高中数学对数与对数运算
高中数学对数的运算

对数函数专题对数及对数运算【要点梳理】要点一、对数概念 1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质:(1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log a a a M M N N=-(3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N , log a (M ·N )=log a M ·log a N ,log a N M N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a N a N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有:(1))(log log R n M M n a a n ∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n a a M M n log log =.(2))1,0(log log log ≠>=c c aMM c c a ,令log a M=b , 则有a b =M , 则有)1,0(log log ≠>=c c M a c b c即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求.(2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(33x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-.【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =- (2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x .(1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以 (3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.例3.(2014 广东湛江期中)不用计算器计算:7log 203log lg25lg47(9.8)+++- 【答案】132【解析】原式323log 3lg(254)21=+⨯++23lg1032=++3132322=++=【总结升华】对数恒等式log a N a N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c N a ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c N b cc N N a a b c N ⋅⋅⎡⎤====⎣⎦类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log aa a a xyx y z z=+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--;(4)log a211log ()log 2log log log 23a a a a a x y x y z -=+-.(有错误) 【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三: 【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2. 【解析】(1)1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185b a ==,求36log 45.【答案】2a ba+- 【解析】解法一:18log 9,185b a ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.(3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用. 【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=类型六、对数运算法则的应用例6.求值(1)91log 81log 251log 32log 53264⋅⋅⋅(2)7lg142lg lg 7lg183-+-【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2)原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--=举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;【巩固练习】一、选择题1. 有以下四个结论:①lg (lg10)=0;②ln (lne )=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )A .①③B .②④C .①②D .③④ 【答案】C【解析】由log 1,log 10a a a ==知①②正确.2. 下列等式成立的有( )①1lg 2100=-;②33log 2=;③2log 525=;④ln 1e e =;⑤lg 333=;A .①②B .①②③C .②③④D .①②③④⑤ 【答案】B【解析】21lg lg102100-==-;3. 对数式2log (5)a a b --=中,实数a 的取值范围是( )A .(),5-∞B . ()2,5C .()()2,33,5D .()2,+∞【答案】C【解析】由对数的定义可知50,20,21,a a a ->⎧⎪->⎨⎪-≠⎩所以25a <<且3a ≠,故选C .4. 若0,1a a >≠,则下列说法正确的是( )①若M N =,则log log a a M N =;②log log a a M N =,则M N =; ③22log log a a M N =,则M N =;④若M N =,则22log log a a M N =. A .①③ B .②④ C .② D .①②③④ 【答案】C【解析】注意使log log a a M N =成立的条件是M 、N 必须为正数,所以①③④不正确,而②是正确的,故选C .5. 若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则( )A .(0,1)y ∈B .(1,2)y ∈C .(2,3)y ∈D .(3,4)y ∈ 【答案】B 【解析】55lg 6lg 7lg8lg9lg10log 101log 2lg5lg 6lg 7lg8lg9y =⨯⨯⨯⨯==+,因为50log 21<<,所以12y <<,故选B .6. (2014江西三县月考)计算662log 3log 4+的结果是()A .6log 2B . 2C . 6log 3D . 3【答案】B【解析】666662log 3log 4log 9log 4log 362+=+==.故选:B . 二、填空题1. 若312log 19x-=,则x = .【答案】-13【解析】 由指数式与对数式互化,可得1239x-=,解得13x =-. 2. 若2log 2,log 3,m n a a m n a +=== ;【答案】12【解析】 2log 2log 3log 4log 34312a a a a a a a +=⋅=⨯=.3. 若2510a b ==,则11a b+= .【答案】1【解析】因为210,a =所以21log 10lg 2a ==,又因为510,b =所以51log 10lg 5b ==,所以原式=lg 2lg51+=.。
人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT

讲授新课
1.对数的定义: 一般地,如果ax=N ( a > 0 , 且a ≠ 1 )
那么数x叫做以a为底N的对数,记作: 其中a叫做对数的底数, N叫做真数.
