一次函数与一元一次不等式 自学与练习

合集下载

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)

12.【2019·常德】某生态体验园推出了甲、乙两种消费卡, 设入园次数为x时所需费用为y元,选择这两种卡消费时, y与x的函数关系如图所示,解答下列问题: (1)分别求出选择这两种卡消费时,y关于x的函数表达式;
解:设y甲=k1x,根据题意得5k1=100, 解得k1=20,∴y甲=20x; 设y乙=k2x+100, 将点(20,300)的坐标代入得20k2+100=300, 解得k2=10.∴y乙=10x+100.
4.如图,直线y1=x+b与y2=kx-1相交于点P,点 P的横坐标为-1,则关于x的不等式x+b>kx-1 的解集在数轴上表示正确的是( A )
*5.如图,已知正比例函数 y1=ax 与一次函数 y2=12x+b 的图象交于点 P.下面有四个结论:①a<0;②b<0; ③当 x>0 时,y1>0;④当 x<-2 时,y1>y2.其中正 确的是( ) A.①② B.②③ C.①③ D.①④
(2)该药店四月份计划一次性购进两种型号的口罩共10 000 只,其中B型口罩的进货量不超过A型口罩的1.5倍,设 购进A型口罩m只,这10 000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?
解:根据题意得, W=0.5m+0.6(10 000-m)=-0.1m+6 000, 由题知10 000-m≤1.5m,解得m≥4 000. ∵-0.1<0,∴W随m的增大而减小. ∴当m=4 000时,W取最大值, W最大=-0.1×4 000+6 000=5 600, 即药店购进A型口罩4 000只、B型口罩6 000只,才能使 销售总利润最大,最大总利润为5 600元.
【点拨】由图象知,对于 y1=ax,y1 随 x 的增大而减小, ∴a<0,故①正确;直线 y2=12x+b 与 y 轴交于正半轴, ∴b>0,故②错误;当 x>0 时,y1<0,故③错误;当 x<-2 时,直线 y1=ax 在直线 y2=12x+b 的上方,

一元一次不等式求解练习题

一元一次不等式求解练习题

一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。

首先,我们需要将不等式中的x系数与常数项分开。

将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。

2. 第二题:解方程 2x - 5 ≤ 7。

首先,我们需要将方程中的x系数与常数项分开。

将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。

3. 第三题:解不等式 3 - x < 9。

首先,我们需要将不等式中的x系数与常数项分开。

将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。

4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。

首先,我们分别求解两个方程。

第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。

第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。

由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。

以上就是题目中的四道一元一次不等式求解练习题的解答。

6.6一次函数、一元一次方程和一元一次不等式同步练习附答案

6.6一次函数、一元一次方程和一元一次不等式同步练习附答案

6.6 一次函数、一元一次方程和一元一次不等式1.当自变量x_______时,函数y=5x+4的值大于0;当x_______时,函数的值小于0.2.已知函数y1=x-2,y2=2x-4,当_______时,y1-y2<3._______.3.如图,直线l是一次函数y=kx+b的图像,观察图像,可知:(1)b=_______,k=_______;(2)当y>2时.x_______.4.如图,已知函数y=x+b和y=ax+3的图像交点为P,则不等式x+b>ax+3的解集为_______.5.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图像如图.根据图像回答下列问题:(1)_______先出发,先出发_______;_______先到达终点,先到_______;(2)甲、乙两人的行驶速度分别为_______、________;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x(m1n)的方程或不等式(不化简,也不求解):①甲在乙的前面____________________________;②甲与乙相遇____________________________;③甲在乙的后面____________________________.6.已知函数y=-2x+4.(1)画出它的图像;(2)当x 为何值时,y<-4?(3)当y 为何值时,-12≤x<32?7.折线ABC 是某人乘出租车所付的费用y (元)与乘车的里程数x(km)之间的函数关系的图像.(1)乘车3 km 和6 km 各需付乘车费多少元?(2)当x ≥3时,求乘车费用y (元)与乘车的里程数x(km)之间的关系式;(3)某乘客所付车费在14元~18元之间,求他乘车路程的范围.8.为了鼓励居民节约用水,我市某地水费按下表规定收取:(1)若某户用水量为x 吨,需付水费y 元,则水费y (元)与用水量x (吨)之间的函数关系式是:y =()_______(010)_______10x x ≤≤⎧⎪⎨>⎪⎩(2)若小华家四月份付水费17元,则他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多有多少户?9.某校准备在暑假期间组织在这学年中受表彰的部分学生去旅游,甲旅行社收费标准为:除两名带队教师,其余学生可享受半价优惠;乙旅行社收费标准为:两名带队教师和所有学生均按六折优惠,这两个旅行社的全票价均为200元.(1)若共有20名学生,选择哪一家旅行社较优惠?(2)若有x名学生,选择哪一家旅行社较优惠与学生的人数有没有关系?试说明理由.10.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( ).A.x<-2 B.-2<x<-1C.-2<x<0 D.-1<x<011.南宁市狮山公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式为y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600 m2,那么公园选择哪个工程队施工更合算?12.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2 B.y=2C.x=-1 D.y=-113.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元,该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=_______;b=_______;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案1.>-45<-452.x>-13.(1)3-k (2)x<14.x>15.(1)甲10min 乙5min (2)12 km/h 24 km/h(3)①甲在乙的前面:15x>25x-4;②甲与乙相遇:15x=25x-4;③甲在乙后面:15x<25x-4;6.(1)略(2)当x>4时,y<-4(3)当1<y≤5时,-12≤x<327.(1)10元,16元,(2)y=2x+4,x≥3.(3)5km~7km8.(1)1.3x 13+2(x-10)(2)12吨.(3)61户.9.(1)选择甲旅行社较优惠(2)选择哪家旅行社较优惠与学生人数x的多少有关系,10.B11.(1)y甲=()() 560500 40800500x xx x⎧≤<⎪⎨+≥⎪⎩(2)当k>45时,选择甲工程队更合算;当0<k<45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样.12.C13.(1)0.6 0.65 (2)当x≤150时,y=0.6x;当150<x≤300时,y=0.65x-7.5;当x>300时,y=0.9x-82.5.(3)0.62元.。

