.23.已知f(x)=|x−2a|+|2x+a|,g(x)=2x+3.(1)当a=1时,求不等式f(x)<4的解集;,1)时,f(x)<g(x)恒成立,求a的取值范围.(2)若0<a<3,且当x∈[−a2【答案与解析】1.答案:C解析:解:A={0,1,2};∴∁U A={−2,−1}.故选:C.可求出集合A,然后进行补集的运算即可.考查列举法、描述法的定义,以及补集的运算.2.答案:A解析:本题考查复数的四则运算,复数的概念,复数的代数形式表示及其几何意义,属于基础题.解:因为复数(2−i)(m+i)=(2m+1)+(2−m)i,又因为复平面内对应的点位于实轴上,所以2−m=0,即m=2,所以复数mi1−i =2i1−i=2i(1+i)2=−1+i,所以虚部为1.故选A.3.答案:D解析:本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据处理能力,考查函数与方程思想、数形结合思想,是基础题.解:对于①,根据图像可知2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;对于②,根据图像可知中位数为24336元,平均数为28338元,则;对于③,根据图像可得2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的70%故正确的个数有3个,故答案为D.4.答案:B解析:本题主要考查等差数列的通项公式,以及等差数列的求和. 根据题意得{a 1=535a 1+5×42d =5,求得公差,即可得到答案. 解:根据题意得{a 1=535a 1+5×42d =5,解得d =−13, 所以a 3=a 1+2d =53−23=1, 所以是一鹿. 故选B .5.答案:A解析:先求出正三角形ABC 的面积,再求出满足条件正三角形ABC 内的点到三角形的顶点A 、B 、C 的距离均不小于三角形边长一半的图形的面积,然后代入几何概型公式即可得到答案.本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解:满足条件的正三角形ABC 如下图所示:设边长为2, 其中正三角形ABC 的面积S △ABC =√34×4=√3.满足到正三角形ABC 的顶点A 、B 、C 的距离至少有一个小于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆,则S阴影=12π,则使取到的点到三个顶点A、B、C的距离都大于1的概率是:P=1−√3π6.故选A.6.答案:A解析:本题主要考查程序框图的应用.比较基础.根据程序框图,让数值进行循环,找到满足条件时,输出的S即为所求.解:S=f(12020)+f(22020)+⋯+f(20192020),因为f(12020)+f(20192020)=1,f(22020)+f(20182020)=1,…,f(20192020)+f(12020)=1,所以S=20192.故选A.7.答案:A解析:解:该几何体是一个直三棱柱截去一个小三棱锥,如图所示,则其体积为:V=12×2×1×2−1 3×12×1×1×1=116.故选:A.画出三视图对应的几何体的图形,判断几何体的形状,利用三视图的数据求解几何体的体积即可.本题考查三视图与几何体的关系,几何体的体积的求法,考查转化思想以及计算能力.8.答案:C解析:解:∵函数f(x)={(3a −1)x +4a,x <1a x ,x ≥1是(−∞,+∞)上的减函数,∴{3a −1<00<a <13a −1+4a ≥a ,求得16≤a <13, 故选:C .利用分段函数以及函数的单调性,列出不等式组,求得a 的范围.本题主要考查函数的单调性的性质,指数函数、一次函数的单调性,属于基础题.9.答案:A解析:本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.根据双曲线的定义,结合|PF 1|=2|PF 2|,利用余弦定理,即可求cos∠F 1PF 2的值. 解:将双曲线方程x 2−y 2=2化为标准方程x 22−y 22=1,则a =√2,b =√2,c =2,设|PF 1|=2|PF 2|=2m ,则根据双曲线的定义,|PF 1|−|PF 2|=2a 可得m =2√2, ∴|PF 1|=4√2,|PF 2|=2√2, ∵|F 1F 2|=2c =4, ∴cos∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1||PF 2|=32+8−162×4√2×2√2=2432=34. 