注意:限制条件是a > 0 , 且a ≠ 1
填写学案,题1
讲授新课
练习1:将下列指数式写成对数式:
① 52 = 25
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
解:(1)64
-
2 3
=
(43
)
-
2 3
= 4-2 =
1
(4) ln e2 = -x
16
1
1
1
e-x = e2
(2)x6 = 8所以x = 86 = (23 )6 = 22 = 2 - x = 2
(3)10 x = 100所以x = 2
x = -2
讲授新课 4.对数的性质 探究活动 1、试求下列各式的值:
。
简记作
。如 loge 9 简记为 ln 9.
填写学案,题4
例题分析
例1.将下列指数式写成对数式:
(1) 54 = 625
(2)
e-6
=
1
b
(3) 10 a = 27 (4) ( 1 )m = 5.73
高中数学课件:2.2.1对数与对数运算

专题三 坚持科教 兴国 推进自主创
新
热点一 科教兴国 时事❶ 第三届深圳国际智能装备产业博览会
第三届深圳国际智能装备产业博览会暨第六届深圳国 际电子装备产业博览会于2017年7月27日至29日在深圳会 展中心举办。本届博览会以“智能改变未来,产业促进发 展”为主题,定位于创新型、专业性和国际化,展会将突
1.我国科技取得成就的原因有哪些? ①我国经济实力不断增强,为科技创新提供了坚实的 物质基础。 ②我国实施科教兴国战略和人才强国战略,为科技创 新提供了强有力的政策支持。 ③我国大力弘扬创新精神,尊重劳动、尊重知识、尊 重人才、尊重创造。
④社会主义制度具有集中力量办大事的优越性。 ⑤广大科研工作者发扬了艰苦奋斗、开拓创新、团结 协作的精神等。
2.我国为什么要实施创新驱动发展战略,坚持走中国特 色自主创新道路? ①我国正处在社会主义初级阶段,教育科学技术水平比 较落后,科技水平和民族创新能力不足。 ②创新是一个民族进步的灵魂,是一个国家兴旺发达的 不竭动力。 ③我国是一个发展中国家,要想真正地缩小与发达国家 之间的差距,关键靠创新。
④只有把科技进步的基点放在增强自主创新能力和持续创 新能力上,才能实现我国科学技术的跨越式发展,真正掌 握发展的主动权。 ⑤没有创新,就要受制于人,没有创新,就不可能赶超发 达国家。 ⑥科学技术是第一生产力,科技创新能力已越来越成为综 合国力竞争的决定性因素。 ⑦增强自主创新能力,有利于全面建成小康社会、实现中 华民族的伟大复兴。
出智能自动化设备、机器人、3D打印、可穿戴产业的展览 主题,瞄准打造全球智能装备领域第一展会平台的目标, 展示深圳智能装备产业的发展成就。
#高中数学-对数及对数运算

理论迁移
例1 用logax,logay,logaz表示下列 各式:
(1) l o g a
xy z
;
(2)l o g a
x2
3
y z
.
例2 求下列各式的值:
(1) log2(47×25);
(2) lg5 100
;
31 log3 2
(3) log318 -log32 ;
3 (4) 1 log 3 2
(3) lg0.01=-2
(4) ln10=2.303.
解 (1)(1/2)-4=16
(2)27=128
(3)10-2=0.01
(4)e2.303=10
练习
求下列各式的值:
(1)log2 4; (3)log5125; (5)10lg105 ;
(2)log3 27; (4)lg1000; (6)5log51125.
logaN=b 其中a叫做对数的底数,N叫做真数。
负数和零没有对数. loga1=0 logaa=1
对数恒等式
aloga N N
证明: 设ab=N 则 b=logaN 所以
alogaN=N
常用对数与自然对数的定义
(1)以10为底的对数叫做常用对数. 为了方便,N的常用对数log10N简记为:lgN. (2)以e为底的对数叫做自然对数. 为了方便,N的自然对数logeN简记为:lnN.
