椭圆定点定值问题

合集下载

椭圆中的定点定值问题

椭圆中的定点定值问题

椭圆中的定点定值问题椭圆是一个非常重要的几何概念,在数学和物理学中广泛应用。

它具有许多有趣的性质和特征。

其中之一就是定点定值问题。

在这篇文章中,我将探讨椭圆中的定点定值问题,并介绍一些相关的理论和应用。

首先,我们需要了解什么是椭圆。

一个椭圆可以定义为到两个固定点的距离之和等于定值的所有点的集合。

这两个固定点被称为焦点,而定值则被称为焦距。

椭圆还具有一个重要的性质,即焦点到椭圆上任意一点的距离之和是常数。

在椭圆中的定点定值问题中,我们考虑的是在椭圆上选择一个特定的点,并确定其到椭圆上的其他点的距离之和。

这个距离之和被称为点的性质或特征。

一个经典的例子是在椭圆上选择一个点P,然后求它到椭圆上的两个焦点的距离之和。

这个距离和被称为离心率。

离心率是椭圆的一个重要参数,它描述了椭圆的扁平程度。

当椭圆近似于圆形时,离心率接近于零;当椭圆非常扁平时,离心率接近于一。

除了离心率,我们还可以通过其他的定点定值问题来描述椭圆的性质。

例如,我们可以选择一个点P,并求它到椭圆上的任意一点的距离之和。

这个距离和等于椭圆的周长。

通过计算周长,我们可以比较不同椭圆之间的大小和形状。

在实际应用中,椭圆的定点定值问题具有广泛的应用。

例如,在椭圆曲线密码学中,椭圆上的点被用作密码算法的基础。

通过选择不同的定点定值问题,我们可以生成不同的加密和解密算法,从而实现安全的通信和信息传输。

此外,在计算机图形学和机器视觉中,椭圆的定点定值问题也扮演着重要的角色。

通过选择合适的定点定值问题,我们可以用椭圆来描述和识别不同的图像和对象。

这在图像处理和模式识别中具有重要的应用。

总结起来,椭圆中的定点定值问题是数学和物理学中一个有趣而重要的研究领域。

通过选择不同的点和定值,我们可以揭示椭圆的许多性质和特征。

这些性质和特征在许多领域中都有广泛的应用,包括密码学、计算机图形学和机器视觉等。

因此,研究定点定值问题对于我们深入理解椭圆的本质和应用具有重要意义。

椭圆曲线中的定点定值问题的四种方法

椭圆曲线中的定点定值问题的四种方法

椭圆曲线中的定点定值问题的四种方法
椭圆曲线密码学是现代密码学领域中的一个重要分支,其核心是解决椭圆曲线上的定点定值问题。

本文将介绍椭圆曲线中的定点定值问题及其四种常用解决方法。

定点定值问题是指给定一个椭圆曲线上的点P和整数k,求kP 的值。

下面将介绍四种方法来解决这个问题:
1. 变形重复平方算法(Double-and-Add Algorithm):这是最简单和直观的方法,通过将k表示为二进制形式,并根据位的值来迭代地进行计算。

当某一位为1时,将点P加到结果上;当某一位为0时,将点P进行加法运算。

该算法的时间复杂度为O(log(k))。

2. NAF (Non-Adjacent Form)方法:在变形重复平方算法的基础上,在k表示为二进制时可以选择使用加1或减1的方式,使得连续1的位数尽可能少。

这样可以减少加法运算的次数,进而提高效率。

3. 有穷域上的运算法则:将椭圆曲线上的点坐标和系数限定在一个有限域中,通过定义该有限域上的加法和乘法运算法则来求解定点定值问题。

这种方法在实际应用中经常使用,可以利用有限域运算的高效性。

4. 同态映射方法:根据椭圆曲线的同态性质,将定点定值问题转化为其他更容易求解的问题,并利用同态映射的特性进行计算。

这种方法具有较高的复杂性和灵活性,适用于特定的情况。

通过掌握这四种方法,我们可以更好地理解和应用椭圆曲线密码学中的定点定值问题。

根据实际情况选择合适的方法可以提高计算效率和保证系统的安全性。

椭圆定点定值问题

椭圆定点定值问题

椭圆定点定值问题
椭圆的定点定值问题是指给定一个椭圆和一个定点,在这个椭圆上找到一个点,使得这个点到给定定点距离等于给定值。

具体来说,设椭圆的标准方程为 $\frac{x^2}{a^2} +
\frac{y^2}{b^2} = 1$ ,给定定点为 $(h,k)$ ,给定值为 $d$ ,
求点 $(x,y)$ 满足 $\sqrt{(x-h)^2 + (y-k)^2} = d$ 。

为了解决这个问题,可以将椭圆方程代入距离方程,得到
$ \sqrt{(x-h)^2 + (y-k)^2} = d$ ,展开并平方,得到 $ (x-h)^2 + (y-k)^2 = d^2$ 。

将椭圆标准方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 代入
上式,可得 $ \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d^2$ 。

