金属材料的力学性能
金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC
金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。
如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。
这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。
这种能力就是材料的力学性能。
金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。
钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。
在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。
金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
力和变形同时存在、同时消失。
如弹簧:弹簧靠弹性工作。
塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。
(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。
塑性变形:在外力消失后留下的这部分不可恢复的变形。
2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。
材料在常温、静载作用下的宏观力学性能。
是确定各种工程设计参数的主要依据。
这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。
对于韧性材料,有弹性和塑性两个阶段。
弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。
当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。
弹性极限:弹性阶段的应力最高限。
第一章 金属材料的力学性能

度
A、C标尺为100
B标尺为130
机 械 制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA
机
械
硬度值 A标尺
制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高
机
•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制
造
基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
机
械
制
造
基
础
§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,
金属材料的力学性能

金属材料的力学性能使用性能⎪⎩⎪⎨⎧性)高温。
氧化性(热稳定化学性能:耐蚀性、抗密度、熔点等性、导热性、热膨胀、物理性能:电学性、磁、塑性、韧性、钢度等力学性能:强度、硬度工艺性能⎪⎪⎪⎩⎪⎪⎪⎨⎧切削加工焊接性压力加工(冲压性)铸造性可锻性金属材料的力学性能:金属材料在一定的温度条件和受外力作用下,抵抗变形、断裂的能力称材料的力学性能又称为机械性能。
主要有四大指标:1、 强度指标:抗拉强度b σ 屈服强度s σ:(疲劳强度、屈强比)2、塑性指标⎩⎨⎧断面收缩率伸长率(延伸率)δ 3、硬度指标⎪⎪⎩⎪⎪⎨⎧D HL HV HRC HB )里氏硬度()维氏硬度()洛氏硬度()布氏强度( 4、韧性指标⎩⎨⎧IC k k K A a 断裂韧度冲击韧性1、强度指标将规定尺寸的试棒在拉伸实验机上进行静拉伸实验,以测定该试件对外力载荷的抗力,可求强度指标和塑性指标。
(1)拉伸曲线图(2)应力应变图应力0A 外力=σ (单位面积所受力) 应变0L L ∆=ε (单位长度的变形量)对原材料、焊接工艺及焊接试板均有严格的标准进行规定。
对圆形拉伸试样分标准试样和比例试样,每种又分为长试样和短试样⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧===(短)(长)任意选用比例试样:短试样)长试样)标距标准试样:直径006000000065.53.11(5(1020A L A L d d L d L L d (3)拉伸试验分为四个阶段中碳钢 低碳钢(拉伸图) 变形量ΔL (应变ε)σ标距L 0①弹性变形阶段:变形量L ∆与外力(或应变和应力)成正比(即虎克定律)。
该阶段最高值:e ':P σ:称比例极限(即保持直线关系的最大负荷)。
e σ:弹性极限:我们把材料产生最大弹性变形时的应力称由于检测精度,国标规定以残余变形量为0.01%时的应力为弹性极限。
A F e e =σ 应力:单位面积上材料抵抗变形的力称为应力。
金属的力学性能有哪些

金属的力学性能有哪些金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。
金属材料力学性能包括其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。
1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。
材料单位面积受载荷称应力。
2、屈服点(6s):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。
时应力值,单位用牛顿/毫米2(N/mm2)表示。
3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。
单位用牛顿/毫米2(N/mm2)表示。
如铝锂合金抗拉强度可达689.5MPa 4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。