2.3 对数与对数函数
对数 对数函数
• 问题
• 把一张纸对折剪开,再合起来对折剪开, 再一次合起来对折剪开,…依次下去的次 数与纸的张数关系为: y=2 x
• 问:纸的张数若为128,
• ቤተ መጻሕፍቲ ባይዱ对折多少次?
•
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
高中数学对数运算和对数函数

对数运算和对数函数要求层次重难点对数的概念及其运算性质B 理解对数的概念掌握当底数1a >与01a <<时,对数函数的不同性质掌握对数函数的概念、图象和性质;能利用对数函数的性质解题换底公式 A 对数函数的概念 B 对数函数的图象和性质C 指数函数xy a =与对数函数log a y x =互为反函数(0a >且1a ≠)B<教师备案>本讲的内容为对数和对数函数,关于对数的历史,在后面的小故事中有所体现,还有一部分可称为前转:“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看出,伽利略把对数与宝贵的空间和时间相提并论.对数的发展绝非一人之功.首先要提到的是16世纪瑞士钟表匠标尔基,当他结识了天文学家开普勒,看到开普勒每天与天文数字打交道,数字之大、计算量之繁重,真的难以想象,于是便产生了简化计算的想法.从16031611年,标尔基用了八年的时间,一个数一个数的算,造出了一个对数表,这个对数表帮了开普勒的大忙.开普勒认识到了对数表的使用价值,劝标尔基赶快把对数表出版,标尔基认为这个对数表还过于粗糙,一直没下决心出版.正在标尔基犹豫不决的时候,1614年6月在爱丁堡出版了苏格兰纳皮尔男爵所造的题为《奇妙的对数表的说明》一书,这个对数表的出版震动了整个数学界.“对数”一词是纳皮尔首先创造的,意思是“比数”.他最早用“人造的数”来表示对数.俄国著名诗人莱蒙托夫是一位数学爱好者,传说有一次他在解答一道数学题时,冥知识框架例题精讲高考要求第5讲 对数运算和对数函数思苦想没法解决,睡觉时做了一个梦,梦中一位老人揭示他解答的方法,醒后他真的把此题解出来了,莱蒙托夫把梦中老人的像画了出来,大家一看竟是数学家纳皮尔,这个传说告诉我们:纳皮尔在人们心目中的地位是多么的高.(一)知识内容<教师备案>在指数函数x y a =中,对于每个y +∈R ,存在唯一的x 与之对应,幂指数x 叫做以a 为底的y 的对数,这样从y 到x 的对应是指数运算的一个相反运算,让同学思考由函数的定义,判断这是否可以定义一种新的函数?这种运算和对应的函数有什么样的性质呢?1.对数:一般地,如果x a y =(0a >,且1)a ≠,那么数x 叫做以a 为底y 的对数,记作log a x y =,其中a 叫做对数的底数,y 叫做真数.关系式axy指数式 x a y =底数(0,1)a a >≠ 指数(R)x ∈ 幂(值)(R )y +∈对数式 log a y x = 底数(0,1)a a >≠ 对数(R)x ∈ 真数(R )y +∈ 对数恒等式及对数的性质,对数log (0,1)a N a a >≠满足: ⑴零和负数没有对数; ⑵1的对数是零,即log 10a =; ⑶底的对数等于1,即log 1a a =.2.常用对数:通常将以10为底的对数叫做常用对数,并把10log N 记为lg N .3.自然对数:在科学技术中常使用以无理数 2.71828e =为底的对数,以e 为底的对数称为自然对数,并且把log e N 记为ln N .4.对数与指数间的关系:当0,1a a >≠时,log x a a N x N =⇔=.5.指数和对数的互化:log b a a N N b =⇔=.N a N a =log ,log N a a N =(二)主要方法:1.重视对数的概念,应用基础概念解决具体问题2.熟练运用指数和对数的互化板块一:对数的定义和相关概念(三)典例分析:【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:①45625=;②61264-=;③1 5.733m⎛⎫= ⎪⎝⎭;④12log 164=-;⑤lg0.012=-;⑥ln10 2.303=.⑵求下列各式中x 的值:①642log 3x =-;②log 86x =;③lg100x =;④2ln e x -=.【例2】 将下列对数式写成指数式:(1)416log 21-=;(2)2log 128=7;(3)lg0.01=-2;(4)ln10=2.303【例3】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345(一)知识内容1.