进一步整理,并消去分母,得到 $ b^2(x-h)^2 + a^2(y-k)^2 =
a^2b^2d^2$ 。

这个方程实际上是一个椭圆,其长轴和短轴分别为 $2a$ 和
$2b$ ,定点为 $(h,k)$ ,到定点距离之和为 $2d$ 。

因此,解
决椭圆的定点定值问题就转化为了找到满足这个新椭圆方程的点。

具体求解这个椭圆方程可能需要使用数值方法或者图形方法,先确定椭圆的长轴和短轴长度,然后在椭圆上画出定点,并找到到定点距离之和为给定值的点。

椭圆中定点定值问题 一般结论

椭圆中定点定值问题 一般结论

椭圆中的“定”五、一般结论30. 已知点()()0,0000≠y x y x A 是椭圆12222=+b y a x C :()0>>b a 上一定点,过点A 的两直线21,l l 与椭圆C 的另一个交点分别为Q P 、,直线21,l l 的斜率分别为21,k k .(1)若2221a b k k =⋅,直线PQ 的斜率为定值00x y -.反之亦然. (2)若021=+k k ,直线PQ 的斜率为定值0202x a y b .反之亦然. 31.椭圆12222=+by a x C :()0>>b a 的动弦BC 的两端点与椭圆上定点()00,y x A 连线的斜率存在,若斜率之积为定值()122≠m m a b ,则直线BC 必定过定点()()⎪⎭⎫ ⎝⎛-+--+11,1100m m y m m x M . 32.椭圆12222=+by a x C :()0>>b a 的动弦BC 的两端点与椭圆上定点()00,y x A 连线的斜率存在,若斜率之和为定值()02≠n n a b ,则直线BC 必定过定点⎪⎭⎫ ⎝⎛---0000,y x an b y bn a x N . 33.(1)一条经过点()0,m M 的直线l 与椭圆12222=+by a x C :()0>>b a 交于B A ,两点,作A 关于长轴的对称点A ',则直线A B'过定点2,0a T m ⎛⎫ ⎪⎝⎭.(2)一条经过点()()0,M m b m b -<<的直线l 与椭圆12222=+by a x C :()0>>b a 交于,P R 两点,设点20,b Q m ⎛⎫ ⎪⎝⎭,则PQM RQM ∠=∠.34.(1)过椭圆C 的左(右)准线上任意一点N 作椭圆的切线,切点为B A ,,则直线AB 必过椭圆的左(右)焦点,反之,当圆锥曲线的焦点弦AB 绕焦点F 运动时,过弦的端点,A B 的两切线交点的轨迹为F 对应的准线.(2)过椭圆C 的左(右)准线上任意一点N 作椭圆的切线,切点为A ,则以NA 为直径的圆过椭圆的左(右)焦点,即090NFA ∠=.35.过点()00,P x y 作直线交12222=+by a x C :()0>>b a 于,A B 两点,点,P Q 在椭圆的异侧且点Q 在直线AB 上,若A P Q B A Q P B =,则点Q 在定直线00221x x y y a b+=上.36.已知()00,P x y 是椭圆 2222:1x y E a b+=外一点,过点P 作椭圆的切线,切点为,A B ,再过P 作椭圆的割线交椭圆于,M N ,交AB 于点Q ,令111,,s t u PM PN PQ===,则,,s t u 的关系是2s t u +=.37.自()00,P x y 点作椭圆12222=+by a x C :()0>>b a 的两条切线,切点分别为12,P P ,则切点弦12PP 的方程为00221x x y y a b+=:.38.过椭圆()222210x y a b a b+=>>上一点()000,P x y 的切线方程为00221x x y y a b +=.39. (1)过圆2222x y a b +=+上任意一点作椭圆12222=+b y a x C :()0>>b a 的两条切线,则这两条切线相互垂直.反之,作椭圆12222=+by a x C :()0>>b a 的两条相互垂直的切线,则切线交点一定在圆2222x y a b +=+上.(2)过圆2222x y a b +=+上任意一点P 作椭圆12222=+by a x C :()0>>b a 的两条切线,PA PB ,,A B 为切点,中心O 至切点弦的距离为1d ,P 点至切点弦的距离为2d ,则221222a b d d a b =+.40.在椭圆12222=+by a x C :()0>>b a 中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2tan 221θb S PF F =∆。

椭圆定点定值专题(精选.)

椭圆定点定值专题(精选.)

