概率论第六章习题解答
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

ai
Xi
⎟⎟⎠⎞
=
n Cov⎜⎛ 1
i=1
⎝n
X
i
,
ai
X
i
⎟⎞ ⎠
=
n i=1
ai n
Cov( X
i
,
X
i
)
=
σ2 n
n
ai
i=1
=σ2 n
,
因 Var(X ) = 1 Var(X ) = σ 2 = Cov(X , T ) ,
n
n
故 X 与 T 的相关系数为 Corr(X , T ) = Cov(X , T ) =
1 6
X1
+
1 6
X
2
+
2 3
X3.
证:因
E ( µˆ1 )
=
1 2
E(X1)
+
1 3
E(X
2)
+
1 6
E(X3)
=
1 2
µ
+
1 3
µ
+
1 6
µ
=
µ
,
E ( µˆ 2
)
=
1 3
E(
X1)
+
1 3
E(
X
2
)
+
1 3
E(
X3)
=
1 3
µ
+
1 3
µ
+
1 3
µ
=
µ
,
E (µˆ 3 )
=
1 6
E(X1)
+
1 6
pY
( y)
=
λn Γ(n)
概率论与数理统计课后答案第6章

概率论与数理统计课后答案第6章第6章习题参考答案1.设是取⾃总体X的⼀个样本,在下列情形下,试求总体参数的矩估计与最⼤似然估计:(1),其中未知,;(2),其中未知,。
2.设是取⾃总体X的⼀个样本,其中X服从参数为的泊松分布,其中未知,,求的矩估计与最⼤似然估计,如得到⼀组样本观测值X 0 1 2 3 4频数17 20 10 2 1求的矩估计值与最⼤似然估计值。
3.设是取⾃总体X的⼀个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计。
5.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计和最⼤似然估计。
6.设是取⾃总体X的⼀个样本,总体X服从参数为的⼏何分布,即,其中未知,,求的最⼤似然估计。
7. 已知某路⼝车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路⼝车辆经过的平均时间间隔的矩估计值与最⼤似然估计值。
8.设总体X的密度函数为,其中未知,设是取⾃这个总体的⼀个样本,试求的最⼤似然估计。
9. 在第3题中的矩估计是否是的⽆偏估计?解故的矩估计量是的⽆偏估计。
10.试证第8题中的最⼤似然估计是的⽆偏估计。
11. 设为总体的样本,证明都是总体均值的⽆偏估计,并进⼀步判断哪⼀个估计有效。
12.设是取⾃总体的⼀个样本,其中未知,令,试证是的相合估计。
13.某车间⽣产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天⽣产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中⼀种商品的⽉销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个⽉,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和⽅差的双侧0.9置信区间。
概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

第六章 参数估计习题6.11. 设X 1, X 2, X 3是取自某总体容量为3的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)3211613121ˆX X X ++=µ; (2)3212313131ˆX X X ++=µ; (3)3213326161ˆX X X ++=µ. 证:因µµµµµ=++=++=613121)(61)(31)(21)ˆ(3211X E X E X E E , µµµµµ=++=++=313131)(31)(31)(31)ˆ(3212X E X E X E E , µµµµµ=++=++=326161)(32)(61)(61)ˆ(3213X E X E X E E , 故321ˆ,ˆ,ˆµµµ都是总体均值µ 的无偏估计; 因2222321136143619141)Var(361)Var(91)Var(41)ˆVar(σσσσµ=++=++=X X X , 2222321231919191)Var(91)Var(91)Var(91)ˆVar(σσσσµ=++=++=X X X , 222232132194361361)Var(94)Var(361)Var(361)ˆVar(σσσσµ=++=++=X X X , 故)ˆVar()ˆVar()ˆVar(312µµµ<<,即2ˆµ有效性最好,1ˆµ其次,3ˆµ最差. 2. 设X 1, X 2, …, X n 是来自Exp (λ)的样本,已知X 为1/λ的无偏估计,试说明X /1是否为λ的无偏估计.解:因X 1, X 2, …, X n 相互独立且都服从指数分布Exp (λ),即都服从伽玛分布Ga (1, λ),由伽玛分布的可加性知∑==ni i X Y 1服从伽玛分布Ga (n , λ),密度函数为01e )()(>−−ΙΓ=y y n nY y n y p λλ,则λλλλλλλ1)1()(e )(e )(110201−=−Γ⋅Γ=Γ=Γ⋅=⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛−∞+−−∞+−−∫∫n n n n n dy y n n dy y n y n Y n E X E n n y n n yn n, 故X /1不是λ的无偏估计.3. 设θˆ是参数θ 的无偏估计,且有0)ˆ(Var >θ,试证2)ˆ(θ不是θ 2的无偏估计. 证:因θθ=)ˆ(E ,有2222)ˆVar()]ˆ([)ˆVar(])ˆ[(θθθθθθ>+=+=E E ,故2)ˆ(θ不是θ 2的无偏估计. 4. 设总体X ~ N(µ , σ 2),X 1, …, X n 是来自该总体的一个样本.试确定常数c 使∑=+−ni i i X X c 121)(为σ 2的无偏估计.解:因E [(X i + 1 − X i )2 ] = Var (X i + 1 − X i ) + [E (X i + 1 − X i )]2 = Var (X i + 1) + Var (X i ) + [E (X i + 1) − E (X i )]2 = 2σ 2,则2211211121)1(22)1(])[()(σσ−=⋅−⋅=−=⎥⎦⎤⎢⎣⎡−∑∑−=+−=+n c n c X X E c X X c E n i i i n i i i ,故当)1(21−=n c 时,21121)(σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c E ,即∑−=+−1121)(n i i i X X c 是σ 2的无偏估计.5. 设X 1, X 2, …, X n 是来自下列总体中抽取的简单样本,⎪⎩⎪⎨⎧+≤≤−=.,0;2121,1);(其他θθθx x p证明样本均值X 及)(21)()1(n X X +都是θ 的无偏估计,问何者更有效? 证:因总体⎟⎠⎞⎜⎝⎛+−21,21~θθU X ,有)1,0(~21U X Y +−=θ,则21−+=θY X ,21)1()1(−+=θY X ,21)()(−+=θn n Y X ,即21)(21)(21)()1()()1(−++=+θn n Y Y X X ,可得θθθ=−+=−+=21)(21)()(Y E Y E X E ,nY n Y X 121)Var(1)Var()Var(===,因Y 的密度函数与分布函数分别为p Y ( y ) = I 0<y <1,⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y有Y (1)与Y (n )的密度函数分别为10111)1()()](1[)(<<−−Ι−=−=y n Y n Y y n y p y F n y p ,1011)()]([)(<<−−Ι==y n Y n Y n ny y p y F n y p ,且(Y (1), Y (n ))的联合密度函数为)()1()()()]()()[1(),()()1(2)1()()()1(1n y y n Y Y n Y n Y n n y p y p y F y F n n y y p <−Ι−−=102)1()()()1())(1(<<<−Ι−−=n y y n n y