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈ ⑷1log log naa N N n=(正数幂的对数,等于幂指数乘以同一底数幂的底数的对数) <教师备案>以性质⑴为例进行证明如下: 已知log a M ,log a N (M 、0N >),求log ()a MN 设log a M p =,log a N q =,根据对数的定义,可得p M a =,q N a = 由p q MN a a =⋅p q a +=∴log ()log log a a a MN p q M N =+=+2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) <教师备案>证明: 法一:根据指数的运算性质推导 设log b N x =,则x b N =.两边取以a 为底的对数,得log log a a x b N =, 所以log log a a N x b =,即log log log a b a NN b=. 法二:根据对数恒等式及对数的运算性质推导由对数恒等式得:log log log log ()log bN b a a a N b b N ⋅==,所以有log log log a b a NN b=. 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的.<教师备案>常见错误:log ()log log a a a M N M N ±=±;log ()log log a a a MN M N =⋅;log log log a aa MM N N=. 3.关于对数的恒等式板块二:对数的运算性质和法则①log a N a N =②log n a a n =③1log log a b b a=④log log n n a a M M = ⑤log log log log a b a b M MN N=(二)主要方法1.解决与对数函数有关的问题,要特别重视定义域;2.解决对数不等式、对数方程时,要重视考虑对数的真数、底数的范围;3.对数不等式的主要解决思想是对数函数的单调性.(三)典例分析【例4】 求下列各值:⑴221log 36log 32-;⑵log ;⑶lg1;⑷3log 53;⑸3log 59;⑹3log 3;⑺;⑻22(lg5)lg 2lg 25(lg 2)+⋅+;⑼827log 9log 32⋅.【例5】 求值:⑴2572lg3lg7lg lg 94++-;⑵32516log 4log 9log 5⋅⋅.【例6】 若a 、0b >,且a 、1b ≠,log log a b b a =,则A.a b =B.1a b=C.a b =或1a b=D.a 、b 为一切非1的正数【例7】 ⑴8log 3p =,3log 5q =,那么lg5等于______(用p ,q 表示);⑵知18log 9a =,185b =,用,a b 表示36log 45.【点评】⑴换底公式的一个重要应用:log log 1m n n m ⋅=⑵181818log 2log 9=,将未知转化为已知,是对数函数运算性质的重要应用. 【例8】 已知2log 3a =,37b =,求12log 56【例9】 已知lg5m =,lg3n =,用,m n 表示30log 8.【例10】 已知(0,0,1)ab m a b m =>>≠且log m b x =,则log m a 等于A.1x -B.1x +C.1xD.1x -【例11】 已知12()x f x a-=,且(lg )f a =a 的值.【例12】 下列各式中,正确的是A.2lg 2lg x x =B.1log log a a x n =C.log log log a a a x xy y=1log 2a x =【例13】 已知2(3)log (3)1x x x ++=,求实数x 的值.【例14】 设a 为实常数,解关于x 的方程)lg()3lg()1lg(x a x x -=-+-.1.对数函数:我们把函数log (0a y x a =>且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞,值域为实数集R .2.对数函数的图象和性质:一般地,对数函数log (0a y x a =>且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域 (0,)+∞值域 R性质⑴过定点(1,0),即1x =时,0y =⑵在(0,)+∞上是减函数; (2)在(0,)+∞上是增函数.<教师备案>因为对数函数与指数函数密切相关,所以在学习对数函数的概念、图象与性质时,要处处与指数函数相对照.如:指数函数的值域(0,)+∞,变成了对数函数的定义域;而指数函数的定义域为实数集R ,则变成了对数函数的值域;同底的指数函数与对数函数的图象关于直线y x =对称等.y=log a x (0<a <1)O 1yx y=log a x (a >1)O 1yx板块三:对数函数【例15】 求下列函数的定义域:⑴2log a y x =;⑵log (4)a x -;⑶y .