故选A .10.答案:B解析:本题考查三角函数的单调区间的求法,将看作一个整体,根据y =sinx 的单调减区间求解.解:函数,由2kπ+π2≤2x +π6≤2kπ+3π2(k ∈Z),得kπ+π6≤x ≤kπ+2π3(k ∈Z),令k =0得.故选B .11.答案:C解析:本题考查抛物线的定义,考查三角形的面积的计算,确定A,B的坐标是解题的关键.利用抛物线的定义,求出A,B的坐标,再计算△AMB的面积.解:抛物线x=14y2即为y2=4x的准线l:x=−1.∵|AF|=4,∴点A到准线l:x=−1的距离为4,∴1+x A=4,∴x A=3,∴y A=±2√3,不妨设A(3,2√3),∴S△AFM=12×2×2√3=2√3,∵F(1,0),∴直线AB的方程为y=√3(x−1),∴{y=√3(x−1) y2=4x,解得B(13,−2√33),∴S△BFM=12×2×2√33=2√33,∴S△AMB=S△AFM+S△BFM=2√3+2√33=8√33,故选:C12.答案:B解析:本题考查导数的运用:求切线的斜率和单调区间和极值、最值,考查不等式恒成立问题的解法,注意运用函数的单调性,考查化简整理的运算能力,属于中档题.求得f(x)的导数,可得切线的斜率,解方程可得b =−1,a =2,求出g(x)的导数和单调性,可得最值,解不等式即可得到m 的最值. 解:∵f(x)=tanx =sinxcosx ,∴f′(x)=cosx 2−sinx⋅(−sinx)cos 2x=1cos 2x ,∴a =f′(−π4)=2,又点(−π4,−1)在直线y =ax +b +π2上, ∴−1=2⋅(−π4)+b +π2,∴b =−1,∴g(x)=e x −x 2+2,g′(x)=e x −2x ,g′′(x)=e x −2, 当x ∈[1,2]时,g′′(x)≥g′′(1)=e −2>0, ∴g′(x)在[1,2]上单调递增,∴g′(x)≥g(1)=e −2>0,∴g(x)在[1,2]上单调递增,∴{m ≤g(x)min =g(1)=e +1m 2−2≥g(x)max =g(2)=e 2−2⇒m ≤−e 或e ≤m ≤e +1, ∴m 的最大值为e +1,无最小值, 故选:B .13.答案:2解析:解:由已知a ⃗ =(1,0), b ⃗ =(2,1),则a ⃗ ⋅b ⃗ =1×2+0×1=2; 故答案为:2.利用平面向量的数量积公式的坐标运算进行计算即可.本题考查了平面向量的数量积公式的坐标运算;熟记公式是关键.14.答案:725解析:本题主要考查诱导公式,二倍角的余弦公式的应用,属于基础题.由条件利用诱导公式求得cos(π6+α)的值,再利用二倍角的余弦公式求得cos(2α+π3)的值.解:∵sin(π3−α)=cos(π6+α)=45,∴cos(2α+π3)=2cos2(α+π6)−1=2×1625−1=725,故答案为:725.15.答案:√105解析:本题考查导数的运用:求切线的斜率,考查直线和圆相切的条件:d=r,考查方程思想和运算能力,属于基础题.求得f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线方程,再由圆心到切线的距离等于半径,计算可得所求值.解:f(x)=2x−1x 的导数为f′(x)=2+1x,可得切线的斜率为k=3,切点为(1,1),即有在x=1处的切线方程为y−1=3(x−1),即为3x−y−2=0,由切线与圆x2+y2=R2相切,可得d=√10=R,解得:R=√105.故答案为√105.16.答案:429解析:解:由题意可得a n+a n+1+a n+2=11,将n换为a n+1+a n+2+a n+3=11,可得a n+3=a n,可得数列{a n}是周期为3的数列.a3=12,a11=−5,即有a2=−5,a1=11−12+5=4,可得a2017=a3×672+1=a1=4;当n=3k,k为自然数,时,S n=11k;当n=3k+1,k为自然数时,S n=11k+4;当n=3k+2,k为自然数时,S n=11k+4−5=11k−1;使得S n≤100成立,由11k≤100,可得k的最大值为9,此时n=27;由11k+4≤100,可得k的最大值为8,此时n=25;由11k−1≤100,可得k的最大值为9,此时n=29.则使得S n≤100成立的最大整数n为29.故答案为:4,29.