y n n ,则11)2()()2()1()(101)1(+=+ΓΓΓ⋅=−⋅=∫−n n n n dy y n y Y E n ,1)(101)(+=⋅=∫−n n dy ny y Y E n n , )2)(1(2)3()()3()1()(10122)1(++=+ΓΓΓ⋅=−⋅=∫−n n n n n dy y n y Y E n ,2)(10122)(+=⋅=∫−n n dy ny y Y E n n , ∫∫∫∫−−−−⋅⋅=−−⋅=11)1()()()1()(1)1(2)1()()()1()()()1()()()()1())(1()(n n y n n n n y n n n n n y y d n y y dy dy y y n n y y dy Y Y E∫∫⎥⎦⎤⎢⎣⎡⋅−+−−=−−100)1()(1)1()(01)1()()()1()()()()()(n n y n n n y n n n n dy y y y n y y y ny dy2121)(102)(10)(1)(100)1()()()()(+=+==⎥⎦⎤⎢⎣⎡−⋅−=++∫∫n y n dy y y y y dy n n n n n y n n n n n , 即)2()1(11)2)(1(2)Var(22)1(++=⎟⎠⎞⎜⎝⎛+−++=n n n n n n Y ,)2()1(12)Var(22)(++=⎟⎠⎞⎜⎝⎛+−+=n n n n n n n Y n ,且)2()1(111121),Cov(2)()1(++=+⋅+−+=n n n nn n Y Y n 可得θθ=−++=⎥⎦⎤⎢⎣⎡+21)]()([21)(21)()1()()1(n n Y E Y E X X E ,)2)(1(21)2()1(422)],Cov(2)Var()[Var(41)(21Var 2)()1()()1()()1(++=+++=++=⎥⎦⎤⎢⎣⎡+n n n n n Y Y Y Y X X n n n , 因θ=(X E ,θ=⎥⎦⎤⎢⎣⎡+)(21)()1(n X X E ,故X 及)(21)()1(n X X +都是θ 的无偏估计; 因当n > 1时,)2)(1(21)(21Var 121)Var()()1(++=⎥⎦⎤⎢⎣⎡+>=n n X X n X n , 故)(21)()1(n X X +比样本均值X 更有效. 6. 设X 1, X 2, X 3服从均匀分布U (0, θ ),试证)3(34X 及4X (1)都是θ 的无偏估计量,哪个更有效?解:因总体X 的密度函数与分布函数分别为θθ<<Ι=x x p 01)(,⎪⎩⎪⎨⎧≥<≤<=.,1;0,;0,0)(θθθx x x x x F有X (1)与X (3)的密度函数分别为θθθ<<Ι−=−=x x x p x F x p 03221)(3)()](1[3)(,θθ<<Ι==x x x p x F x p 032233)()]([3)(,则443223)(3)(043223032)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 43433)(043032)3(θθθθθ=⋅=⋅=∫x dy x x X E , 1054233)(3)(205432303222)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 53533)(25303222)3(θθθθθ=⋅=⋅=∫x dy x x X E , 即803410)Var(222)1(θθθ=⎟⎠⎞⎜⎝⎛−=X ,8034353)Var(222)3(θθθ=⎟⎠⎞⎜⎝⎛−=X , 因θθ=⋅=44)4()1(X E ,θθ=⋅=⎟⎠⎞⎜⎝⎛433434)3(X E ,故4X (1)及)3(34X 都是θ 的无偏估计; 因5380316)4Var(22)1(θθ=⋅=X ,1580391634Var 22)3(θθ=⋅=⎟⎠⎞⎜⎝⎛X ,有⎟⎠⎞⎜⎝⎛>)3()1(34Var )4Var(X X , 故)3(34X 比4X (1)更有效. 7. 设从均值为µ ,方差为σ 2 > 0的总体中,分别抽取容量为n 1和n 2的两独立样本,1X 和2X 分别是这两个样本的均值.试证,对于任意常数a , b (a + b = 1),21X b X a Y +=都是µ 的无偏估计,并确定常数a , b 使Var (Y ) 达到最小.解:因µµµµ=+=+=+=)()()()(21b a b a X bE X aE Y E ,故Y 是µ 的无偏估计;因22222121222122221212)1()(Var )(Var )(Var σσσ⎟⎟⎠⎞⎜⎜⎝⎛+−+=⋅−+⋅=+=n a n a n n n n n a n a X b X a Y , 令022)(Var 222121=⎟⎟⎠⎞⎜⎜⎝⎛−⋅+=σn a n n n n Y da d ,得211n n n a +=,且02)(Var 2212122>⋅+=σn n n n Y a d d , 故当211n n n a +=,2121n n n a b +=−=时,Var (Y ) 达到最小2211σn n +.8. 设总体X 的均值为µ ,方差为σ 2,X 1, …, X n 是来自该总体的一个样本,T (X 1, …, X n )为µ 的任一线性无偏估计量.证明:X 与T 的相关系数为)Var()Var(T X .证:因T(X 1, …, X n )为µ的任一线性无偏估计量,设∑==ni i i n X a X X T 11),,(L ,则µµ===∑∑==ni i ni i i a X E a T E 11)()(,即11=∑=ni i a ,因X 1, …, X n 相互独立,当i ≠ j 时,有Cov (X i , X j ) = 0,则nanX X n a X a X n X a X n T X ni in i i i i n i i i i ni i i n i i 2121111),Cov(,1Cov ,1Cov ),Cov(σσ===⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑∑=====,因),Cov()Var(1)Var(2T X nX n X ===σ,故X 与T 的相关系数为)Var()Var()Var()Var()Var()Var()Var(),Cov(),Corr(T X T X X T X T X T X ===.9. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i (i = 1, …, k ).用这些仪器独立地对某一物理量θ 各观察一次,分别得到X 1, …, X k ,设仪器都没有系统误差.问a 1, …, a k 应取何值,方能使∑==ki i i X a 1ˆθ成为θ 的无偏估计,且方差达到最小?解:因θθθ⎟⎟⎠⎞⎜⎜⎝⎛===⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑====k i i ki i k i i i ki i i a a x E a x a E E 1111)()ˆ(, 则当11=∑=ki i a 时,∑==ki ii x a 1ˆθ是θ 的无偏估计, 因∑∑∑=====⎟⎟⎠⎞⎜⎜⎝⎛=ki i i k i i i k i i i a x a x a 122121)(Var Var )ˆ(Var σθ, 讨论在11=∑=ki i a 时,∑=ki i i a 122σ的条件极值,设拉格朗日函数⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑==1),,,(11221ki i ki iik a a a a L λσλL , 令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=−=∂∂=+=∂∂=+=∂∂∑=,01,02,02122111ki i k k ka L a a L a a L λλσλσL L L L L 得2212−−++−=k σσλL ,2212−−−++=k i i a σσσL ,i = 1, …, k , 故当2212−−−++=k i i a σσσL ,i = 1, …, k 时,∑==ki ii x a 1ˆθ是θ 的无偏估计,且方差达到最小. 10.设X 1, X 2, …, X n 是来自N (θ, 1)的样本,证明g (θ ) = |θ | 没有无偏估计(提示:利用g (θ )在θ = 0处不可导).