数字信号处理(第三版)第1章习题答案

合集下载

《数字信号处理》第三版答案(非常详细完整)

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

《数字信号处理》第三版课后答案

《数字信号处理》第三版课后答案

数字信号处理(西电科大第三版)课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数; (2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理第三版第1章习题答案

数字信号处理第三版第1章习题答案

第 1 章 时域离散信号和时域离散系统
1.
学习要点
1
信号: 模拟信号、 时域离散信号、 数字信号三者
之间的区别; 常用的时域离散信号; 如何判断信号是周期性的
, 其周期如何计算等。
2
系统: 什么是系统的线性、 时不变性以及因果性
、 稳定性; 线性、 时不变系统输入和输出之
间的关系; 求解线性卷积的图解法(列表法)、 解析法,
第 1 章 时域离散信号和时域离散系统
解线性卷积也可用Z变换法, 以及离散傅里叶变换求解, 这是后面几章的内容。 下面通过例题说明。
设x(n)=R4(n), h(n)=R4(n), 求y(n)=x(n)*h(n)。 该题是两个短序列的线性卷积, 可以用图解法(列表法) 或者解析法求解。 表1.2.1给出了图解法(列表法), 用公式 可表示为
此是非周期序列。
第 1 章 时域离散信号和时域离散系统
4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形;
(2) 计算x (n)= [x(n)+x(-n)], 并画出x (n)波形;
e
e
(3) 计算x (n)= o
[x(n)-x(-n)], 并画出x o(n)波形
(4) 令x (n)=x (n)+x (n), 将x (n)与x(n)进行比较, 你能得到
第 1 章 时域离散信号和时域离散系统 图1.3.2
第 1 章 时域离散信号和时域离散系统
[例1.3.5]已知x1(n)=δ(n)+3δ(n-1)+2δ(n-2),x2(n)=u
u(n-3), 试求信号x(n), 它满足x(n)=x1(n)*x2(n), 并画出x( 的波形。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
+6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8

数字信号处理第三版习题答案

数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。

它在现代通信、音频处理、图像处理等领域有着广泛的应用。

为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。

本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。

第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。

c) 离散时间信号可以通过采样连续时间信号得到。

1.2 习题答案:a) 线性系统满足叠加性和齐次性。

b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。

c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。

第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。

b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。

2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。

b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。

第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。

b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。

3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。

b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。

第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。

《数字信号处理》第三版课后答案(完整版)

《数字信号处理》第三版课后答案(完整版)

西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。

解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。

解:( 1) x(n) 的波形如 题 2 解图(一) 所示。

( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。

( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。

( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。

解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。

8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理第三版西科大课后答案第1章

数字信号处理第三版西科大课后答案第1章

第1章 时域离散信号和时域离散系统 1.1.2 重要公式(1) ∞-∞==-=m n h n x m n h m x n y )(*)()()()( 这是一个线性卷积公式, 注意公式中是在-∞~∞之间对m 求和。

如果公式中x(n)和h(n)分别是系统的输入和单位脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。

(2)x(n)=x(n)*δ(n)该式说明任何序列与δ(n)的线性卷积等于原序列。

x(n -n0)=x(n)*δ(n -n0)(3)∞-∞=-=k a n k X T X )j j (1)j (ˆs ΩΩΩ这是关于采样定理的重要公式, 根据该公式要求对信号的采样频率要大于等于该信号的最高频率的两倍以上, 才能得到不失真的采样信号。