将a n+a n+1+a n+2=11中n换为n+1,可得数列{a n}是周期为3的数列.求出a2=−5,a1=4,即可得到a2017=a1,讨论n为3的倍数或余1或余2,计算n的最大值,即可得到所求值.本题考查了数列的周期性、递推关系,考查了推理能力与计算能力,属于中档题.17.答案:证明:(1)取AD的中点O,BC的中点F,连接PO,OF,PF.∵底面ABCD是直角梯形,AB//CD,BC⊥AB,∴OF//AB,OF⊥BC.又∵PB=PC,∴PF⊥BC,且PF∩OF=F,PF,OF⊂平面POF,∴BC⊥面POF.∵PO⊂面POF,∴BC⊥PO,又PA=PD,∴PO⊥AD,又直线AD与BC相交,且AD、BC在平面ABCD内,∴PO⊥面ABCD.∵BD⊂面ABCD,∴PO⊥BD.∵BC=CD,BC⊥CD∴BD=√2BC,,又AB=2BC,AD=BD=√2BC,AD2+BD2=AB2,∴AD⊥BD,∵PO∩AD=O,PO,AD⊂面PAD,∴BD⊥面PAD,且DB⊂面PDB,∴平面PAD⊥平面PBD;解:(2)设BC=a,则PO=√22a,∵V B−PCD=V P−BCD=13PO×S BCD=13×√22a×a22=√212a3=2√23.∴a=2,从而PO=√2, OF=2+42=3 ,PF=√(√2)2+32=√11 , PC=√(√11)2+12=2√3,故PC=2√3.解析:本题考查面面垂直的判定定理的应用,直线与平面垂直判断定理的应用,几何体的体积的求法,考查空间想象能力,计算能力,属于一般题.(1)易证PO⊥面ABCD,又BD=√2BC,AB=2BC,可得AD⊥BD,即可证明面PAD⊥平面PBD;(2)利用棱锥B−PCD的体积为2√23,求得BC,再求PC.18.答案:解:(1)由题意2asinB=√3b.由正弦定理得:2sinAsinB=√3sinB.∵0<B<π,sinB≠0∴sinA=√32.∵0<A<π.∴A=π3或2π3.(2)∵△ABC的面积S=73√3,即12bcsinA=73√3,可得:bc=283.由余弦定理得,a2=b2+c2−2bccosA=(b+c)2−3bc,即36=(b+c)2−28,从而b+c=8故△ABC的周长l=a+b+c=14.解析:(1)由2asinB=√3b,根据正弦定理化简即可求角A的大小.(2)利用“整体”思想,利用余弦定理求解b+c的值,即可得△ABC的周长.本题主要考查了正弦定理,余弦定理的灵活运用能力.属于基础题.19.答案:解:(1)设学习积极性不高的学生的学生共x名,则x300=415,解得x=80.则列联表如下:(2)有理由:由已知数据可求K2=300×(180×60−20×40)2200×100×220×80≈85>7.879,因此有99.5%的把握认为学习积极性高与参加文体活动有关.(3)根据题意,可设抽出的学习积极性高的同学为A、B,学习积极性不高的同学为C、D、E,则选取的两人可以是:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE.所以至少有一名同学学习积极性不高的概率为910.解析:本题考查了列联表与独立性检验的应用问题,也考查了列举法求古典概型的概率问题,是基础题.(1)根据条件计算并填写列联表;(2)由表中数据计算观测值,对照临界值得出结论;(3)利用列举法求出基本事件数,再计算所求的概率值.20.答案:解:(Ⅰ)由椭圆的离心率e=ca =√1−b2a2=√22,则a=√2b,由b=√12+12=√2,则a=2,∴椭圆的标准方程为:x24+y22=1;(Ⅱ)由(Ⅰ)可知:椭圆的焦点F1(−√2,0),F2(√2,0),当直线l 斜率不存在时,则x =−√2,则A(−√2,1),B(−√2,−1),则F 2A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =(−2√2,−1)(−2√2,1)=7≠6,不符合题意,舍去,当直线l 的斜率存在,且不为0,设直线l 的方程为:y =k(x +√2),A(x 1,y 1),B(x 2,y 2), 联立{y =k(x +√2)x 24+y 22=1,消去y 得,(2k 2+1)x 2+4√2k 2x +4k 2−4=0,x 1+x 2=−4√2k 22k 2+1,x 1x 2=4k 2−42k 2+1,y 1y 2=k 2(x 1+√2)(x 2+√2)=k 2(x 1x 2+√2(x 1+x 2)+2)=−2k 22k +1,则F 2A ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =(x 1−√2,y 1)(x 2−√2,y 2) =x 1x 2−√2(x 1+x 2)+2+y 1y 2=4k 2−4+8k 2−2k 22k 2+1+2=6,则k 2=4,解得:k =±2, ∴直线l 的方程为y =±2(x +√2).