证:反证法:假设T = T (X 1, X 2, …, X n )是g (θ ) = |θ | 的任一无偏估计,因∑==ni i X n X 11是θ 的一个充分统计量,即在取定x X =条件下,样本条件分布与参数θ 无关,则)|(X T E S =与参数θ 无关,且S 是关于X 的函数,||)()()]|([)(θθ====g T E X T E E S E , 可得)(X S S =是g (θ ) = |θ | 的无偏估计,因X 1, X 2, …, X n 是来自N (θ, 1)的样本,由正态分布可加性知X 服从正态分布⎟⎠⎞⎜⎝⎛n N 1,θ,则∫∫∞+∞−+−−∞+∞−−−⋅⋅=⋅=dx x S ndx n x S S E x n x n n x nθθθ22222)(2e)(eπ2eπ2)()(,因E (S ) = |θ|,可知对任意的θ,反常积分∫∞+∞−+−⋅dx x S x n x n θ22e)(收敛,则由参数θ的任意性以及该反常积分在−∞与+∞两个方向的收敛性知∫∞+∞−⋅⋅+−⋅dx x S x n x n ||||22e)(θ收敛,因x n x S x S x n x n x n n ⋅⋅=⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂+−+−θθθ2222e )(e )(,且| y | ≤ e| y |,有||)1||(2222eex n n x n x n x n ⋅+⋅+−+−≤⋅θθ,则由∫∞+∞−⋅+⋅+−⋅dx x S x n x n ||)1|(|22e)(θ的收敛性知∫∞+∞−+−⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂dx x S x n x n θθ22e )(一致收敛, 可得∫∞+∞−+−−⋅⋅=dx x S nS E x n x n n θθ2222e)(e π2)(关于参数θ 可导,与E (S ) = |θ |在θ = 0处不可导矛盾,故g (θ ) = |θ | 没有无偏估计.11.设总体X 服从正态分布N (µ , σ 2),X 1, X 2, …, X n 为来自总体X 的样本,为了得到标准差σ 的估计量,考虑统计量:∑=−=ni i X X n Y 11||1,∑==n i i X n X 11,n ≥ 2,∑∑==−−=n i nj j i X X n n Y 112||)1(1,n ≥ 2,求常数C 1与C 2,使得C 1Y 1与C 2Y 2都是σ 的无偏估计. 解:设),0(~2θN Y ,有θθθθθθθπ2eπ22e π212e π21|||][|02022222222=−=⋅=⋅=+∞−∞+−∞+∞−⋅−∫∫y y y dy y dy y Y E , 因X X i −是独立正态变量X 1, X 2, …, X n 的线性组合, 且0()()(=−=−=−µµX E X E X X E i i ,22211,Cov 21),Cov(2)Var()Var()Var(σσσn n X n X n X X X X X X i i i i i −=⎟⎠⎞⎜⎝⎛−+=−+=−,则⎟⎠⎞⎜⎝⎛−−21,0~σn n N X X i ,σσπ)1(21π2|][|n n n n X X E i −=−⋅=−, 可得σσπ)1(2π)1(21|][|1)()(11111111n n C n n n n C X X E n C Y E C Y C E n i i −=−⋅⋅⋅=−⋅==∑=,故当)1(2π1−=n n C 时,E [C 1Y 1] = σ,C 1Y 1是σ 的无偏估计;当i ≠ j 时,X i 与X j 相互独立,都服从正态分布N (µ , σ 2),有E (X i − X j ) = E (X i ) − E (X j ) = µ − µ = 0,Var(X i − X j ) = Var(X i ) + Var(X j ) = σ 2 + σ 2 = 2σ 2,则X i − X j ~ N (0, 2σ 2),σσπ22π2|][|=⋅=−j i X X E , 当i = j 时,X i − X j = 0,E [| X i − X j |] = 0,可得σσπ2π2)()1(1|][|)1(1)()(2221122222C n n n n C X X E n n C Y E C Y C E n i nj j i =−⋅−⋅=−−⋅==∑∑==, 故当2π2=C 时,E [C 2Y 2] = σ,C 2Y 2是σ 的无偏估计. 习题6.21. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1050,1100,1130,1040,1250,1300,1200,1080,试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.解:平均寿命µ 的矩估计75.1143ˆ==x µ;标准差σ 的矩估计8523.89*ˆ==s µ. 2. 设总体X ~ U (0, θ ),现从该总体中抽取容量为10的样本,样本值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6,试对参数θ 给出矩估计.解:因X ~ U (0, θ ),有2)(θ=X E ,即θ = 2 E (X ),故θ 的矩估计68.234.122ˆ=×==x θ. 3. 设总体分布列如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1)Nk X P 1}{==,k = 0, 1, 2, …, N − 1,N (正整数)是未知参数;(2)P {X = k } = (k − 1)θ 2 (1 − θ )k − 2,k = 2, 3, …,0 < θ < 1.解:(1)因21)]1(10[1)(−=−+++=N N N X E L ,即N = 2 E (X ) + 1,故N 的矩估计12ˆ+=X N ; (2)因⎥⎦⎤⎢⎣⎡−=−=−−⋅=∑∑∑+∞=+∞=+∞=−22222222222)1()1()1()1()(k k k k k k d d d d k k X E θθθθθθθθ θθθθθθθθθθθ2221)1(1)1(322222222=⋅=⎟⎠⎞⎜⎝⎛+−=⎥⎦⎤⎢⎣⎡−−−=d d d d , 则)(2X E =θ, 故θ 的矩估计X2ˆ=θ. 4. 设总体密度函数如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1))(2);(2x x p −=θθθ,0 < x < θ ,θ > 0; (2)p (x ;θ ) = (θ + 1) x θ,0 < x < 1,θ > 0;(3)1);(−=θθθx x p ,0 < x < 1,θ > 0; (4)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0.解:(1)因3322)(2)(032202θθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛−⋅=−⋅=∫x x dx x x X E ,即θ = 3 E (X ),故θ 的矩估计X 3ˆ=θ; (2)因212)1()1()(10210++=+⋅+=+⋅=+∫θθθθθθθx dx x x X E ,即)(11)(2X E X E −−=θ, 故θ 的矩估计XX −−=112ˆθ; (3)因11)(101101+=+⋅=⋅=+−∫θθθθθθθxdx x x X E ,即2)(1)(⎥⎦⎤⎢⎣⎡−=X E X E θ, 故θ 的矩估计21ˆ⎟⎟⎠⎞⎜⎜⎝⎛−=XX θ; (4)因θµθµθµθµµθµµθµµθµµθµ+=−=+−=−⋅=⋅=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x X E eeee)1(e1)(,)(2e2ee)1(e1)(22222X E dx x x d x dx x X E x x x x θµθµθµµθµµθµµθµ+=+−=−⋅=⋅=∫∫∫∞+−−+∞−−∞+−−∞+−−= µ 2 + 2µθ + 2θ 2,则Var (X ) = E (X 2 ) − [E (X )]2 = θ 2,即)Var(X =θ,)Var()(X X E −=µ,故θ 的矩估计*ˆS =θ,*ˆS X −=µ. 5. 