【例16】 求下列函数的定义域:⑴31log (32)y x =-;⑵1log (3)x y x -=-.【例17】 已知()log (1)x a f x a =-(0,a >且1)a ≠,⑴求()f x 的定义域; ⑵讨论函数()f x 的单调性;【例18】 求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的定义域和值域.【例19】 函数2lg(20)y x x =-的值域是A.y >0B.y ∈RC.y >0且y ≠1D.y ≤2【例20】 已知函数2()lg[2(1)94]f x mx m x m =++++,⑴若此函数的定义域为R ,求实数m 的取值范围;⑵若此函数的值域为R ,求实数m 的取值范围.【点评】本题涉及到解一元二次不等式的解法,可根据学生情况进行讲解.【例21】 已知函数18log )(223+++=x nx mx x f 的定义域为R ,值域为[0,2],求m ,n 的值.【例22】 下面结论中,不正确的是A.若a >1,则x a y =与x y a log =在定义域内均为增函数B.函数x y 3=与x y 3log =图象关于直线x y =对称C.2log a y x =与2log a y x =表示同一函数D.若01,01a m n <<<<<,则一定有log log 0a a m n >>【例23】 已知),,)(lg()(为常数b a b a x f xx-=①当a ,b >0且a ≠b 时,求f (x )的定义域;②当a >1>b >0时,判断f (x )在定义域上的单调性,并用定义证明【例24】 在函数10(log <<=a x y a ,)1≥x 的图象上有A ,B ,C 三点,它们的横坐标分别是t ,t +2,t +4,(1)若△ABC 的面积为S ,求S =f (t ); (2)判断S =f (t )的单调性; (3)求S =f (t )的最大值.【例25】 已知函数22log )(+-=x x x f a的定义域为[],αβ,值域为[]log (1),log (1)a a a a βα--,且)(x f 在[],αβ上为减函数. (1)求证α>2; (2)求a 的取值范围.【例26】 对于212()log (23)f x x ax =-+,⑴函数的“定义域为R ”和“值域为R ”是否是一回事;⑵结合“实数a 取何值时,()f x 在[1)-+∞,上有意义”与“实数a 取何值时,函数的定义域为(1)(3)-∞+∞,,”说明求“有意义”问题与求“定义域”问题的区别.⑶结合⑴⑵两问,说明实数a 的取何值时()f x 的值域为(1]-∞-,.【例27】 ⑷实数a 取何值时,()f x 在(1]-∞,内是增函数.⑸是否存在实数a ,使得()f x 的单调递增区间是(1]-∞,,若存在,求出a 的值;若不存在,说明理由.【点评】该题主要考察复合对数函数的定义域、值域以及单调性问题.解题过程中遇到了恒成立问题,“恒为正”与“取遍所有大于零的数”不等价,同时又考察了一元二次函数函数值的分布情况,解题过程中结合三个“二次”的重要结论来进行处理.【例28】 比较下列各组数的大小:⑴2log 3.4,2log 8.5;⑵0.3log 1.8,0.3log 2.7;⑶log 5.1a ,log 5.9a (0,a >且1)a ≠;⑷20.3,2log 0.3,0.32.【点评】利用对数函数的性质比较大小的题,一般都可以通过对数函数的单调性,通过直接比较、中间值法或者图象法得到相关结论.如:设110a <<,比较2lg a ,2(lg )a ,lg(lg )a 的大小.1100lg 1a a <<⇒<<,于是22lg(lg )0(lg )lg a a a <<<.【例29】 设2(log )2(0)x f x x =>,则f (3)的值是A.128B.256C.512D.8【例30】 a 、b 、c 是图中三个对数函数的底数,它们的大小关系是A.c >a >bB.c >b >aC.a >b >cD.b >a >c【例31】 (2005年天津文) 已知111222log log log b a c <<,则()A.222b a c >>B.222a b c >>C.222c b a >>D.222c a b >>【例32】 如果02log 2log <<b a ,那么a ,b 的关系及范围.【例33】 ⑴若log 2log 20a b <<,则()A.01a b <<<B.01b a <<<C.1a b >>D.1b a >> ⑵已知2log 13a <,求a 的取值范围.【点评】在上面的对数函数图象中,共有四条对数函数log a y x =,底数a 的大小比较可以通过作一条直线:1y =,于四条曲线分别交于点1234,,,P P P P ,易知,这四点的横坐标即对应相应的底数的值,故比较这四点的横坐标即可.