一.解答题(共30小题)1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m (定值m≠0),求直线l的斜率.3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM•CN为定值.12.(1)如图,设圆O:x2+y2=a2的两条互相垂直的直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB 于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB、CD是过椭圆(a>b>0)中心的两条直线,且直线AB、CD的斜率积,点E是椭圆上异于A、C的任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交l于M,N,判断△PMN是否可能为正三角形,并说明理由.16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.20.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K 两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.24.已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线y=x+2相切.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线x2=4y上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.25.已知椭圆的中心为O,长轴、短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.(1)求证:为定值;(2)求△AOB面积的最大值和最小值.26.设F1、F2分别是椭圆+y2=1的左、右焦点.(1)若P是该椭圆上的一个动点,求向量乘积的取值范围;(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.27.已知椭圆的左焦点F1(﹣1,0),长轴长与短轴长的比是.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.28.已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.(1)若当θ=30°时有,求椭圆的离心率;(2)若离心率e=,求证:为定值.29.已知点P在椭圆C:(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6﹣|PF2|,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.30.如图,已知椭圆C:的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.参考答案与试题解析一.解答题(共30小题)1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.解:(Ⅰ)设C方程为由已知b=2,离心率…(3分)得a=4,所以,椭圆C的方程为…(4分)(Ⅱ)①由(Ⅰ)可求得点P、Q的坐标为P(2,3).Q(2,﹣3),则|PQ|=6,设A(x1,y1),B(x2,y2),直线AB的方程为,代入,得x2+tx+t2﹣12=0 由△>0,解得﹣4<t<4,由根与系数的关系得,四边形APBQ的面积…(6分)故,当t=0时,…(7分)②∠APQ=∠BPQ时,PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为﹣k,PA的直线方程为y﹣3=k(x﹣2)与,联立解得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0,.…(9分)同理PB的直线方程y﹣3=﹣k(x﹣2),可得所以,…(11分)==,所以直线AB的斜率为定…(13分)2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m (定值m≠0),求直线l的斜率.解:(1)∵椭圆离心率为,∴,∴(2分)又椭圆经过点,∴解得c=1,∴(3分)∴椭圆C的方程是…(4分)(2)若直线l斜率不存在,显然k1+k2=0不合题意…(5分)设直线方程为l:y=k(x﹣1),M(x1,y1),N(x2,y2)联立方程组得(3+4k2)x2﹣8k2x+4k2﹣12=0…(7分)∴…(8分)∴k1+k2=====k()=﹣∵k1+k2=m,∴﹣=m,∴k=.3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.解:(1)由题意得2c=2,∴c=1,又,a2=b2+1.消去a可得,2b4﹣5b2﹣3=0,解得b2=3或(舍去),则a2=4,∴椭圆E的方程为.(2)(ⅰ)设P(x1,y1)(y1≠0),M(2,y0),则,,∵A,P,M三点共线,∴,∴,∵P(x1,y1)在椭圆上,∴,故为定值.(ⅱ)直线BP的斜率为,直线m的斜率为,则直线m的方程为,====,即.所以直线m过定点(﹣1,0).4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.解:(1)由于,∴解得a2=2,b2=1,从而所求椭圆的方程为=1.∵三点共线,而点N的坐标为(﹣2,0).设直线AB的方程为y=k(x+2),其中k为直线AB的斜率,依条件知k≠0.由消去x得,即.根据条件可知解得,依题意取.设A(x1,y1),B(x2,y2),则根据韦达定理,得,又由,得(x1+2,y1)=λ(x2+2,y2),∴从而从而消去y2得.令,则.由于,所以φ'(λ)<0.∴φ(λ)是区间上的减函数,从而,即,∴,解得,而,∴.故直线AB的斜率的取值范围是.(2)设点P的坐标为(x0,y0),则可得切线PA的方程是,而点A(x1,y1)在此切线上,有即x0x1+2y0y1=x12+2y12,又∵A在椭圆上,∴有x0x1+2y0y=2,①同理可得x0x2+2y0y2=2.②根据①和②可知直线AB的方程为,x0x+2y0y=2,而直线AB过定点N(﹣2,0),∴﹣2x0=2⇒x0=﹣1,因此,点P恒在直线x=﹣1上运动.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.解:(1)依题意,得c=1.于是,a=,b=1.…(2分)所以所求椭圆的方程为.…(4分)(2)(i)设A(x1,y1),B(x2,y2),则①,②.又设M(x,y),因,故…(7分)因M在椭圆上,故.整理得.将①②代入上式,并注意cosθsinθ≠0,得.所以,为定值.…(10分)(ii),故y12+y22=1.又,故x12+x22=2.所以,OA2+OB2=x12+y12+x22+y22=3.…(16分)6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.(Ⅰ)解:由题设可知:,∴a=2,c=…2分∴b2=a2﹣c2=2…3分∴椭圆的标准方程为:…4分(Ⅱ)解:设P(x P,y P),M(x1,y1),N(x2,y2),由可得:①…5分由直线OM与ON的斜率之积为可得:,即x1x2+2y1y2=0②…6分由①②可得:x P2+2y P2=(x12+2y12)+(x22+2y22)∵M、N是椭圆上的点,∴x12+2y12=4,x22+2y22=4∴x P2+2y P2=8,即…..8分由椭圆定义可知存在两个定点F1(﹣2,0),F2(2,0),使得动点P到两定点距离和为定值4;….9分;(Ⅲ)证明:设M(x1,y1),B(x2,y2),则x1>0,y1>0,x2>0,y2>0,x1≠x2,A(x1,0),N(﹣x1,﹣y1)…..10分由题设可知l AB斜率存在且满足k NA=k NB,∴….③k MN•k MB+1=+1④…12分将③代入④可得:k MN•k MB+1=+1=⑤….13分∵点M,B在椭圆上,∴k MN•k MB+1==0∴k MN•k MB+1=0∴k MN•k MB=﹣1∴MN⊥MB…14分.7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.解:(1)设F1关于l的对称点为F(m,n),则且,解得,,即.由,解得.(2)因为PF1=PF,根据椭圆定义,得2a=PF1+PF2=PF+PF2=FF2=,所以a=.又c=1,所以b=1.所以椭圆C的方程为.(3)假设存在两定点为A(s,0),B(t,0),使得对于椭圆上任意一点Q(x,y)(除长轴两端点)都有k Qt•k Qs=k(k为定值),即•,将代入并整理得(*).由题意,(*)式对任意x∈(﹣,)恒成立,所以,解之得或.所以有且只有两定点(,0),(﹣,0),使得k Qt•k Qs为定值﹣.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.解:(1)根据题意有:解得:∴椭圆C的方程为=1(2)联立方程组消去y得:(4+k2)x2+2kx+t2﹣4=0①设A(x1,y1),B(x2,y2),AB中点坐标为(x0,y0)则有:∴,故为定值(3)当t=1时,①式为(4+k2)x2+2kx﹣3=0故∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1∴若的夹角为锐角,则有,即,解得,且k≠0,∴当k∈时,的夹角为锐角9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.(1)证明:∵椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,∴,∴抛物线P:x2=4cy.设过F2的直线l的方程为y+c=kx,与抛物线联立,可得x2﹣4kcx+4c2=0,∵过F2的直线l与抛物线P相切,切点E在第一象限,∴△=16k2c2﹣16c2=0,k>0∴k=1,即切线l的斜率为定值;(2)解:由(1),可得直线l的方程为y=x﹣c,代入椭圆方程可得(a2+b2)x2﹣2b2cx+b2c2﹣a2b2=0设A(x1,y1),B(x2,y2),则①,②∵∴x2=﹣λx1③由①②③可得=∵f(λ)=,当λ∈[2,4]时,单调递增,∴f(λ)∈∴∵0<e<1∴椭圆的离心率e的取值范围是[].10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.解:(1)由=,c=2,得a=,b==2.故所求椭圆方程为.(2)设A(x1,y1),则B(﹣x1,﹣y1),故,.①由题意,得.化简,得,∴点A在以原点为圆心,2为半径的圆上.②设A(x1,y1),则得到.将,,代入上式整理,得k2(2e2﹣1)=e4﹣2e2+1;∵e4﹣2e2+1>0,k2>0,∴2e2﹣1>0,∴.∴≥3.化简,得.解之,得,.故离心率的取值范围是.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM•CN为定值.(1)解:设P(x,y),则,即(x+1)2+y2+(x﹣1)2+y2=6,整理得,x2+y2=2,所以动点P的轨迹方程为x2+y2=2.…(4分)(2)解:由题意知,,解得,所以椭圆方程为.…(6分)则,,设Q(x0,y0),y0>0,则,直线AQ的方程为,令,得,直线BQ的方程为,令,得,( i )当直线AQ 的斜率为时,有,消去x 0并整理得,,解得或y 0=0(舍),…(10分) 所以△AMN 的面积==. …(12分)(ii ),,所以.所以对任意的动点Q ,DM •CN 为定值,该定值为. …(16分)12.