工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。
6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HRA、HRB、HRC)。
7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。
什么是金属材料金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。
一般分为黑色金属和有色金属两种。
黑色金属包括铁、铬、锰等。
其中钢铁是基本的结构材料,称为“工业的骨骼”。
由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。
但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。
金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。
常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。
其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。
延展性可以通过材料的延伸率、断面收缩率等指标来描述。
3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。
韧性也可以通过断裂韧性、冲击韧性等指标来描述。
4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。
硬度可以通过洛氏硬度、布氏硬度等进行测量。
5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。
弹性模量可以描述材料的刚
度和变形的程度。
6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。
疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。
以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。
这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。
金属材料力学性能
金属材料力学性能
金属材料是一种具有良好力学性能的材料,其力学性能主要包括力学强度、变形能力、抗疲劳性和韧性等。
首先,金属材料具有较高的力学强度。
力学强度是指金属材料在外力作用下能够承受的最大应力。
金属材料的力学强度高,意味着它具有较高的抗拉、抗压和抗弯能力。
这使得金属材料广泛应用于工程结构中,如建筑、桥梁和航空器等。
其次,金属材料具有良好的变形能力。
变形能力是指金属材料在外力作用下发生塑性变形的能力。
金属材料可通过冷加工、热加工和轧制等工艺方法来实现变形,使其形状得到改变。
这种良好的变形能力使金属材料具有可塑性,适用于制造各种形状的工件。
金属材料还具有较好的抗疲劳性能。
抗疲劳性是指金属材料在频繁循环加载下的抗损伤能力。
由于外界应力的作用,金属材料会发生变形和损伤,如果应力循环次数过多,将导致断裂。
但金属材料通常具有较高的抗疲劳极限,可以承受较大的应力循环次数,从而延长其使用寿命。
最后,金属材料具有良好的韧性。
韧性是指材料在受力下发生断裂前能够发生较大的塑性变形。
金属材料的韧性意味着它在受到外界冲击或载荷时能够吸收能量,防止突然断裂。
这种优良的韧性使得金属材料广泛应用于制造安全保护装备,如安全带和防护网等。
总的来说,金属材料具有较高的力学强度、较好的变形能力、良好的抗疲劳性和韧性。
这些力学性能使得金属材料成为广泛使用的工程材料,并在国民经济各个领域发挥着重要作用。
金属材料的力学性能
金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。
通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。
2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。
常用的评价指标有伸长率、断面收缩率和断裂延伸率。
3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。
常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
4. 韧性:金属材料的韧性是指其抵抗断裂的能力。
韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。
5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。
塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。
6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。
疲劳性能的评价指标包括疲劳寿命和疲劳极限等。
不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。
因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。
金属材料的力学性能
金属材料的力学性能力学性能是指金属材料在受力作用下所表现出的力学行为和性质。
主要包括强度、塑性、韧性、硬度和抗疲劳性等。
以下将对金属材料的这些力学性能进行简要介绍。
首先,强度是指金属材料抵抗外力破坏的能力。
常见的强度指标有屈服强度、抗拉强度和抗压强度等。
屈服强度是材料在受力过程中开始发生塑性变形时的应力值,抗拉强度是金属材料在拉伸试验中抵抗断裂的能力,抗压强度则是抗压试验中材料承受外压力的能力。