设总体为N (µ , 1),现对该总体观测n 次,发现有k 次观测值为正,使用频率替换方法求µ 的估计.解:因p = P {X > 0} = P {X − µ > −µ} = 1 − Φ (−µ) = Φ (µ),即µ = Φ −1 ( p ),故µ 的矩估计⎟⎠⎞⎜⎝⎛Φ=Φ=−−n k p 11)ˆ(ˆµ.6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现a 个错字,乙发现b 个错字,其中共同发现的错字有c 个,试用矩法给出如下两个未知参数的估计: (1)该书样稿的总错字个数; (2)未被发现的错字数. 解:(1)设N 为该书样稿总错别字个数,且A 、B 分别表示甲、乙发现错别字,有A 与B 相互独立,则P (AB ) = P (A ) P (B ),使用频率替换方法,即N b N a p p N c p B A AB ⋅===ˆˆˆ,得cabN =, 故总错字个数N 的矩估计cab N=ˆ; (2)设k 为未被发现的错字数,因)()()(1)(1)(AB P B P A P B A P B A P +−−=−=U ,使用频率替换方法,即N cN b N a p p pN k pAB B A B A +−−=+−−==1ˆˆˆ1ˆ,即k = N − a − b + c , 故未被发现的错字数k 的矩估计c b a cab c b a N k+−−=+−−=ˆˆ. 7. 设总体X 服从二项分布b (m , p ),其中m , p 为未知参数,X 1, …, X n 为X 的一个样本,求m 与p 的矩估计.解:因E (X ) = mp ,Var (X ) = mp (1 − p ),有)()Var(1X E X p =−,则)()Var(1X E X p −=,)Var()()]([)(2X X E X E p X E m −==, 故m 的矩估计22*ˆS X X m −=,p 的矩估计XS p 2*1ˆ−=.习题6.31. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)1);(−=θθθxx p ,0 < x < 1,θ > 0;(2)p (x ;θ ) = θ c θ x − (θ + 1) ,x > c ,c > 0已知,θ > 1. 解:(1)因1,,,01212110121)()(<<−=<<−Ι=Ι=∏n i x x x n nni x ix x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,)ln()1(ln 2)(ln 21n x x x nL L −+=θθθ, 令0)ln(212)(ln 21=+=n x x x n d L d L θθθθ,得)ln(21n x x x n L −=θ,即221)ln(⎥⎦⎤⎢⎣⎡=n x x x nL θ,故θ 的最大似然估计221)ln(ˆ⎦⎤⎢⎣⎡=n X X X n L θ;(2)因c x x x n n n ni c x i n i x x x c x c L >+−=>+−Ι=Ι=∏,,,)1(211)1(21)()(L L θθθθθθθ,当x 1, x 2, …, x n > c 时,ln L (θ ) = n ln θ + n θ ln c − (θ + 1) ln (x 1 x 2 …x n ), 令0)ln(ln )(ln 21=−+=n x x x c n n d L d L θθθ,得c n x x x nn ln )ln(21−=L θ, 故θ 的最大似然估计cn X X X nn ln )ln(ˆ21−=L θ.2. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)p (x ;θ ) = c θ c x − (c + 1) ,x > θ ,θ > 0,c > 0已知;(2)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0;(3)p (x ;θ ) = (k θ )−1,θ < x < (k + 1)θ ,θ > 0.解:(1)因θθθθθ>+−=>+−Ι=Ι=∏n i x x x c n nc n ni x c i c x x x c x c L ,,,)1(211)1(21)()(L L ,显然θ 越大,nc θ越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0,即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(nX X X X L ==θ;(2)因µµθµθµθθµθ>⎟⎟⎠⎞⎜⎜⎝⎛−−=>−−Ι∑=Ι==∏n n i i i i x x x n x nni x x L ,,,11211e1e1),(L ,当x 1, x 2, …, x n > µ 时,⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=µθθµθn x n L ni i 11ln ),(ln , 令01),(ln 12=⎟⎟⎠⎞⎜⎜⎝⎛−+−=∑=µθθθµθn x n d L d ni i ,解得µµθ−=⎟⎟⎠⎞⎜⎜⎝⎛−=∑=x n x n n i i11, 且显然µ越大,⎟⎟⎠⎞⎝⎛−−∑=µθn x n i i 11e 越大,但只有x 1 , x 2 , …, x n > µ 时,才有L (θ, µ) > 0,即µ = min {x 1, x 2, …, x n } 时,L (θ, µ) 才能达到最大,故µ 的最大似然估计},,,min{ˆ21)1(n X X X X L ==µ,θ 的最大似然估计)1(ˆˆX X X −=−=µθ; (3)因θθθθθθθ)1(,,,1)1(121)()()(+<<−=+<<−Ι=Ι=∏k x x x n ni k x n i k k L L ,显然θ 越小,(k θ )−n 越大,但只有θ < x 1 , x 2 , …, x n < (k + 1)θ 时,才有L (θ ) > 0,即},,,max{1121n x x x k L +=θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{111ˆ21)(nn X X X k k X L +=+=θ. 3. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)θθθ||e 21);(x x p −=,θ > 0;(2)p(x ;θ ) = 1,θ − 1/2 < x < θ + 1/2;(3)12211),;(θθθθ−=x p ,θ1 < x < θ2.解:(1)因∑===−=−∏ni i i x n n ni x L 1||11||e21e 21)(θθθθθ,有∑=−−−=n i i x n n L 1||1ln 2ln )(ln θθθ, 令∑=+⋅−=ni i x n d L d 12||11)(ln θθθθ,得∑==ni i x n 1||1θ, 故θ的最大似然估计∑==ni i X n 1||1ˆθ; (2)因2/1,,,2/112/12/121)(+<<−=+<<−Ι=Ι=∏θθθθθn i x x x ni x L L ,即θ − 1/2 < x (1) ≤ x (n ) < θ + 1/2,可得当x (n ) − 1/2 < θ < x (1) + 1/2时,都有L (θ ) = 1,故θ 的最大似然估计ˆθ是 (x (n ) − 1/2, x (1) + 1/2) 中任何一个值; (3)因221121,,,1211221)(11),(θθθθθθθθθθ<<=<<Ι−=Ι−=∏n i x x x n ni x L L ,显然θ 1越大且θ 2越小时,L (θ1, θ 2) 越大,但只有θ1 < x 1 , x 2 , …, x n < θ 2 时,才有L (θ1, θ 2) > 0, 即θ 1 = min {x 1, x 2, …, x n }且θ 2 = max {x 1, x 2, …, x n }时,L (θ1, θ 2)达到最大,故θ 1的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ, θ 2的最大似然估计},,,max{ˆ21)(2nn X X X X L ==θ. 4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数.假设这100次观察相互独立,求这地区石子中石灰石的比例p 的最大似然估计.