(1)如图,设圆O :x 2+y 2=a 2的两条互相垂直的直径为AB 、CD ,E 在弧BD 上,AE 交CD 于K ,CE 交AB 于L ,求证:为定值(2)将椭圆(a >b >0)与x 2+y 2=a 2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB 、CD 是过椭圆(a >b >0)中心的两条直线,且直线AB 、CD 的斜率积,点E 是椭圆上异于A 、C 的任意一点,AE 交直线CD 于K ,CE 交直线AB 于L ,求证:为定值.解答: 解:(1)如图所示,过点E 作EF ⊥AB ,垂足为F 点, ∵CD ⊥AB ,∴EF ∥CD ,∴,,又EF2+FO2=OE2=a2,∴====1.为定值.(2)如图,设椭圆(a>b>0),椭圆的长轴、短轴分别为AB、CD,E在椭圆的BD部分上,AE交CD于K,CE交AB于L,求证:为定值.证明:过点E作EF⊥AB,垂足为F点,∵CD⊥AB,∴EF∥CD,∴,,∴===1.为定值.(3)如图所示,过点E分别作EF∥CD交AB与点F,EM∥AB交直线CD于点M.∴,.设A(x1,y1),C(x2,y2),D(﹣x2,﹣y2),B(﹣x1,﹣y1).E(x0,y0).则.设直线AB的方程为y=kx(k≠0),则直线CD的方程为.直线EF的方程为,直线EM的方程为y﹣y0=k(x﹣x0).联立解得x F=.联立,解得x M=.联立解得.联立,解得=.∴==.同理.∴====.为定值.13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.(1)证明:设直线l:,A(x1,y1),B(x2,y2).将代入中,化简整理得2x2+6mx+9m2﹣36=0.于是有,.则,上式中,分子====,从而,k PA+k PB=0.又P在直线l的左上方,因此,∠APB的角平分线是平行于y轴的直线,所以△PAB的内切圆的圆心在直线上.(2)解:若∠APB=60°时,结合(1)的结论可知.直线PA的方程为:,代入中,消去y得.它的两根分别是x1和,所以,即.所以.同理可求得.=••=.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.解:(1)由知:F1为F2Q中点.又∵,∴|F1Q|=|F1A|=|F1F2|,即F1为△AQF2的外接圆圆心而|F1A|=a,|F1F2|=2c,∴a=2c,又圆心为(﹣c,0),半径r=a,∴,解得a=2,∴所求椭圆方程为.(5分)(2)①由(1)知F2(1,0),y=k(x﹣1),,代入得(3+4k2)x2﹣8k2x+4k2﹣12=0,设M(x1,y1),N(x2,y2),则,,又∵|F2M|=a﹣ex1,|F2N|=a﹣ex2,∴=,,∴为定值.(10分)②由上可知:y1+y2=k(x1+x2﹣2),=(x1+x2﹣2m,y1+y2),由于菱形对角线垂直,则,故k(y1+y2)+x1+x2﹣2m=0,则k2(x1+x2﹣2)+x1+x2﹣2m=0,+,由已知条件知k≠0且k∈R,,∴,故存在满足题意的点P且的取值范围是.(15分)15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交l于M,N,判断△PMN是否可能为正三角形,并说明理由.解答:(Ⅰ)解:∵P()在椭圆上,Q(,1)在双曲线上,则,①+②×3得:,a2=5,把a2=5代入①得,b2=4.所以椭圆C l的方程为;(Ⅱ)证明:由A(﹣a,0),B(a,0),设P(x1,y1),Q(x2,y2),则,,,k1•k2+k3•k4==∵设P(x1,y1)在椭圆上,Q(x2,y2)在双曲线上,∴,则k1•k2+k3•k4===.所以k1•k2+k3•k4为定值;(Ⅲ)假设△PMN是正三角形,∴∠MPN=∠PMN=60°,又∵MN⊥x轴,∴∠PAN=30°,∠PBA=30°,∴△PAB为等腰三角形,∴点P位于y轴上,且P在椭圆上,∴点P的坐标为(0,±b),此时,即a=.综上,当a=,且点P的坐标为(0,±b)时,△PMN为正三角形.16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.解:(1)由题意得解得a2=2,b2=1故椭圆方程为(2)设N(),P(X,Y)则MN的方程为由得由韦达定理得所以代入直线方程得P()∴,∴(3)AB的方程为x=my+1,设A(e,f),B(g,h)由得(m2+2)y2+2my﹣1=0所以f+h=,fh=====2∵K QA+K QB=2与l的斜率无关∴2t=2,即t=1.17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.解:(1)由已知条件知,,解得,又b2=a2﹣c2=1,所以椭圆C的方程为;(2)设直线l的方程为y=k(x﹣2),联立,得(1+2k2)x2﹣8k2x+8k2=2=0,①由于直线l与椭圆C相交,所以△=64k4﹣4(1+2k2)(8k2﹣2)>0,解得直线l的斜率k的取值范围是;②∠MF1A和∠NF1F2总相等.证明:设M(x1,y1),N(x2,y2),则,所以tan∠MF1A﹣tan∠NF1F2====,所以tan∠MF1A=tan∠NF1F2,又∠MF1A和∠NF1F2均为锐角,所以∠MF1A=∠NF1F2.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.解:(1)由题意可得,解得,c=1,所以椭圆E:.(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),因为PF2⊥F2Q,所以,所以﹣y1y0=2(x1﹣1)又因为且代入化简得.即直线PQ与直线OQ的斜率之积是定值.(3)设过P(3,3)的直线l与椭圆交于两个不同点M(x1,y1),N(x2,y2),点H(x,y),则,.设,则,∴(3﹣x1,3﹣y1)=﹣λ(x2﹣3,y2﹣3),(x﹣x1,y﹣y1)=λ(x2﹣x,y2﹣y)整理得,,∴从而,由于,,∴我们知道与的系数之比为2:3,与的系数之比为2:3.∴,所以点H恒在直线2x+3y﹣2=0上.19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.(I)解:由已知得A1(﹣2,0),A2(2,0).设A(x1,y1),P(x2,y2),由题意知A、P均在第一象限,且满足,.则=…(3分)而Q、O、A、P在同一直线上,所以x1y2=x2y1故…(4分)(II)证明:设,P(x,y),则A(tx,ty)且,解之得:,且…(6分)OA•OP﹣OA22=tOP2﹣OA22=,其中0<t<1所以f′(t)=恒成立,,函数f(t)在区间(0,1)上是减函数,因此当0<t<1时,f(t)>f(1)=,即故:△OAA2与△OA2P不相似.…(9分)(III)解:由得,由得.∴{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R}因此∀y≠0,⇔⇔m2≤3所以b=因此b的值为…(13分)20.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.解:(1)由已知,椭圆方程可设为.(1分)∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴.所求椭圆方程为.(4分)(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(9分)(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,所以设直线l的方程为y=k(x﹣1)(k≠0).由可得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴..其中x2﹣x1≠0以MP,MQ为邻边的平行四边形是菱形⇔(x1+x2﹣2m,y1+y2)(x2﹣x1,y2﹣y1)=0⇔(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0⇔(x1+x2﹣2m)+k(y1+y2)=0⇔2k2﹣(2+4k2)m=0.∴.(14分)21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.解:(Ⅰ)椭圆上的点到两个焦点的距离和为2,即2a=2,∴a=椭圆的离心率为,即e=∵e=,∴,∴c=1又∵a2=b2+c2,∴b=1.又斜率为k(k≠0)的直线l过椭圆的上焦点,即椭圆的焦点在Y轴上∴椭圆方程为.(Ⅱ)设直线l的方程为y=kx+1,由可得(k2+2)x2+2kx﹣1=0.设P(x1,y1),Q(x2,y2),则△=8k2+8>0,..设线段PQ中点为N,则点N的坐标为,∵M(0,m),∴直线MN的斜率k MN=∵直线MN为PQ的垂直平分线,∴k MN•k=﹣1,可得.即,又k≠0,∴k2+2>2,∴,即.(Ⅲ)设椭圆上焦点为F,∵y轴把△PQM分成了△PMF和△QMF,∴=|FM||x 1|+|FM||x2|=|FM|(|x1|+|x2|)∵P,Q在y轴两侧,∴|x1|+|x2|=||(x1﹣x2)∴,∵,由,可得.∴.又∵|FM|=1﹣m,∴.∴△MPQ的面积为().设f(m)=m(1﹣m)3,则f'(m)=(1﹣m)2(1﹣4m).可知f(m)在区间单调递增,在区间单调递减.∴f(m)=m(1﹣m)3有最大值.此时∴△MPQ的面积为×=∴△MPQ的面积有最大值.22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K 两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.解:(Ⅰ)连接DF2,FO(O为坐标原点,F2为右焦点),由题意知:椭圆的右焦点为因为FO是△DF1F2的中位线,且DF1⊥FO,所以|DF2|=2|FO|=2b,所以|DF1|=2a﹣|DF2|=2a﹣2b,故.…(2分)在Rt△FOF1中,即b2+(a﹣b)2=c2=5,又b2+5=a2,解得a2=9,b2=4,所求椭圆E的方程为.…(4分)(Ⅱ)由(Ⅰ)得椭圆G:设直线l的方程为y=k(x+2)并代入整理得:(k2+4)x2+4k2x+4k2﹣4=0由△>0得:,…(5分)设H(x1,y1),K(x2,y2),N(x0,y0)则由中点坐标公式得:…(6分)①当k=0时,有N(0,0),直线MN显然过椭圆G的两个顶点(0,﹣2),(0,2).…(7分)②当k≠0时,则x0≠0,直线MN的方程为此时直线MN显然不能过椭圆G的两个顶点(0,﹣2),(0,2);若直线MN过椭圆G的顶点(1,0),则,即x0+y0=1,所以,解得:(舍去),…(8分)若直线MN过椭圆G的顶点(﹣1,0),则,即x0﹣y0=﹣1,所以,解得:(舍去).…(9分)综上,当k=0或或时,直线MN过椭圆G的顶点.…(10分)(Ⅲ)法一:由(Ⅰ)得椭圆W的方程为,…(11分)根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0)则直线AC的方程为,…①过点P且与AP垂直的直线方程为,…②①×②并整理得:,又P在椭圆W上,所以,所以,即①、②两直线的交点B在椭圆W上,所以PA⊥PB.…(14分)法二:由(Ⅰ)得椭圆W的方程为根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0),∴,,所以直线,化简得,所以,因为x A=﹣m,所以,则.…(12分)所以,则k PA•k PB=﹣1,故PA⊥PB.…(14分)23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.解:(Ⅰ)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2,∴b=c,∴b2=a2﹣c2=c2,∴a2=2c2,∴.(3分)(ⅱ)由∠APB=90°及圆的性质,可得,∴|OP|2=2b2≤a2,∴a2≤2c2∴,.(6分)(Ⅱ)设P(x0,y0),A(x1,y1),B(x2,y2),则整理得x0x+y0y=x12+y12∵x12+y12=b2。