一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话: 131********一、【教材分析】二、【教学流程】合运用是8.3、根据图象,你能直接说出一元一次方程x+3=0的解吗?4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等y=x+3的图象与x轴交点坐标为(-3,0 ),这说明方程x+3=0的解是x=-3.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象3xxy3式kx+b>0的解集为;关于x的不等式kx+b <0的解集为 .9、根据下列一次函数的图像,直接写出下列不等式的解集(1)3x+6>0 (3) –x+3 ≥0(2)3x+6 ≤0 (4) –x+3<0上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。

归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.1.直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()学生是能灵活运用一元一次方程、一元一-2 y=3x+6y=-x+3三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。

一元一次不等式与一次函数练习题

一元一次不等式与一次函数练习题

• (一题多变题)x为何值时,一次函数 y=-2x+3的值小于一次函数y=3x-5的值? (1)一变:x为何值时,一次函数y=-2x+3 的值等于一次函数y=3x-5的值; (2)二变:x为何值时,一次函数y=-2x+3 的图象在一次函数y=3x-5的图象的上方? (3)三变:已知一次函数y1=-2x+a, y2=3x-5a,当x=3时,y1>y2,求a的取 值范围.
• 5.直线L1:y=k1x+b与直线L2:y=k2x 在同一平面直角坐标系中的图象如图 所示,则关于x的不等式k1x+b>k2x的 解为( ) A.x>-1 B.x<-1 C.x<-2 D.无法确定
(2008,沈阳,3分)一次函数 y=kx+b的图象如图所示,当y<0时, x的取值范围是( ) • A.x>0 B.x<0 C.x>2 D.x<2
堂清作业

• 某学校需刻录一批光盘,若在电脑公 司刻录每张需8元(包括空白光盘费); 若学校自制,除租用刻录机需120元外, 每张还需成本4元(包括空白光盘 费).问刻录这批电脑光盘到电脑公 司刻录费用省,还是自制费用省?请 你说明理由.
• 解:设需刻录x张光盘,学校自刻的总费用 为y1元,电脑公司刻录的总费用为y2 元.由题意,得y1=4x+120,y2=8x. (1)当y1>y2时,即4x+120>8x,解得x<30; (2)当y1=y2时,即4x+120=8x,解得x=30; (3)当y1<y2时,即4x+120<8x,解得 x>30. 所以,当刻录光盘小于30张时,到电脑公司 刻录费用省;当刻录光盘等于30张时,两 个地方都行;当刻录光盘大于30张时,学 校自刻费用省.