该地质学家所得的数据如下: 样本中的石子数 0 1 2 3 4 5 6 7 8 9 10样品个数0 1 6 7 23 26 21 12 3 1 0解:总体X 为样品的10块石子中属石灰石的石子数,即X 服从二项分布B (10, p ),其概率函数为xx p p x x p −−⎟⎟⎠⎞⎜⎜⎝⎛=10)1(10)(,x = 1, 2, …, 10,因∑−∑⋅⎟⎟⎠⎞⎜⎜⎝⎛=−⎟⎟⎠⎞⎜⎜⎝⎛===−==−∏∏1001100110001001110)1(10)1(10)(i ii iii x x i i ni x x i p p x p p x p L ,即)1ln(1000ln 10ln )(ln 100110011001p x p x x p L i i i i i i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅+⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑===, 令01110001)(ln 10011001=−⋅⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=∑∑==p x p x dp p L d i i i i ,得∑==100110001i i x p ,即∑==100110001ˆi i X p 由于49909137261101001=+×+×+×+×+=∑=i i x ,故比例p 的最大似然估计499.049910001ˆ=×=p. 5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为m k p p p k m p k X P mk m k ,,2,1,)1(1)1(};{L =−−−⎟⎟⎠⎞⎜⎜⎝⎛==−. 若已知m = 2,X 1, …, X n 是样本,试求p 的最大似然估计.解:当m = 2时,X 只能取值1或2,且p p p p p X P −−=−−−==222)1(1)1(2}1{2,ppp p X P −=−−==2)1(1}2{22, 即pp p p p p p p x X P x x x x−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−==−−−−2)22(2222};{1212,x = 1, 2,因nnx x n ni x x p p p p p p p L ni i ni i i i )2()22(2)22()(112112−∑∑−=−−=−−=−−==∏, 即)2ln(ln )22ln(2)(ln 11p n p n x p x n p L n i i ni i −−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==,令02112222)(ln 11=−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==p n p n x p x n dp p L d n i i ni i ,得x x n p n i i22221−=−=∑=, 故p 的最大似然估计Xp22ˆ−=. 6. 已知在文学家萧伯纳的“An Intelligent Woman’s Guide to Socialism ”一书中,一个句子的单词数X 近似地服从对数正态分布,即Z = ln X ~ N (µ , σ 2 ).今从该书中随机地取20个句子,这些句子中的单词数分别为52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30,求该书中一个句子单词数均值22e )(σµ+=X E 的最大似然估计.解:因Z = ln X ~ N (µ , σ 2 ),则µ的最大似然估计09.3)30ln 24ln 52(ln 201ln 11ˆ11=+++====∑∑==L n i in i i x n z n z µ, σ 2的最大似然估计51.0])09.330(ln )09.324(ln )09.352[(ln 201)(12221222=−++−+−=−==∑=∗∧L n i i zz z n sσ, 故由最大似然估计的不变性知22e)(σµ+=X E 的最大似然估计31.28e e )(251.009.322*===++∧zs z X E .7. 总体X ~ U (θ , 2θ ),其中θ > 0是未知参数,又X 1, …, X n 为取自该总体的样本,X 为样本均值.(1)证明X 32ˆ=θ是参数θ 的无偏估计和相合估计; (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?解:(1)因X ~ U(θ , 2θ ),有θθθ2322)(=+=X E ,2212112)2()Var(θθθ=−=X , 故θθ=⋅===2332)(32)(32)ˆ(X E X E E ,即X 32ˆ=θ是参数θ 的无偏估计; 因n n X n X 2712194)Var(94)Var(94)ˆVar(22θθθ=⋅===,有θθ=→∞)ˆ(lim E n ,0)ˆVar(lim =∞→θn , 故X 32ˆ=θ是参数θ 的相合估计; (2)因θθθθθθθ2,,,122111)(<<=<<Ι=Ι=∏n i x x x nni x L L ,显然θ 越小,nθ1越大,但只有θ < x 1 , x 2 , …, x n < 2θ 时,才有L (θ ) > 0,即},,,max{2121n x x x L =θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{2121*ˆ21)(nn X X X X L ==θ;因X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;2,1)(其他θθθx x p ,分布函数为⎪⎩⎪⎨⎧≥<≤−<=.2,1;2,;,0)(θθθθθθx x x x x F则X (n ) 的密度函数⎪⎩⎪⎨⎧<<−==−−.,0;2,)()()]([)(11其他θθθθx x n x p x F n x p nn n n因θθθθθθθθθθθ11)()()()(2121)(+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n ,有θ112)()(++=n n X E n , 且2222122)(22)()()(])[(θθθθθθθθθθθ+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n , 则2222)()()2()1(12)Var()Var(θθθθ++=⎟⎠⎞⎜⎝⎛+−+=−=n n n n n n n X X n n , 因θθθ≠++==)1(212)(21*)ˆ()(n n X E E n ,22)()2()1(4)Var(41*)ˆVar(θθ++==n n n X n , 故)(21*ˆn X =θ不是参数θ 的无偏估计,应该修偏为)(121ˆn X n n ++=θ才是θ 的无偏估计, 因θθθ=++=→∞→∞)1(212lim *)ˆ(lim n n E n n ,0)2()1(4lim *)ˆVar(lim 22=++=∞→∞→θθn n n n n , 故θ 的最大似然估计)(21*ˆn X =θ是参数θ 的相合估计. 8. 设X 1, …, X n 是来自密度函数为p (x ;θ ) = e − (x − θ), x >θ 的样本.(1)求θ 的最大似然估计1ˆθ,它是否是相合估计?是否是无偏估计? (2)求θ 的矩估计2ˆθ,它是否是相合估计?是否是无偏估计? 