这些强度指标决定了金属材料的受力承载能力。
其次,塑性是指金属材料在受力过程中能够产生可逆的永久变形的能力。
塑性是金属材料重要的力学性能,它体现了材料的延展性和可塑性。
常见的塑性指标有延伸率和冷弯性能等。
延伸率是材料在拉伸过程中产生的伸长量与原长度的比值,冷弯性能则是金属材料在室温下能够承受的塑性变形能力。
韧性是指金属材料在受力过程中能够吸收较大的能量而不断进行塑性变形的能力。
韧性是强度和塑性的综合体现,越高的韧性意味着金属材料在遭受外力时能更好地抵抗断裂。
常见的韧性指标有断裂韧性和冲击韧性等。
硬度是指金属材料抵抗外界划伤或压痕的能力,也是反映材料抗外界形变的能力。
硬度是金属材料与其他物质接触时发生形变的抵抗力,常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
抗疲劳性是指金属材料在重复应力加载下抵抗疲劳损伤的能力。
金属材料在长期受到交变载荷时会发生疲劳破坏,抗疲劳性能反映了材料的疲劳寿命和稳定性。
常见的抗疲劳性指标有疲劳极限和疲劳寿命等。
综上所述,金属材料的力学性能包括强度、塑性、韧性、硬度和抗疲劳性等方面。
不同的金属材料在这些方面有着不同的特点和应用范围,因此在实际应用中需要根据具体情况选择合适的金属材料。
金属材料的力学性能
钢铁材料:107次 非铁合金:108次
1
2
n
-1
N1 N2 Nn
Nc
N
Hale Waihona Puke 疲劳曲线部分工程材料的疲劳极限σ
-1(MPa)
三、提高材料疲劳极限的途径
1、设计方面 尽量使用零件避免交角、缺口和截面 突变,以避免应力集中及其所引起的疲劳裂纹。 2、材料方面 通常应使晶粒细化,减少材料内部存 在的夹杂物和由于热加工不当引起的缺陷。如疏 松、气孔和表面氧化等。 3、机械加工方面 要降低零件表面粗糙度值。 4、零件表面强化方面 可采用化学热处理、表面淬 火、喷丸处理和表面涂层等,使零件表面造成压 应力,以抵消或降低表面拉应力引起疲劳裂纹的 可能性。
二、洛氏硬度
1、洛氏硬度测量原理
洛氏硬度HR=K-h/s
式中,K为给定标尺的硬度数,S为给定标尺的单位, 通常以0.002为一个硬度单位。
洛氏硬度试验原理图
2、常用洛氏硬度标尺及适用范围
标 尺 硬度 符号 所用压 总试验力 头 F/N 适用范 围①HR 应用范围
A
HRA
金刚石 圆锥
588.4 20—88
一、布氏硬度
布氏硬度试验示意图
1、布氏硬度试验原理
HB 0.102 2P(N)
D(D - D 2 - d 2 )
式中 P—试验力(N); d—压痕平均直径(mm); D—硬质合金球直径(mm)
2、选择试验规范
根据被测金属材料的种类和试样厚度、选用不同大小的球 体直径D,施加的试验力F和试验力保持时间,按表1—1所 列的布氏硬变试验规范正确选择 。
3、试验优缺点
优点:与布氏、洛氏硬度试验比较,维氏硬度试验不存在 试验力与压头直径有一定比例关系的约束;也不存在压头 变形问题,压痕轮廓清晰,采用对角线长度计量,精确可 靠,硬度值误差较小。 缺点:其硬度值需要先测量对角线长度,然后经计算或查 表确定,故效率不如洛氏硬度试验高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fb A0
精品课件
塑性
(一) 定义 金属材料断裂前发生永久变形的能力。
(二)衡量指标 伸长率:试样拉断后,标距的伸长与原始标距的百分比。
断面收缩率:试样拉断后,颈缩处的横截面积的缩减量与原 始横截面积的百分比。
精品课件
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后的标距,mm; l0——试样的原始标距,mm。
❖ 金属材料的力学性能是指在承受各种外加载荷(拉 伸、压缩、弯曲、扭转、冲击、交变应力等)时, 对变形与断裂的抵抗能力及发生变形的能力。
精品课件
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏的能力。
❖ 金属材料的强度和塑性的判据可通过拉伸试验 测定。
精品课件
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处的横截面积,mm2 。
精品课件
精品课件
强度
屈服点
在伸长过程中力不增加(保持恒定),试样仍能继续
伸长时的应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时的拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
精品课件
规定残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显的屈服现象,无法确定其屈服强 度。
❖ 国标GB228-2002规定,一般规定以试样达
到一定残余伸长率对应的应力作为材料的屈
服强度,称为规定残余延伸强度,通常记作
Rr。例如Rr0.2表示残余伸长率为0.2%时的应
力。
精品课件
规定残余延伸应力
F0.2 A0
F
F0.2
0 0.2%L0
ΔL
精品课件
抗拉强度
材料在断裂前所能承受的最大应力,用符号 表示 。
F
0
ΔL
脆性材料在断裂前没有明显的屈服现象。 精品课件
屈服现象
❖ 在金属拉伸试验过程中
,当应力超过弹性极限
后,变形增加较快,此
时除了弹性变形外,还
产生部分塑性变形。当
外力增加到一定数值时突然下降,随ຫໍສະໝຸດ ,在外力不增加或上下波动情
况下,试样继续伸长变
形,在力-伸长曲线出
现一个波动的小平台,
这便是屈服现象。
精品课件
拉伸实验
万能材料试验机 a) WE系列液压精式品课件b) WDW系列电子式
力-伸长曲线
拉伸试验中得出的拉伸力与伸长量的关系曲线。
弹性变形阶段 屈服阶段 强化阶段 颈缩现象
精品课件
拉 伸 试 样 的 颈 缩 现 象
精品课件
(a)试样 (b)伸长 (精c品)产课件生缩颈 (d)断裂
3. 脆性材料的拉伸曲线(与低碳钢试样相对比)