专题 椭圆中的定点定值问题

专题 椭圆中的定点定值问题

椭圆中的定点定值问题1.已知椭圆C:22221x ya b+=(0a b>>)的右焦点为F(1,0),且(1-,22)在椭圆C上。

(1)求椭圆的标准方程;(2)已知动直线l过点F,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得716QA QB⋅=-恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。

解:(1)由题意知c=1.由椭圆定义得22222(11)()22a=--++,即2a= --3分∴2211b=-=,∴椭圆C 方程为2212xy+=.(2)假设在x轴上存在点Q(m,0),使得716QA QB⋅=-恒成立。

当直线l的斜率不存在时,A (1,22),B(1,22-),由于(521,42-)·(521,42--)=716-,所以54m=,下面证明54m=时,716QA QB⋅=-恒成立。

当直线l的斜率为0时,A(2,0)B(2-,0)则(524-,0)•(524--,0)=716-,符合题意。

当直线l的斜率不为0时,设直线l的方程为x=ty+1,A()11,x y,B()22,x y,由x=ty+1及2212xy+=得22(2)210t y ty++-=有0∆>∴12122221,22ty y y yt t+=-=-++;111x ty=+,221x ty=+∴112212125511(,)(,)()()4444x y x y ty ty y y-⋅-=--+=2(1)t+121211()416y y t y y-++=22222211212217(1)242162(2)1616t t tt tt t t--+-++⋅+=+=-+++,综上所述:在x轴上存在点Q(54,0)使得716QA QB⋅=-恒成立。