解析:本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理及向量的坐标运算,考查转化思想,属于中档题.(Ⅰ)根据椭圆的离心率公式及点到直线的距离公式即可求得a 和b 的值,求得椭圆的方程; (Ⅱ)分类讨论,设直线方程,代入椭圆方程,利用韦达定理及向量的坐标运算,即可求得k 的值,可求得直线l 的方程.21.答案:解(1)由于f(x)=ax 2−lnx +1故f′(x)=2ax −1x=2ax 2−1x(x >0)…(1分)当a ≤0时,f′(x)<0在(0,+∞)上恒成立, 所以f(x)在(0,+∞)上是单调递减函数…(2分) 当a >0时,令f′(x)=0,得x =√12a …(3分)当x 变化时,f′(x),f(x)随的变化情况如表:x(0 , √12a )√12a(√12a , +∞ )f′(x)−0+ f(x)↘极小值↗由表可知,f(x)在(0 , √12a )上是单调递减函数,在(√12a , +∞ )上是单调递增函数..(5分)综上所述,当a≤0时,f(x)的单调递减区间为(0,+∞),无单调递增区间;当a>0时,f(x)的单调递减区间为( 0 , √12a ),单调递增区间为(√12a,+∞)…(6分)(2)当a=1时,F(x)=x2−lnx+1−12x2−32=12x2−lnx−12…(7分)则F′(x)=x−1x =x2−1x=(x+1)(x_1)x>0在(1,+∞)上恒成立,…(9分)所以F(x)在(1,+∞)上为增函数,且F(1)=0…(10分)即F(x)>0在(1,+∞)上恒成立所以当a=1时,f(x)>12x2+32在(1,+∞)上恒成立…(12分)解析:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)代入a的值,求出函数的导数,根据函数的单调性证明即可.本题考查了函数的单调性问题,考查导数的应用以及不等式的证明,考查转化思想,分类讨论思想,是一道综合题.22.答案:解:(1)消去参数α,得曲线C的普通方程为(x−√3)2+(y−1)2=4,点P的极坐标为(4,π3),直角坐标为(2,2√3).(2)(方法一)圆心C(√3,1),OC:y=√33x⇒x−√3y=0,点P到OC的距离d=|2−√3⋅2√3|2=2,且|OC|=2,所以S△OCP=12|OC|⋅d=2.(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图像利用极坐标的几何含义,可得,|OC|=2,|OP|=4,所以=12⋅2⋅4⋅sin π6=2.所以S△OCP=2.解析:本题考查了简单曲线的极坐标方程和曲线的参数方程,是中档题.(1)消去参数α可得曲线C的普通方程,由P的极坐标转为P的直角坐标;(2)(方法一),先得出直线OC的方程,再得出点P到OC的距离,即可得出△OCP的面积;(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图像利用极坐标的几何含义,可得△OCP的面积.23.答案:解:(1)当a=1时,不等式f(x)<4可化为|x−2|+|2x+1|<4,若x<−12,则有2−x−2x−1<4,解得x>−1,∴此时−1<x<−12;若−12≤x≤2,则有2−x+2x+1<4,解得x<1,∴此时−12≤x<1;若x>2,则有x−2+2x+1<4,解得x<53,∴此时无解,综上可得,原不等式的解集是{x|−1<x<1};(2)当x∈[−a2,1)时,f(x)=|x−2a|+2x+a,f(x)<g(x)即为|x−2a|<3−a恒成立,∵0<a<3,∴3−a>0,∴a−3<x−2a<3−a,即3a−3<x<3+a在x∈[−a2,1)上恒成立,∴{−a2>3a−31≤3+a0<a<3,解得0<a<67.解析:本题主要考查绝对值不等式的求解,属于中档题. (1)将f(x)分区间求解即可;(2)将f(x)<g(x)恒成立转化为|x −2a|<3−a 恒成立,然后求解得到{−a2>3a −31≤3+a 0<a <3,解出a 的取值范围.。