解:(1)似然函数θθθθθ>+−=>−−Ι∑=Ι==∏n ni i i i x x x n x ni x x L ,,,1)(211ee)(L ,显然θ 越大,θn x ni i +−∑=1e 越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0, 即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ; 因X 的密度函数与分布函数分别为⎩⎨⎧≤>=−−.,0;,e )()(θθθx x x p x ⎩⎨⎧≤>−=−−.,0;,e 1)()(θθθx x x F x 则X (1) 的密度函数为⎩⎨⎧≤>=−=−−−.,0;,e )()](1[)()(11θθθx x n x p x F n x p x n n 可得X (1) − θ 服从指数分布Exp (n ),因n X E 1)()1(=−θ,2)1(1)Var(nX =−θ, 则θθθ≠+==nX E E 1)()ˆ()1(1,2)1()1(11)Var()Var()ˆVar(n X X =−==θθ, 故)1(1ˆX =θ不是θ 的无偏估计; 因θθθ=⎟⎠⎞⎜⎝⎛+=→∞→∞n E n n 1lim )ˆ(lim 1,01lim )ˆVar(lim 21==→∞→∞n n n θ, 故)1(1ˆX =θ是θ 的相合估计; (2)因总体X 的密度函数为p (x ;θ ) = e − (x − θ), x >θ ,有X − θ 服从指数分布Exp (1),则E (X − θ ) = E (X ) − θ = 1,即θ = E (X ) − 1,故θ 的矩估计1ˆ2−=X θ; 因E (X ) = θ + 1,Var(X ) = Var(X − θ) = θ 2,则θθ=−=−=1)(1)()ˆ(2X E X E E ,nX n X 22)Var(1)Var()ˆVar(θθ===, 故1ˆ2−=X θ是θ 的无偏估计; 因θθ=∞→)ˆ(lim 2E n ,0lim )ˆVar(lim 22==→∞→∞n n n θθ, 故1ˆ2−=X θ是θ 的相合估计. 9. 设总体X ~ Exp (1/θ ),X 1, …, X n 是样本,θ 的矩估计和最大似然估计都是X ,它也是θ 的相合估计和无偏估计,试证明在均方误差准则下存在优于X 的估计(提示:考虑X a a=θˆ,找均方误差最小者). 证:因X ~ Exp (1/θ ),有E (X ) = θ ,Var(X ) = θ 2,且X 的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0;0,e 1)(x x x p xθθ故θ = E (X ),即θ 的矩估计为X =θˆ; 因似然函数0,,,110211e1e1)(>−=>−Ι∑=Ι==∏n ni ii ix x x x nni x x L L θθθθθ, 当x 1, x 2, …, x n > 0时,∑=−−=ni i x n L 11ln )(ln θθθ, 令01)(ln 12=+−=∑=ni i x n d L d θθθθ,得x x n ni i ==∑=11θ, 故θ 的最大似然估计也为X =θˆ; 因θ==)((X E X E ,nX n X 2)Var(1)Var(θ==,故X 是θ 的无偏估计;因θ=→∞)(lim X E n ,0lim)Var(lim 2==∞→∞→nX n n θ,故X 是θ 的相合估计;设X a a =θˆ,有θθa X aE E a ==)()ˆ(,na X a a 222)Var()ˆVar(θθ==, 则nnX E X X 2222)(])([)Var()MSE(θθθθθ=−+=−+=,222222212)(])ˆ([)ˆVar()ˆMSE(θθθθθθθθ⎟⎟⎠⎞⎜⎜⎝⎛+−+=−+=−+=a a n a a n a E a a a 2222111111121θθ⎥⎥⎦⎤⎢⎢⎣⎡++⎟⎠⎞⎜⎝⎛+−+=⎟⎠⎞⎜⎝⎛++++−+=n n n a n n n n n a a n n ,故当1+=n n a 时,X n n a 1ˆ+=θ的均方误差1)ˆMSE(2+=n a θθ小于X 的均方误差nX 2)MSE(θ=.10.为了估计湖中有多少条鱼,从中捞出1000条,标上记号后放回湖中,然后再捞出150条鱼,发现其中有10条鱼有记号.问湖中有多少条鱼,才能使150条鱼中出现10条带记号的鱼的概率最大?解:设湖中有N 条鱼,有湖中每条鱼带记号的概率为Np 1000=,看作总体X 服从两点分布b (1, p ),从中抽取容量为150的样本X 1, X 2, …, X 150,有101501=∑=i i x ,似然函数∑−∑=−===−=−∏ni ini iiix n x ni x x p pp p p L 11)1()1()(11,有)1ln(ln )(ln 11p x n p x p L ni i ni i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==, 令0111)(ln 11=−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==p x n p x dp p L d ni i n i i ,得x x n p ni i ==∑=11,即p 的最大似然估计为X p =ˆ, 因pN 1000=,由最大似然估计的不变性知X N1000ˆ=, 故湖中有150001015011000ˆ=×=N条鱼时,才能使150条鱼中出现10条带记号的鱼的概率最大. 11.证明:对正态分布N (µ , σ 2 ),若只有一个观测值,则µ , σ 2的最大似然估计不存在. 证:若只有一个观测值,似然函数222)(2eπ21),(σµσσµ−−=x L ,对于任一固定的σ,当µ = x 时,L (µ)取得最大值σπ21, 但显然σ 越小,σπ21越大,且σ 可任意接近于0,即σπ21不存在最大值,故µ , σ 2的最大似然估计不存在.习题6.41. 设总体概率函数是p (x ;θ ),X 1, …, X n 是其样本,T = T (X 1, …, X n )是θ 的充分统计量,则对g (θ )的任一估计gˆ,令)|ˆ(~T g E g =,证明:)ˆMSE()~MSE(g g ≤.这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.解:因)|ˆ(~T g E g=,由Rao-Blackwell 定理知)ˆ()~(g E g E =,)ˆVar()~Var(g g ≤, 故)ˆMSE()]()ˆ([)ˆVar()]()~([)~Var()~MSE(22g g g E g g g E g g=−+≤−+=θθ. 2. 设T 1 , T 2分别是θ 1 , θ 2的UMVUE ,证明:对任意的(非零)常数a , b ,aT 1 + bT 2 是a θ 1 + b θ 2的UMVUE .证:因T 1 , T 2分别是θ 1 , θ 2的UMVUE ,有E (T 1) = θ 1 ,E (T 2) = θ 2 ,且对任意的满足E (ϕ) = 0的ϕ 都有Cov (T 1 , ϕ) = Cov (T 2 , ϕ) = 0, 则E (aT 1 + bT 2) = a E (T 1) + b E (T 2) = a θ 1 + b θ 2 ,且Cov (aT 1 + bT 2 , ϕ) = a Cov (T 1 , ϕ) + b Cov (T 2 , ϕ) = 0, 故aT 1 + bT 2是a θ 1 + b θ 2的UMVUE .3. 设T 是g (θ ) 的UMVUE ,gˆ是g (θ ) 的无偏估计,证明,若+∞<)ˆ(Var g ,则0)ˆ,Cov(≥g T . 证:因gˆ和T 都是g (θ ) 的无偏估计,有)()()ˆ(θg T E g E ==,即0)ˆ(=−T g E , 又因T 是g (θ ) 的UMVUE ,有0)ˆ,(Cov =−T g T ,即0),Cov()ˆ,Cov(=−T T g T , 故0),Cov()ˆ,Cov(≥=T T gT . 4. 设总体X ~ N (µ , σ 2),X 1 , …, X n 为样本,证明,∑==n i i X n X 11,∑=−−=n i i X X n S 122)(11分别为µ , σ 2的UMVUE .