2.如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆1T,2T都过点(0,2)M-,且椭圆1T与2T的离心率均为22.(Ⅰ)求椭圆1T与椭圆2T的标准方程;(Ⅱ)过点M引两条斜率分别为,k k'的直线分别交1T,2T于点P,Q,当4k k'=时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(Ⅰ)22221,1422x y yx+=+=;(Ⅱ)直线MP的方程为2y kx=-,联立椭圆方程得:221422x yy kx⎧+=⎪⎨⎪=-⎩,消去y得22(21)420k x kx+-=,则42Pkx=,则点P的坐标为242222:(,)k kP-,同理可得点Q的坐标为:222222:(,)k kQ''-,又4k k'=,则点Q为:22242822(,)8181k kk k-++,22222282222218121242428121PQk kk kkkk kk k---++==--++,则直线PQ的方程为:2222142()2k ky xk--=--,即222222142()21221k ky xk k k--=--++,化简得122y xk=-+,即当0x=时,2y=,故直线PQ过定点(0,2).3.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.解:(1)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(2)设直线AE方程为:,代入得,设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,yxOPQ在上式中以﹣K 代K,可得,所以直线EF 的斜率,即直线EF的斜率为定值,其值为.4.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l ,交椭圆E 于P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM 于点N ,证明:点N在一条定直线上.解:(Ⅰ)由题意可得b=,e==,又a2﹣b2=c2,解得a=,c=2,即有椭圆方程为+=1;(Ⅱ)(i)F(﹣2,0),当直线的斜率不存在时,设P(x1,y1),Q(x2,y 2),直线方程为x=﹣2,可得P(﹣2,),Q(﹣2,﹣),•=4﹣=;当直线的斜率存在,设l:y=k(x+2),设P(x1,y1),Q(x2,y2),代入椭圆方程x2+3y2=6,可得(1+3k2)x2+12k2x+12k2﹣6=0,x1+x2=﹣,x1x2=,•=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)=(1+k2)x1x2+2k2(x 1+x2)+4k2=(1+k2)•+2k2•(﹣)+4k2==﹣,由k2≥0,3k2+1≥1,可得﹣6≤•<,综上可得,•的取值范围是[﹣6,];(ii)证明:由直线l的斜率一定存在,且不为0,可设PQ:y=k(x+2),FN:y=﹣(x+2),设M (x0,y0),则x0=,由x1+x2=﹣,可得x0=,y0=k(x 0+2)=,直线OM的斜率为k OM==﹣,直线OM:y=﹣x,由得,即有k取何值,N的横坐标均为﹣3,则点N在一条定直线x=﹣3上.5.椭圆C:+=1(a>b>0).(1)若椭圆C过点(﹣3,0)和(2,).①求椭圆C的方程;②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.解:(1)①∵椭圆C:+=1(a>b>0)过点(﹣3,0)和(2,),∴,解得a=3,b=1,∴椭圆C的方程.证明:②由题意得PD、MD的斜率存在且不为0,设直线PD 的斜率为k,则PD :y=kx ﹣1,由,得P (,),用﹣代k,得M(,),∴=,∴直线PM:y﹣=,即y=,∴直线PM经过定点T(0,).解:(2)椭圆C 的中心到右准线的距离d=,由=1,得,∴==,令t=a 2﹣5,t >0,则=t++9≥2+9=4+9,当且仅当t=2,时,等号成立,∴椭圆C 的中心到右准线的距离的最小值为.6.已知椭圆()222210x y a b a b +=>>的右焦点到直线2:a l x c =的距离为45,离心率5e =,,A B 是椭圆上的两动点,动点P 满足OP OA OB λ=+,(其中λ为常数).(1)求椭圆标准方程;(2)当1λ=且直线AB 与OP 斜率均存在时,求AB OP k k +的最小值;(3)若G 是线段AB 的中点,且OA OB OG AB k k k k ⋅=⋅,问是否存在常数λ和平面内两定点,M N ,使得动点P 满足18PM PN +=,若存在,求出λ的值和定点,M N ;若不存在,请说明理由.解:(1)由题设可知:右焦点到直线2:a l x c=的距离为: 2a c c -=455, 又53c a =,222b a c =-,∴24b =.∴椭圆标准方程为22194x y +=. (2)设()()1122,,,A x y B x y 则由OP OA OB =+得()1212,P x x y y ++.∴221212122212121249AB OPy y y y y y k k x x x x x x -+-⋅=⋅==--+-. 由()0,AB k ∈+∞得,423AB OP AB OP k k k k +≥⋅=,当且仅当23AB k =±时取等号 (3)221212122212121249AB OGy y y y y y k k x x x x x x -+-⋅=⋅==--+-.∴4·9OA OB k k =-.∴12124+90x x y y =. 设(),P x y ,则由OP OA OB λ=+,得)11221212,,,,x y x y x y x x y y λλλ=+=++, 即1212,x x x y y y λλ=+=+.因为点A 、B 在椭圆224+9=36x y 上,所以()2221212493636249x y x x y y λλ+=+++.所以222493636x y λ+=+.即222219944x y λλ+=++,所以P点是椭圆222219944x yλλ+=++上的点, 设该椭圆的左、右焦点为,M N ,则由椭圆的定义18PM PN +=得182299λ=+, ∴22λ=±,()35,0M ,()35,0N -.7.已知椭圆22221(0)x y a b a b +=>>的右焦点为F 2(1,0),点3(1,)2H 在椭圆上.(1)求椭圆方程;(2)点00(,)M x y 在圆222x y b +=上,M 在第一象限,过M 作圆222x y b +=的切线交椭圆于P 、Q 两点,问|F 2P|+|F 2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由. 解:(1) 右焦点为2(1,0)F ,∴1=c ,左焦点为)0,1(1-F ,点3(1,)2H 在椭圆上 222212332(11)(11)422a HF HF ⎛⎫⎛⎫=+=+++-+= ⎪ ⎪⎝⎭⎝⎭,2=∴a ,322=-=c a b所以椭圆方程为13422=+y x(2)设()),(,,2211y x Q y x P ,()213412121≤=+x y x()()212121212122)4(41)41(311-=-+-=+-=x x x y x PF112212)4(21x x PF -=-=∴,连接OM ,OP ,由相切条件知1212121212122221413)41(33||||x PM x x x y x OM OP PM =∴=--+=-+=-=221212112=+-=+∴x x PM PF ,同理可求221212222=+-=+∴x x QM QF所以22224F P F Q PQ ++=+=为定值.8.分别过椭圆E :=1(a >b >0)左、右焦点F 1、F 2的动直线l 1、l 2相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为k 1、k 2、k 3、k 4,且满足k 1+k 2=k 3+k 4,已知当l 1与x 轴重合时,|AB|=2,|CD|=.(1)求椭圆E 的方程;(2)是否存在定点M ,N ,使得|PM|+|PN|为定值?若存在,求出M 、N 点坐标,若不存在,说明理由. 解:(1)当l 1与x 轴重合时,k 1+k 2=k 3+k 4=0, 即k 3=﹣k 4,∴l 2垂直于x 轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E 的方程为.(2)焦点F 1、F 2坐标分别为(﹣1,0),(1,0),当直线l 1或l 2斜率不存在时,P 点坐标为(﹣1,0)或(1,0), 当直线l 1,l 2斜率存在时,设斜率分别为m 1,m 2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.9.如图,在平面直角坐标系xOy中,已知椭圆C:+=1,设R(x0,y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x0)2+(y﹣y0)2=8作两条切线,分别交椭圆于点P,Q.(1)若直线OP,OQ互相垂直,求圆R的方程;(2)若直线OP,OQ的斜率存在,并记为k1,k2,求证:2k1k2+1=0;(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.解:(1)由圆R的方程知,圆R的半径的半径,因为直线OP,OQ互相垂直,且和圆R相切,所以,即,①又点R在椭圆C上,所以,②联立①②,解得所以所求圆R的方程为.(2)因为直线OP:y=k1x,OQ:y=k2x,与圆R相切,所以,化简得=0同理,所以k1,k2是方程(x02﹣8)k2﹣2x0y0k+y02﹣8=0的两个不相等的实数根,,因为点R(x0,y0)在椭圆C上,所以,即,所以,即2k1k2+1=0.(3)OP2+OQ2是定值,定值为36,理由如下:法一:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),联立解得所以,同理,得,由,所以====36(ii)当直线ξ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.法二:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以,即,因为P(x1,y1),Q(x2,y2),在椭圆C上,所以,即,所以,整理得,所以,所以OP2+OQ2=36.