【例34】 已知函数()1log 3x f x =+,()2log 2x g x =,⑴试比较函数值()f x 与()g x 的大小;⑵求方程|()()|()()4f x g x f x g x -++=的解集.【例35】 函数log a y x =在[2,)x ∈+∞上恒有||1y >,求a 的范围.【例36】 已知a >0,a ≠1,10<<x ,比较|)1(log |x a +和|)1(log |x a -的大小.【例37】 若23log 1a <,则a 的取值范围是 A.203a <<B.23a >C.213a <<D.203a <<或a >1【例38】 若关于23lg lg )lg(=--x a x 至少有一个实数根,则求a 的取值范围.【例39】 设a ,b 为正数,若lg()lg()10ax bx +=有解,则求b a 的取值范围.【例40】 如果2112222log (1)log 2a a a a +++≤,求a 的取值范围.【例41】 已知}2)385(log |{2>+-=x x x A x ,24{|210}B x x x k =-+-≥,要使A B ,求实数k 的取值范围.【例42】 设正数a ,b ,c 满足222c b a =+. (1)求证:1)1(log )1(log 22=-++++bc a a c b ; (2)又设1)1(log 4=++a c b ,32)(log 8=-+c b a ,求a ,b ,c 的值.【例43】 (1)已知0(2log log >=+a y x a a ,)1≠a ,求yx 11+的最小值. (2)已知2052=+y x ,求y x lg lg +的最大值.(3)已知4422=+y x ,求xy 的最大值.【例44】 解方程)12(log 2)22(log 212+=++x x。
人教版高中数学必修第一册对数与对数运算(一)

对数与对数运算(一)三维目标一、知识与技能1.理解对数的概念.2.理解指数式和对数式之间的关系,能熟练地进行对数式和指数式的互化.3.了解自然对数和常用对数的概念以及对数恒等式.二、过程与方法1.通过探究对数的概念以及对数式和指数式之间的关系,明确数学概念的严谨性和科学性,感受化归的数学思想,使学生能用相互转化的观点辩证地看问题.2.通过计算器或计算机的演示,使学生加深对“N>0”的理解,培养学生数学地分析问题的意识.3.通过探究、思考、反思、完善,培养学生理性思维能力.三、情感态度与价值观1.通过具体实例引出对数的概念,使学生感受到数学源于实际生活,激发学生的学习兴趣.2.在教学过程中,通过学生的相互交流,来加深对数概念理解,增强学生数学交流能力,培养学生倾听、接受别人意见的优良品质.3.通过指导学生阅读“对数的发展史”不断了解数学、走进数学,增强学生的数学素养.教学重点1.对数式和指数式之间的关系.2.对数的概念以及对数式和指数式的相互转化. 教学难点对数概念的理解以及对数符号的理解. 教具准备多媒体课件、投影仪、计算器或计算机、打印好的作业. 教学过程一、创设情景,引入新课(多媒体投影我国人口增长情况分析图,并显示如下材料) 截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?(精确到亿)师:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则y =13×1.01x.我们能从这个关系式中算出任意一个年头x 的人口总数.反之,如果问“哪一年的人口数可达到18亿,20亿,30亿……”该如何解决?(生思考,师组织学生讨论得出)由y =1.01x的图象可求出当y =1318、1320、1330时,相应的x 的值,实际上就是从1.01x=1318,1.01x=1320,1.01x=1330……中分别求出x .师:根据指数的有关知识,在关系式1.01x=1318中,要我们求解的量在什么位置?生:在等式左边的指数位置上.师:那么,要求x 的值,也就是让我们求指数式中的哪一个量? 生:求指数x .师:这样,就出现了与前面学习指数时不同的一类问题——已知指数式的底数和幂值,求指数式的指数,这就是我们本节课所要研究的对数问题.(引入新课,书写课题——对数) 二、讲解新课(一)介绍对数的概念合作探究:若1.01x=1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?(生合作探究,师适时归纳总结,引出对数的定义并板书) 一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.合作探究:根据对数的概念写出几个对数式,同桌之间互相检查写法是否正确.师:你如何理解“log ”和log a N ? (生探讨,得出如下结论) 知识拓展:符号“log ”与“+,”等符号一样表示一种运算,log a N 是一个整体,表示以a 为底N 的对数,不表示log 、a 、N三者的乘积.读作以a为底N的对数,注意a应写在右下方.