∞-∞=--=n a a T nT t T nT t nt x t x /)(π]/)(πsin[)()(这是由时域离散信号理想恢复模拟信号的插值公式。

1.2 解线性卷积的方法解线性卷积是数字信号处理中的重要运算。

解线性卷积有三种方法, 即图解法(列表法)、 解析法和在计算机上用MA TLAB 语言求解。

它们各有特点。

图解法(列表法)适合于简单情况, 短序列的线性卷积, 因此考试中常用, 不容易得到封闭解。

解析法适合于用公式表示序列的线性卷积, 得到的是封闭解, 考试中会出现简单情况的解析法求解。

解析法求解过程中, 关键问题是确定求和限, 求和限可以借助于画图确定。

第三种方法适合于用计算机求解一些复杂的较难的线性卷积, 实验中常用。

解线性卷积也可用Z 变换法,以及离散傅里叶变换求解, 这是后面几章的内容。

下面通过例题说明。

设x(n)=R 4(n), h(n)=R 4(n), 求y(n)=x(n)*h(n)。

该题是两个短序列的线性卷积, 可以用图解法(列表法)或者解析法求解。

表1.2.1给出了图解法(列表法), 用公式可表示为y(n)={…, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, …}下面用解析法求解, 写出卷积公式为∑∞-∞=∞-∞=-=-=m m m n R m R m n h m x n y )()()()()(44在该例题中, R 4(m)的非零区间为0≤m ≤3, R 4(n -m)的非零区间为0≤n -m ≤3,或写成n -3≤m ≤n ,这样y(n)的非零区间要求m 同时满足下面两个不等式:0≤m ≤3 m -3≤m ≤n上面公式表明m 的取值和n 的取值有关, 需要将n 作分段的假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 章 时域离散信号和时域离散系统
1.1.1
(1) 信号: 模拟信号、 时域离散信号、 数字信号三 者之间的区别; 常用的时域离散信号; 如何判断信号是周期 性的, 其周期如何计算等。
(2) 系统: 什么是系统的线性、 时不变性以及因果 性、 稳定性; 线性、 时不变系统输入和输出之 间的关系; 求解线性卷积的图解法(列表法)、 解析法, 以及用MATLAB工具箱函数求解; 线性常系数差分方程的递
x(n-n0)=x(n)*δ(n-n0)
(3)
Xˆ n ( j )
Байду номын сангаас
1 T
X a ( j
k
jks )
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)
n
xa
(nt
)
sin[π(t nT ) / T π(t nT ) / T
第 1 章 时域离散信号和时域离散系统
第1章 时域离散信号和时域离散系统
1.1 学习要点与重要公式 1.2 解线性卷积的方法 1.3 例题 1.4 习题与上机题解答
第 1 章 时域离散信号和时域离散系统
1.1 学习要点与重要公式
本章内容是全书的基础。 学生从学习模拟信号分析与处 理到学习数字信号处理, 要建立许多新的概念。 数字信号 和数字系统与原来的模拟信号和模拟系统不同, 尤其是处理 方法上有本质的区别。 模拟系统用许多模拟器件实现, 数 字系统则通过运算方法实现。 如果读者对本章关于时域离散 信号与系统的若干基本概念不清楚, 则学到数字滤波器时, 会感到“数字信号处理”这门课不好掌握, 总觉得学习的不 踏实。 因此学好本章是极其重要的。
]
这是由时域离散信号理想恢复模拟信号的插值公式。
第 1 章 时域离散信号和时域离散系统
1.2
解线性卷积是数字信号处理中的重要运算。 解线性卷积有 三种方法, 即图解法(列表法)、 解析法和在计算机上用 MATLAB语言求解。 它们各有特点。 图解法(列表法)适合 于简单情况, 短序列的线性卷积, 因此考试中常用, 不容易 得到封闭解。 解析法适合于用公式表示序列的线性卷积, 得 到的是封闭解, 考试中会出现简单情况的解析法求解。 解析 法求解过程中, 关键问题是确定求和限, 求和限可以借助于 画图确定。 第三种方法适合于用计算机求解一些复杂的较难的 线性卷积, 实验中常用。
零区间要求m同时满足下面两个不等式:
0≤m≤3
m-3≤m≤n
上面公式表明m的取值和n的取值有关, 需要将n作分
段的假设。 按照上式, 当n变化时, m应该按下式取值:
第 1 章 时域离散信号和时域离散系统
max{0, n-3}≤m≤min{3, n} 当0≤n≤3时, 下限应该是0, 上限应该是n; 当4≤n≤6时, 下限应该是n-3, 上限应该是3; 当n<0或n>6时, 上面的 不等式不成立, 因此y(n)=0; 这样将n分成三种情况
第 1 章 时域离散信号和时域离散系统
解线性卷积也可用Z变换法, 以及离散傅里叶变换求解, 这是后面几章的内容。 下面通过例题说明。
设x(n)=R4(n), h(n)=R4(n), 求y(n)=x(n)*h(n) 该题是两个短序列的线性卷积, 可以用图解法(列表法) 或者解析法求解。 表1.2.1给出了图解法(列表法), 用公 式可表示为
(3) 模拟信号的采样与恢复: 采样定理; 采样前的 模拟信号和采样后得到的采样信号之间的频谱关系; 如何由 采样信号恢复成原来的模拟信号; 实际中如何将时域离散信 号恢复成模拟信号。
第 1 章 时域离散信号和时域离散系统
1.1.2 重要公式
(1)
y(n) x(m)h(n m) x(n) * h(n) m
第 1 章 时域离散信号和时域离散系统 图1.2.1
第 1 章 时域离散信号和时域离散系统
1.3 例
[例1.3.1] 线性时不变系统的单位脉冲响应用h(n)表示, 输入x(n)是以N为周期的周期序列, 试证明输出y(n)亦是以N为 周期的周期序列。
这是一个线性卷积公式, 注意公式中是在-∞~∞之间 对m求和。 如果公式中x(n)和h(n)分别是系统的输入和单位 脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。
第 1 章 时域离散信号和时域离散系统
(2)
x(n)=x(n)*δ(n)
该式说明任何序列与δ(n)的线性卷积等于原序列。
y(n)={…, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, …}
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
下面用解析法求解, 写出卷积公式为
y(n) x(m)h(n m) R4 (m)R4 (n m)
m
m
在该例题中, R4(m)的非零区间为0≤m≤3, R4(n-m)的 非零区间为0≤n-m≤3, 或写成n-3≤m≤n, 这样y(n)的非
(1) n<0或n>6时, y(n)=0
(2) 0≤n≤3时,
n
y(n) 1 n 1 m0
第 1 章 时域离散信号和时域离散系统
(3) 4≤n≤6时,
n
y(n) 1 7 n mn3
将y(n)写成一个表达式, 如下式:
y(n)=
n 1 y(n) 7 n
0
0≤n≤3 4≤n≤6 其它
第 1 章 时域离散信号和时域离散系统
在封闭式求解过程中, 有时候决定求和的上下限有些麻 烦, 可借助于非零值区间的示意图确定求和限。 在该例题 中, 非零值区间的示意图如图1.2.1所示。 在图1.2.1(b)中, 当n<0时, 图形向左移动, 图形不可能和图1.2.1(a)的图形有 重叠部分, 因此y(n)=0。 当图形向右移动时, 0≤n≤3, 图 形如图1.2.1(c)所示, 对照图1.2.1(a), 重叠部分的上下限自 然是0≤m≤n。 当图形再向右移动时, 4≤n≤6, 如图1.2.1(d)所 示, 重叠部分的上下限是n-3≤m≤3。 当图形再向右移动时, 7≤n, 图形不可能和图1.2.1(a)有重叠部分, 因此y(n)=0。
相关文档
最新文档