(ii)当直线OP,OQ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.10.已知椭圆C:)0(12222>>=+babyax,左焦点)0,3(-F,且离心率23=e.(1)求椭圆C的方程;(2)若直线l:mkxy+=(0≠k)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN 为直径的圆经过椭圆C 的右顶点A .求证:直线l 过定点,并求出定点的坐标.解:(1)由题意可知⎪⎪⎩⎪⎪⎨⎧+====222233c b a a ce c ,解得2=a ,1=b 所以椭圆的方程为1422=+y x . (2)由方程组⎪⎩⎪⎨⎧=++=1422y x m kx y 得0448)41(222=-+++m kmx x k ,0)44)(41(4)8(222>-+-=∆m k km , 整理得01422>+-m k ,设),(11y x M ,),(22y x N ,则221418k kmx x +=+,22214144k m x x +-= 由已知,AN AM ⊥,即0=⋅AN AM ,又椭圆的右顶点为)0,2(A ,所以0)2)(2(2121=+--y y x x ,∵2212122121)())((m x x km x x k m kx m kx y y +++=++=,∴04))(2()1(221212=+++-++m x x km x x k ,即04418)2(4144)1(22222=+++⋅-++-⋅+m kkmkm k m k . 整理得01216522=++k mk m , 解得k m 2-=或56km -=均满足01422>+-m k . 当k m 2-=时,直线l 的方程为k kx y 2-=,过定点)0,2(,与题意矛盾,舍去;当56k m -=时,直线l 的方程为)56(-=x k y ,过定点)0,56(,故直线l 过定点,且定点的坐标为)0,56(.11.已知椭圆C :)0(12222>>=+b a by a x,点A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,是否存在圆心在坐标原点,半径为定值的定圆C ,使得l 与圆C 相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,满足12k k ⋅为定值,若存在,求出定圆的方程并求出12k k ⋅的值,若不存在,请说明理由.解:(Ⅰ)由题意,得c a =a 2=b 2+c 2,又因为点A 在椭圆C 上,所以221314a b+=, 解得a=2,b=1,c =C 的方程为2214x y +=. (Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5.证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx+m .由方程组2214y kx m x y =+⎧⎪⎨+=⎪⎩得(4k 2+1)x 2+8kmx +4m 2﹣4=0,因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即m 2=4k 2+1.由方程组222y kx mx y r=+⎧⎨+=⎩得(k 2+1)x 2+2kmx+m 2﹣r 2=0,则22222(2)4(1)()0km k m r ∆=-+->.设P 1(x 1,y 1),P 2(x 2,y 2),则12221kmx x k -+=+,221221m r x x k -=+,设直线OP 1,OP 2的斜率分别为k 1,k 2,所以221212121212121212()()()y y kx m kx m k x x km x x M k k x x x x x x +++++===222222222222222111m r kmk km m m r k k k m r m rk --⋅+⋅+-++==--+,将m 2=4k 2+1代入上式,得221222(4)14(1)r k k k k r -+=+-. 要使得k 1k 2为定值,则224141r r-=-,即r 2=5,验证符合题意. 所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值14-.当直线l 的斜率不存在时,由题意知l 的方程为x=±2, 此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足1214k k =-. 综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值14-. 12.已知椭圆)0(1:2222>>=+b a by a x C ,经过点)22,1(,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为21-的直线分别交椭圆于N M ,两点,试问:直线MN 是否过定点?若过定点,请求出此定点,若不过,请说明理由.解:(1)根据题意12121211222222222=+⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧+==+=y x b a cb a b ac b .当MN 的斜率存在时,设0224)21(22:22222=-+++⇒⎩⎨⎧=++=m kmx x k y x mkx y MN ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+>+-=∆22212212221222140)12(8k m x x k km x x m k ,∴21222222112211-=-+⋅-+=-⋅-=⋅x m kx x m kx x y x y k k NA MA , ∴k m m km m m x x km x x k 200202))(22()12(2221212-==⇒=+⇒=++-++或(舍). ∴直线MN kx y =过定点(0,0),当MN 斜率不存在时也符合,即直线MN 恒过定点(0,0). 14.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为6,以原点O 为圆心,椭圆C 的长半轴为半径的圆与直线2260x y -+=相切. (1)求椭圆C 标准方程;(2)已知点,A B 为动直线(2)(0)y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在点E ,使2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值,若不存在,说明理由.解:(1)由36=e 得36=a c ,即a c 36=① 又以原点O 为圆心,椭圆C 的长轴长为半径的圆为222a y x =+且与直线0622=+-y x 相切,所以6)2(2622=-+=a 代入①得c=2, 所以2222=-=c a b .所以椭圆C 的标准方程为12622=+y x (2)由⎪⎩⎪⎨⎧-==+)2(12622x k y y x 得061212)31(2222=-+-+k x k x k设()()1122,,,A x y B x y ,所以2221222131612,3112kk x x k k x x +-=+=+ 根据题意,假设x 轴上存在定点E (m ,0),使得2()EA EA AB EA AB EA EA EB +⋅=+⋅=⋅为定值. 则()()()11221212,,()EA EB x m y x m y x m x m y y ⋅=-⋅-=--+=()()()()()()22222221221231610123421k m k m mm k x x m k x x k +-++-=++++-+要使上式为定值,即与k 无关,()631012322-=+-m m m ,得37=m .此时,22569EA EA AB m +⋅=-=-,所以在x 轴上存在定点E (37,0)使得2EA EA AB +⋅为定值,且定值为95-. 15.已知椭圆具有如下性质:若椭圆的方程为22221(0)x y a b a b+=>>,则椭圆在其上一点00(,)A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题:已知椭圆221:12x C y +=和椭圆222:4x C y λ+=(1,λλ>为常数).(1)如图(1),点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,求OCD ∆面积的最小值; (2)如图(2),过椭圆2C 上任意一点P 作1C 的两条切线PM 和PN ,切点分别为,M N ,当点P 在椭圆2C 上运动时,是否存在定圆恒与直线MN 相切?若存在,求出圆的方程;若不存在,请说明理由. 解:(1)设22(,)B x y ,则椭圆1C 在点B 处的切线方程为2212x x y y += 令210,D x y y ==,令220,C y x x ==,所以221OCD S x y ∆=又点B 在椭圆的第一象限上,所以2222220,0,12x x y y >>+=∴222222222212222x x y y x y =+≥= ∴221222OCD S x y ∆=≥=,当且仅当22222x y =2221x y ⇔== 所以当2(1,)2B 时,三角形OCD 的面积的最小值为22. (2)设(,)P m n ,则椭圆1C 在点33(,)M x y 处的切线为:3312xx y y +=又PM 过点(,)P m n ,所以3312x m y n +=,同理点44(,)N x y 也满足4412xm y n +=所以,M N 都在12x m yn +=上,即直线MN 的方程为12xm yn +=,又(,)P m n 在2C 上,224m n λ+=,故原点O 到直线MN 的距离为:224d m n λ==+, 所以直线MN 始终与圆221x y λ+=相切.16.已知直线1y x =+被圆2232x y +=截得的弦长恰与椭圆2222:1(0)x y C a b a b +=>>的短轴长相等,椭圆C 的离心率22e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点1(0,)3M -的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过定点T ?若存在,求出点T 的坐标,若不存在,请说明理由。