证:因X ~ N (µ , σ 2 ),有X 是µ 的无偏估计,S 2是σ 2的无偏估计,且样本X 1 , …, X n 的联合密度函数为===−−=−−∏ni i ix nni x n x x p 12222)(2112)(21e )π2(1e π21),;,,(µσσµσσσµL ,对任意的满足E (ϕ) = 0的ϕ (x 1 , …, x n ),有0e)π2(1)(1)(21122=∑⋅=∫∫∞+∞−∞+∞−−−=n x ndx dx E ni i L L µσϕσϕ,对E (ϕ) = 0两端关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=⋅−⋅==∂∂=n x ni i ndx dx x E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n ni i L L 1)(212122e)(1)π2(1µσµσϕσ)()]()([])[(222ϕσϕµϕσϕµσX E nE X E nX E n=−=−=,则0)(=ϕX E ,0)(()(),Cov(=⋅−=ϕϕϕE X E X E X ,故∑==ni i X n X 11是µ 的UMVUE ;对0)(=ϕX E 两端再关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x n i i ndx dx x x X E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n x ni i L L 1)(212122e)(1)π2(1µσµσϕσ )()]()([])[(22ϕσϕµϕσϕµσX E nX E X E nX X E n=−=−=,则0)(2=ϕX E ,对0)()π2(=ϕσE n 两端关于σ 2求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x ni indx dx xE ni i L L 1)(211242122e)(210)]()π2[(µσµσϕσϕσ∫∫∑∞+∞−∞+∞−−−=∑⋅⎟⎟⎠⎞⎜⎜⎝⎛+−⋅==n x n i i dx dx n x n x ni i L L 1)(212124122e 221µσµµσϕ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−=∑=ϕµµσσ21222)π2(n X n X E n i i n ⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡+−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==n i i n n i i n X E E n X E n X E 122122)π2()()(22)π2(ϕσσϕµϕµϕσσ, 则012=⎟⎟⎠⎞⎜⎜⎝⎛∑=n i i X E ϕ,因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11X n X n X X n S n i i n i i ,有0)(11)(2122=⎥⎦⎤⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=∑=ϕϕϕX nE X E n S E n i i , 则Cov (S 2, ϕ ) = E (S 2ϕ ) − E (S 2) ⋅ E (ϕ) = 0,故∑=−−=ni i X X n S 122)(11是σ 2的UMVUE . 5. 设总体的概率函数为p(x ;θ ),满足定义6.4.2的条件,若二阶导数);(22θθx p ∂∂对一切的θ ∈ Θ 存在,证明费希尔信息量⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=);(ln )(22θθθX p E I . 证:因θθ∂∂⋅=∂∂p p p 1ln ,2222222221ln 111ln θθθθθθθ∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂⋅−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂=∂∂p p p p p p p p p p , 故∫∫∞+∞−∞+∞−∂∂+−=⋅∂∂⋅+−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂dx p I pdx p p I p p E p E p E 222222222)(1)(1ln ln θθθθθθθ)()()(22θθθI dx x p I −=⎟⎠⎞⎜⎝⎛∂∂+−=∫∞+∞−.6. 设总体密度函数为p (x ;θ ) = θ x θ − 1, 0 < x < 1, θ > 0,X 1 , …, X n 是样本.(1)求g (θ ) = 1/θ 的最大似然估计; (2)求g (θ )的有效估计.解:(1)似然函数1,,,0121110121)()(<<−=<<−Ι=Ι=∏n i x x x n n ni x i x x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,ln L (θ ) = n ln θ + (θ − 1) ln (x 1x 2…x n ),令0)ln()(ln 21=+=n x x x n d L d L θθθ,得∑=−=−=ni i n x n x x x n 121ln )ln(L θ,即∑=−=ni iX n 1ln ˆθ, 故g(θ ) = 1/θ 的最大似然估计为∑=−==ni iX n g 1ln 1ˆ/1ˆθ; (2)因θθθθθθθθ1101ln )(ln ln )(ln 10101010101−=−=⋅−=⋅=⋅=∫∫∫−x dx x x x x x d x dx x x X E ,21102102101222)(ln 2ln 2)(ln )()(ln )(ln )(ln θθθθθθθ=−=⋅−==⋅=∫∫∫−X E dx x x x x x x d x dx x x X E , 则22222112)](ln [)(ln )Var(ln θθθ=⎟⎠⎞⎜⎝⎛−−=−=X E X E X ,可得)(111)(ln 1)ˆ(1θθθg n n X E n gE n i i ==⎟⎠⎞⎜⎝⎛−⋅⋅−=−=∑=,即∑=−=n i i X n g 1ln 1ˆ是g (θ )的无偏估计, 且22212111)Var(ln 1)ˆ(Var θθn nn X ngni i =⋅⋅==∑=, 因p (x ; θ ) = θ x θ − 1 I 0 < x < 1,当0 < x < 1时,ln p (x ; θ ) = ln θ + (θ − 1) ln x ,则x x p ln 1);(ln +=∂∂θθθ,2221);(ln θθθ−=∂∂x p ,即2221);(ln )(θθθθ=⎥⎦⎤⎢⎣⎡∂∂−=X p E I ,可得g (θ ) = 1/θ 无偏估计方差的C-R 下界为)ˆ(Var 111)()]([22222g n n nI g ==⋅⎟⎠⎞⎜⎝⎛−=′θθθθθ, 故∑=−=ni i X n g1ln 1ˆ是g (θ ) = 1/θ 的有效估计. 7. 设总体密度函数为2e 2);(3x xx p θθθ−=, x > 0, θ > 0,求θ 的费希尔信息量I (θ ).解:因032e 2);(>−Ι=x x xx p θθθ,当x > 0时,2ln 3ln 2ln );(ln x x x p θθθ−−+=,。
概率论与数理统计第六章数理统计的基本概念习题答案

解:c 2
=
9S 2 16
~
c 2 (9), P(S 2
> a) =
P
æ çè
c
2
>
பைடு நூலகம்9a 16
ö ÷ø
=
0.1.
查表得 9a = 14.684, 16
\ a = 14.684 ´16 = 26.105. 9
大学数学云课堂
028606.设总体X 服从标准正态分布,X1,X 2,L,X n是来自总体X的一个简单随机样本
ò ò E( X ) = +¥ xf (x)dx = 1 +¥ xe- x dx = 0
-¥
2 -¥
ò ò ò E( X 2 ) = +¥ x2 f (x)dx = 1 +¥ x2e- x dx = +¥ x2e-xdx = 2,
-¥
2 -¥
0
\E(S2) = 2
大学数学云课堂
2004研考
å å 么E
é ê ê ê ê
n1 i =1
(Xi
ê ê - Xë )2 + n1 + n2
n1 + n2 - 2
n2
(Y j
-
Y
)2
ù ú
j =1
ú=
-2
ú
ú
n1
+
1 n2
ú ú û -
g E (s 2
2 c12
+s
2
c
2 2
)
ë
û
=
n1
s2 + n2
-
2
[E(c12 )
+
E
(
概率论第六章 习题答案

∴( X1 + X 2 + X 3 )2 + ( X 4 + X 5 + X 6 )2 ∼ χ 2 (2)
3
3
即
1 Y
∼
χ 2 (2)
3
得:
1 c= ,
n = 2.
3
2
11.解:∵ X1 + X2 ∼ N(0,1), 2
X
2 3
+
X
2 4
+
X
2 5
∼
χ
2 (3)
且相互独立,
X1 + X2
由Y =
2
nσ 2
=
σ2 n
.