(二)概念理解合作探究:对数和指数幂之间有何关系?(生交流探讨得出如下结论)说明:括号内属填空、选择的题目.合作探究:是不是所有的实数都有对数呢?在对数式log a N=b 中,真数N可以取哪些值?为什么?(生讨论,结合指数式加以解释)∵在指数式中幂N=a b>0,∴在对数式中,真数N>0.(师借助计算器或计算机进行示范)可以发现真数为负数时,计算器会提示出错信息.师:条件N>0说明了什么?生:负数与零没有对数.合作探究:根据对数的定义以及对数式和指数式的关系,试求log a1和log a a(a>0,且a≠1)的值.(生根据对数式和指数式之间的关系,得出如下结论)∵对任意a>0且a≠1,都有a0=1,∴log a1=0.同样,∵对任意a>0且a≠1,都有a1=a,∴log a a=1.合作探究:a N a log=N、log a a b=b是否成立?(师生共同讨论,给出如下解释)(1)设a Na log =x ,则log a N =log a x ,所以x =N ,即a Na log =N .(2)∵a b =a b ,∴log a a b=b (对数恒等式).师:对数运算在研究科学和了解自然中起了巨大的作用,其中有两类对数贡献最大,它们就是自然对数和常用对数.(师指导学生阅读课本第57页常用对数和自然对数的概念和记法,然后板书)(三)常用对数通常将以10为底的对数称为常用对数,如log 102、log 1012等,并把对数log 10N 简记为lg N ,如lg2、lg12等.(四)自然对数在科学技术中,常常使用以e (e=2.71828…是一个无理数)为底的对数,这种对数称为自然对数.正数N 的自然对数log e N 一般简记为ln N ,如ln2、ln15等.(五)例题讲解师:我们已经对对数的概念有了一定的理解,你能快速地完成下面练习吗?(投影显示如下例题)【例1】 将下列指数式化为对数式,对数式化为指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73;(4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.方法引导:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m ;(4)(21)-4=16;(5)10-2=0.01;(6)e2.303=10.【例2】 求下列各式中的x 的值:(1)log 64x =-32;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x .(师生共同讨论,师板书)解:(1)因为log 64x =-32,所以x =6432-=(43)32-=4-2=161; (2)因为log x 8=6,所以x 6=8,x =861=(23)61=221=2;(3)因为lg100=x ,所以10x=100,10x=102,于是x =2; (4)因为-lne 2=x ,所以lne 2=-x ,e 2=e -x,于是x =-2. 方法小结:在解决对数式求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质求出结果.(六)目标检测课本P 74练习第1,2,3,4题.(生完成,师组织学生进行课堂评价)解答:1.(1)log 28=3;(2)log 232=5;(3)log 221=-1;(4)log 2731=-31.2.(1)32=9;(2)53=125;(3)2-2=41;(4)3-4=811. 3.(1)设x =log 525,则5x =25=52,所以x =2; (2)设x =log 2161,则2x=161=2-4,所以x =-4;(3)设x =lg1000,则10x=1000=103,所以x =3; (4)设x =lg0.001,则10x=0.001=10-3,所以x =-3. 4.(1)1;(2)0;(3)2;(4)2;(5)3;(6)5. 三、课堂小结师:请同学们回顾一下本节课的教学过程,你觉得哪些知识你已经掌握?哪些东西你还没有掌握?(生总结,并互相交流讨论,师投影显示本课重点知识) 1.对数的定义及其记法; 2.对数式和指数式的关系; 3.自然对数和常用对数的概念. 四、布置作业 板书设计2.2.1 对数与对数运算(1)1.对数的定义2.对数式和指数式的关系3.自然对数和常用对数的概念 一、例题解析及学生练习 例1例2二、课堂小结与布置作业。
高中数学第七节 对数与对数函数

数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
[类题通法]
对数运算的一般思路
(1)首先利用幂的运算把底数或真数进行变形,化成分数指数 幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.