椭圆中的定值、定点问题

椭圆中的定值、定点问题

椭圆中的定值、定点问题说我之前说的:什么是硬件解码的定理?这个计算太多太多了,刺激!现在更新很慢,不过我在笔记本里整理了一些模型,准备有空就发。

接下来要给出的结论,可以说是“非常一般”。

在这里先给出结论,可以自己用几何画板验证:结论给定椭圆 \Gamma:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 与椭圆上的定点 P(x_0,y_0) ,过 P 点作两条射线 PA 和PB ,与椭圆 \Gamma 交于 A 和 B 两点,记直线 PA 和 PB 的斜率分别为 k_1 和 k_2 ,则有:(1)若 k_1+k_2=\lambda ,则直线 AB 过定点 (x_0-\frac{2y_0}{\lambda},-y_0-\frac{2b^2x_0}{a^2\lambda}) 。

(2)若 k_1\cdot k_2=\lambda ,则直线 AB 过定点(\frac{2b^2x_0}{\lambda a^2-b^2}+x_0,\frac{-2a^2\lambda y_0}{\lambda a^2-b^2}+y_0) 。

这也是各个地区高考、模拟题出题常见的题型,当然,最重要的是,它说明了一个规律:只要直线过椭圆上的定点,并且斜率有关系,那么就一定有“定点”的出现。

例如以下题目:例1 (2017年全国1卷)已知椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0) ,四点P_1(1,1) , P_2(0,1) , P_3(-1,\frac{\sqrt3}{2}) ,P_4(1,\frac{\sqrt3}{2}) 中恰有三点在椭圆 C 上。

(1) 求 C 的方程;(2) 设直线 l 不经过点且与 C 相交于 A , B 两点。

若直线P_2A 与直线 P_2B 的斜率的和为 -1 ,证明: l 过定点。

例2 (例1变式)在例1中,若直线 P_2A 与直线 P_2B 互相垂直,证明: l 过定点。

椭圆中的定点定值问题

椭圆中的定点定值问题

椭圆中的定点定值问题【基础练习】1. 已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点. 若AP AQ 、分别有斜率12k k 、 ,则12k k ⋅=_______. 【答案】-2【解析】设00(,),(,)P x y A x y ,则(,)Q x y --220001222000y y y y y y k k x x x x x x -+-⋅=⋅=-+-,又由A 、P 均在椭圆上,故有:2200222121x y x y ⎧+=⎪⎨+=⎪⎩, 两式相减得2222002()()0x x y y -+-= ,220122202y y k k x x -⋅==-- 2.椭圆1273622=+y x ,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点,线段AB 的垂直平 分线交x 轴于N ,则:NF AB 等于 .【答案】14【解析】设直线AB 斜率为k ,则直线方程为()3y k x =-,与椭圆方程联立消去y 整理可得()22223424361080k x k x k +-+-=,则221212222436108,3434k k x x x x k k -+==++, 所以1221834ky y k-+=+, 则AB 中点为222129,3434k k k k ⎛⎫- ⎪++⎝⎭. 所以AB 中垂线方程为22291123434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 令0y =,则22334k x k =+,即223,034k N k ⎛⎫ ⎪+⎝⎭, 所以222239(1)33434k k NF k k+=-=++.()()()222121223611434k AB k x x x x k +⎡⎤=++-=⎣⎦+,所以14NF AB =.3.如图,已知椭圆22221(0)x y a b a b+=>>,F A ,是其左顶点和左焦点,P 是圆222b y x =+上的动点,若PAPF为常数,则此椭圆的离心率是 . 【答案】e =215- 【解析】 因为PAPF=常数,所以当点P 分别在(±b,0)时比值相等, 即+=+a b a b b c b c--,整理得:2b ac =, 又因为222b ac =-, 所以220a c ac --=同除以a 2可得e 2+e -1=0,解得离心率e =215-. 【典例精析】例1 如图,椭圆C :22142y x +=的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论. 分析一: 易证:2212AP AQb k k a =-=-,故可设直线AP 斜率为k ,则直线AQ 斜率为12k-. 直线AP 方程为(2)y k x =+,从而得(0,2)M k ,以12k -代k 得10,N k ⎛⎫- ⎪⎝⎭故知以MN 为直径的圆的方程为21(2)()0x y k y k+-+= 整理得:2212(2)0x y k y k+-+-=由22200x y y ⎧+-=⎨=⎩,可得定点(2,0)F ±. 分析二:设(0,),(0,)M m N n ,则以MN 为直径的圆的方程为2()()0x y m y n +--=即22()0x y m n y mn +-++= 再由221=2AP AQAM AN b k k k k a =-=-得2mn =-,下略例2 已知离心率为e 的椭圆C :()222210y x a b a b+=>>过两点()1e ,和()20,. (1)求椭圆C 的方程;(2)已知AB ,MN 为椭圆C 上的两动弦,其中M 、N 关于原点O 对称, AB 过定点E (1,0),()22m -<<,且AB 、MN 斜率互为相反数.试问: 直线AM 、BN 的斜率之和是否为定值?证明你的结论.解析:(1)由题意:222223111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214x y +=. (2)设AB 方程为(1)y k x =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323(1)(1)AM BN y kx y kx k x kx k x kx k k x x x x x x x x +--+--+=+=+-+-+则整理得:[]132323131323(1)()(1)()()()AM BN k x x x x x x x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22(1)44y k x x y =-⎧⎨+=⎩消元整理得:2222(41)8440k x k x k +-+-=,所以22121222844,4141k k x x x x k k -+==++ ②又由2244y kxx y =-⎧⎨+=⎩消元整理得: 22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=.例2(变式)、已知离心率为e 的椭圆(1)e ,和()20,. (1) 求椭圆C 的方程;(2) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过定点(,0),(22)E m m -<<,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值?证明你的结论.解析:(1)由题意:22222111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214xy +=. (2) 设AB 方程为()y k x m =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323()()AM BN y kx y kx k k x x x x k x m kx k x m kx x x x x +-+=+-+-+--=+-+则整理得:[]132323131323()()()()()()AM BN k x x m x x x x m x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x m x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22()44y k x m x y =-⎧⎨+=⎩消元整理得:22222(41)8440k x k mx k m +-+-=,所以222121222844,4141k m k m x x x x k k -+==++ ②又由2244y kxx y =-⎧⎨+=⎩消元整理得: 22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=.【跟踪训练】1 如图,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上.(1)求直线AB 的方程;(2)若点P 为椭圆C 上异于,A B 的动点,且直线AP ,BP 分别交直线y x =于点,M N ,证明:OM ON ⋅为定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档