2.解:
(1) 因为总体 X ~ N(µ,σ 2 ) , X1, X2 , X3 是来自总体 X 的样本,
所以样本的联合概率密度函数为
n
f
(x1 , x2 , x3
)
=
Π
i=1
f
(xi ; µ ,σ 2
)
∑ =
(
1
⎧1
2π σ
)3
exp
⎨− ⎩
2σ
2
n
(
xi
−
µ
)2
⎫ ⎬
,
i=1
2 3
)2
+
(1−
2 )2 3
+
(1−
2 3
)
2
⎤ ⎥⎦
=
1 3
3. 证明:
∑ ∑ (1) EX
=
E(1 n
n i=1
Xi )
=
1 n
n i=1
EX i
=
1 n
《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
概率论与数理统计六七章习题答案

第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。
则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论第六章习题解答1、在总体2(52,6.3)N 中随机抽取一容量为36的样本,求样本均值X 落在50.8与53.8之间的概率。
解 因为2(52,6.3)N ,所以{50.853.8}P X P <<=<<10.87.2()()6.3 6.3-=Φ-Φ(1.71)( 1.14)=Φ-Φ- 0.956410.87290.8293=-+=2、在总体(12,4)N 中随机抽取一容量为5的样本1X ,2X ,3X ,4X ,5X , (1)求样本均值与总体均值之差的绝对值大于1的概率。
(2)求概率12345{max(,,,,)15}P X X X X X >,12345{min{(,,,,)10}P X X X X X <解 (1)总体均值为12μ=,,样本均值5114(12,)55ii X X N ==∑所求概率为{|12|1}1{|12|1}P X P X ->=--≤1{1121}P X =--≤-≤1X P =-≤≤1(()22=-Φ+Φ- 22(1.12)=-Φ2(10.8686)0.2628=-= (2)1234512345{max(,,,,)15}1{max(,,,,)15}P X X X X X P X X X X X >=-≤ 123451{15,15,15,15,15}P X X X X X =-≤≤≤≤≤ 511{15}i i P X ==-≤∏511215121{}22i i X P =--=-≤∏ 51((1.5))=-Φ51(0.9332)0.2923=-=. (3) 12345{min{(,,,,)10}P X X X X X <123451{min{(,,,,)10}P X X X X X =-≥123451{10,10,10,10,10}P X X X X X =-≥≥≥≥≥511{10}i i P X ==-≥∏511(1{10})i i P X ==--<∏511210121(1{})22i i X P =--=--<∏ 511(1(1))i ==--Φ-∏511(1)i ==-Φ∏51(0.8413)1042150.5285=-=-=3、求总体(20,3)N 的容量分别为10,15的两个独立样本均值差的绝对值不超过0.3的概率。
解 设容量为10的样本均值为X ,样本容量为15的样本均值为Y , 则 3(20,)10X,3(20,)15Y ,331()(0,)(0,)10152X Y N N -+= {||0.3}1{||0.3}P X Y P X Y ->=--≤ 1{0.30.3}P X Y =--≤-≤1X Y P =-≤≤1{0.3(0.3P X Y =--≤-≤1(0.3(0.3=-Φ-Φ-22(0.3=-Φ22(0.42)=-Φ 2(10.6628)20.33720.6744=-=⨯= 4、(1)设126,,,X X X 样本是来自总体(0,1)N ,22123456()()Y X X X X X X =+++++,试确定常数C ,使CY 服从2χ分布。
(2)设125,,,X X X 来自总体(0,1)N 样本,1212222345()()C X X Y X X X +=++,试确定常数C 使Y服从t 分布。
(3)已知()Xt n ,求2(1,)X F n解 (1)因为126,,,X X X 是来自总体(0,1)N 的样本,由2(,)ii i X N μσ知222121212()(,)N n n X X X N μμμσσσ+++++++++)故 123(0,3)X X X N ++,456(0,3)X X X N ++,且相互独立,因此(0,1)N(0,1)N且两者相互独立,由22212,,,n X X X 是来自总体(0,1)N 的样本,则统计量 2222212()nX X X n χχ=+++由2χ分布的定义知222123456()()(2)33X X X X X X χ+++++即2(2)3Y χ,所以13C =。
(2)因为设125,,,X X X 是来自总体(0,1)N 的样本12(0,2)X X N +,(0,1)N ,又有 2222345(3)X X X χ++且,222345X X X ++相互独立,于是由t 分布的定义知345(3)3t =因此所求常数为C =。
(3) 因为()X t n ,故X的形式,其中(0,1)Z N ,2()Y n χ,且Z ,Y 相互独立,按F 分布的定义知2(1,)X F n 。
5、(1)已知某种能力测试的得分服从正态分布2(,)N μσ,随机地取10个人参加这一测试,求他们的联合概率密度,并求这10个人得分的平均值小于μ的概率。
(2)在(1)中设62μ=,225σ=,若得分超过70就能得奖,求至少有一人得奖 的概率。
解 设i X 表示参加测试的i 个人的得分(1,2,,10i =),则2(,)i X N μσ,22()2()x X f x μσ--=,0σ>,x -∞<<∞由于1210,,,X X X 相互独立,所以它们的联合的联合分布密度为22()10212101(,,,)i x X i f x x x μσ--==10212()102i i x eμσ=--∑=又 101110i i X X ==∑,10101111()()()1010i i i i E X E X E X μ=====∑∑ 2101021111()()()101010i ii i D X D X D X σ=====∑∑故2(,)10XN σμ,则{}0}(0)0.5X P X P μ<=<=Φ=(2) 因为(62,25)iX N ,若一人得分超过70就能得奖,则一人得奖的概率为{70}1{70}i i P X P X >=-≤6270621{}1(1.6)10.94520.054855i X P --=-<=-Φ=-= 则10个人得奖可以看作是一个二项分布:(10,0.0548)b ,设A 表示没有人得奖,则001010()(0.0548)(0.9452)0.5692P A C =⨯=()10.56920.4308P A =-= 即至少有一得奖的概率为0.4308。
6、设总体(1,)Xb p ,12,,,n X X X 是来自总体的样本。
(1)求12(,,,)n X X X 的分布律;(2)求1nii X=∑的分布律;(3)求()E X ,()D X ,2()E S 解 (1)因为12,,,n X X X 相互独立,且有(1,)iX b p ,1,2,,i n =,即i X 具有分布律 1{}(1)i ixx i P X x p p -==-,0,1i x =,因此12(,,,)n X X X 分布律为 (各个样本的分布律的乘积)1112211{,,,}{}(1)i i n nx x n n i i i P X x X x X x P X x p p -========-∏∏11(1)nniii i x x n p p ==-∑∑=-(2)因为12,,,n X X X 相互独立,且有(1,)iX b p ,故1(,)nii X b n p =∑,其分布律为 1{}(1)nk kn k in i P Xk C p p -===-∑7、设总体2()X n χ,1210,,,X X X 是来自X 的样本,求()E X ,()D X ,2()D S 。
解 因为2()Xn χ,所以2()()i E X E n χ==,2()()2i D X D n χ== 1,2,,10i =10101111()()()1010i i i i E X E X E X n =====∑∑1010211112()()()1010105i ii i n nD XE X E X ======∑∑1010222221111()((10)(()10())99i i i i E S E X X E X E X ===-=-∑∑因为 222()()(())2i i i E X D X E X n n =+=+222()()(())5nE X D X E X n =+=+ 所以 1022211()((2)10())95i n E S n n n ==+-+∑221(10(2)10())95nn n n =+-+ 11829n n =⨯=8、总体2(,)XN μσ,1210,,,X X X 是来自X 的样本,(1)写出1210,,,X X X 的联合分布密度;(2)写出X 的概率密度。
解 (1)1210,,,X X X 联合概率密度22()1021,2101(,,)x i f x x x μσ--==10221()2251(2)i x e μσπσ=--∑=(2)因为 ()E X μ=,2()10D X σ=,所以2225()()x X f x μσ--==。
一般地 2(,)X N μσ,2()X f x =。
9、设在总体2(,)XN μσ中抽取一容量为16的样本,这里μ,2σ均为未知。
(1)求22{2.041}S P σ≤;其中2S 为样本方差。
(2)2()D S 。
解 (1)设1216,,,X X X 为总体的一个样本,则由教材P143定理二知2221(1)1S n n χσ--从而 2222{2.041}{1515 2.041}S S P P σσ≤=⨯≤⨯ (n-1=15) 221{1530.615}S P σ=-⨯>10.010.99=-=(查表,115n -=,2(1)30.615n αχ-=,得0.01α=)(2)由于2221(1)1S n n χσ--,故22(1)()2(1)n S D n σ-=- (因为2()2D n χ=)224(1)()2(1)n D S n σ-=-即 44222(1)2()(1)1n D S n n σσ-==-- 10题和11题略去如有侵权请联系告知删除,感谢你们的配合!。