(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用 对数的运算性质,转化为同底对数真数的积、商、幂的运算.
2.解决与对数函数有关的问题时易漏两点:
(1)函数的定义域;
(2)对数底数的取值范围.
数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
[试一试] 1. (2013· 苏中三市、 连云港、 淮安二调)“M>N”是“log2M>log2N”
成立的____________条件(填“充分不必要”“必要不充 分”“充要”或“既不充分又不必要”). 解析:当 M,N 为负数时,不能得到 log2M>log2N,而根据函
数学
首页
上一页
下一页
末页
第七节
对数与对数函数
结束
1.对数值的大小比较的基本方法
(1)化同底后利用函数的单调性;(2)作差或作商法; (3)利用中间量(0 或 1);(4)化同真数后利用图像比较.
2.明确对数函数图像的基本点
(1)当 a>1 时,对数函数的图像“上升”;
当 0<a<1 时,对数函数的图像“下降”.
(2)是否存在实数 a,使 f(x)的最小值为 0?若存在,求出 a 的值;若不存在,说明理由.
[解] (1)∵f(1)=1, ∴log4(a+5)=1,因此a+5=4,a=-1, 这时f(x)=log4(-x2+2x+3). 由-x2+2x+3>0得-1<x<3,函数f(x)的定义域为(-1,3).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:对数与对数运算(二)
课 型:新授课
教学目标:
掌握对数的运算性质,并能理解推导这些法则的依据和过程;能较熟练地运用法则解决问题.
教学重点:运用对数运算性质解决问题
教学难点:对数运算性质的证明方法
教学过程:
一、复习准备:
1. 提问:对数是如何定义的? → 指数式与对数式的互化:x a N =⇔log a x N =
2. 提问:指数幂的运算性质?
二、讲授新课:
1. 教学对数运算性质及推导:
① 引例: 由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系? 设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a ∴MN =p a q a =q
p a +
∴a log MN =p +q ,即得a log MN =a log M + a log N
② 探讨:根据上面的证明,能否得出以下式子?
如果 a > 0,a 1,M > 0, N > 0 ,则
a a a log (MN)=log M +log N ; a a a M log =log M -log N N
; ()n a a log M =nlog M n R ∈
① 讨论:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,
将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)
④ 运用换底公式推导下列结论:log log m n a a n b b m
=;1log log a b b a = 1. 教学例题:
例1. 判断下列式子是否正确,(a >0且a ≠1,x >0且a ≠1,x >0,x >y ),
(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-
(3)log log log a a a x x y y
=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a a
x x =- (71log log n a a x x n
=
例2( P 65例3例4):用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、
(4)小题的值.
(1)log a xy z (2)log a (3)75log (42)z ⨯ (4)lg
三、巩固练习:
1、P 681、
2、3
2. 设lg 2a =,lg3b =,试用a 、b 表示5log 12.
变式:已知lg 2=0.3010,lg 3=0.4771,求lg 6、lg12、的值.
3、计算:7lg142lg lg7lg183
-+-; lg 243lg9; . 4. 试求2lg 2lg 2lg5lg5+⋅+的值
5. 设a 、b 、c 为正数,且346a b c ==,求证:1
112c a b
-=
四 、小结:
对数运算性质及推导;运用对数运算性质;换底公式.
五、作业:P 743、4、5
后记:。