一次函数、一元一次方程和一元一次不等式(基础作业)2022-2023学年苏科版数学八年级上册

一次函数、一元一次方程和一元一次不等式(基础作业)2022-2023学年苏科版数学八年级上册

6.6 一次函数、一元一次方程和一元一次不等式(基础作业)-苏科版八年级上册一.选择题1.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k>0B.b=﹣1C.y随x的增大而增大D.当x>2时,kx+b<02.若一次函数y=kx+b的图象过点(﹣2,0)、(0,1),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>1D.x>23.在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>34.对于一次函数y=kx+b(k<0,b>0),下列的说法错误的是()A.y随着x的增大而减小B.点(﹣1,﹣2)可能在这个函数的图象上C.图象与y轴交于点(0,b)D.当时,y<05.一次函数y1=kx+3(k为常数,k≠0)和y2=x﹣3.当x<2时,y1>y2,则k取值范围()A.k≤﹣2B.﹣2≤k≤1且k≠0C.k≥1D.﹣2<k<1且k≠06.如图,已知一次函数y=mx+n的图象经过点P(﹣2,3),则关于x的不等式mx+n<3的解集为()A.x>﹣3B.x<﹣3C.x>﹣2D.x<﹣27.如图,直线l是函数y=x+3的图象.若点P(a,b)满足a<5,且b>x+3,则P 点的坐标可能是()A.(2,3)B.(3,5)C.(4,4)D.(5,6)8.定义max(a,b),当a≥b时,max(a,b)=a,当a<b时,max(a,b)=b;已知函数y=max(﹣x﹣3,2x﹣9),则该函数的最小值是()A.﹣9B.﹣3C.﹣6D.﹣59.已知函数y1=3x+1,y2=ax(a为常数),当x>0时,y1>y2,则a的取值范围是()A.a≥3B.a≤3C.a>3D.a<310.一次函数y=mx+n与y=ax+b在同一平面直角坐标系中的图象如图所示,根据图象有下列五个结论:①a>0;②n<0;③方程mx+n=0的解是x=1;④不等式ax+b>3的解集是x>0;⑤不等式mx+n≤ax+b的解集是x≤﹣2.其中正确的结论个数是()A.1B.2C.3D.4二.填空题11.已知一次函数y=mx+n与x轴的交点为(﹣5,0),则方程mx+n=0的解是.12.如图所示,一次函数y=kx+b的图象经过A(0,2)、B(4,0)两点,则不等式kx+b >0的解集是.13.如图,直线y=x+5与直线y=0.5x+15交于点A(20,25),则方程x+5=0.5x+15的解为.14.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x 的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1>y2.则其中正确的序号有.15.对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,3),B(3,1),C(2.3),请回答下列问题:(1)在P1(3,3),P2(3,2),P3(1,2)中,是△ABC的覆盖特征点的是;(2)若在一次函数y=mx+5(m≠0)的图象上存在△ABC的覆盖的特征点,则m的取值范围是.三.解答题16.如图,一次函数y=kx+b的图象与x轴交于点B(2,0),与y轴交于点A(0,5),与正比例函数y=mx的图象交于点C,且点C的横坐标为(1)求一次函数y=kx+b和正比例函数y=mx的解析式;(2)结合图象直接写出不等式0<kx+b<mx的解集.17.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.18.如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.19.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.20.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。

一元一次不等式与一次函数(1)练习

一元一次不等式与一次函数(1)一、目标导航1.一元一次不等式,一元一次方程与一次函数的关系,感知不等式,函数,方程的不同作用与内在联系.2.根据函数图象观察方程的解及不等式的解集.二、基础过关1.已知函数y=8x-11,要使y>0,那么x应取( )A.x>B.x<C.x>0 D.x<02.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是(•)A.y>0 B.y<0 C.-2<y<0 D.y<-23.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是()A.x>5 B.x<C.x<-6 D.x>-64.已知一次函数的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0 B.-4<y<0 C.y<-2 D.y<-45.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3 时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.36.如图,直线交坐标轴于A,B两点,则不等式的解集是()A.x>-2 B.x>3 C.x<-2 D.x<37.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)6题8题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A、x>-1B、x<-1C、x<-2D、无法确定9.若一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y=5x+4的值大于0;当x 时,函数y=5x+4的值小于0.12.已知2x-y=0,且x-5>y,则x的取值范围是________.13.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为_________.15.已知关于x的不等式kx-2>0(k≠0)的解集是x<-3,则直线y=-kx+2与x•轴的交点是__________.16.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、能力提升17.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤418.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2四、聚沙成塔如果x,y满足不等式组,那么你能画出点(x,y)所在的平面区域吗?。

(完整版)一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<27.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10) (11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。

2022-2023学年 北师大版数学八年级下册一元一次不等式与一次函数 课时练习(含答案)

北师大版数学八年级下册课时练习《一元一次不等式与一次函数》一、选择题1.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2B.y=2C.x=﹣1D.y=﹣12.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为( )A.x≤1B.x≥1C.x<1D.x>13.观察函数y1和y2的图象,当x=0,两个函数值的大小为( )A.y1>y2B.y1<y2C.y1=y2D.y1≥y24.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为( )A.x>﹣2B.x<﹣2C.x>2D.x<35.已知y1=x﹣5,y2=2x+1.当y1>y2时,x的取值范围是( )A.x>5B.x<12C.x<﹣6D.x>﹣66.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( ).A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<07.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2B.x<2C.x>-1D.x<-18.如图,直线y=x+32与y=kx﹣1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx﹣1的解集在数轴上表示正确的是( )二、填空题9.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4).结合图象可知,关于x的方程ax+b=0的解是__________.10.已知函数y=kx+b的部分函数值如表所示,则关于x的方程kx+b+3=0的解是_____.x …﹣2 ﹣1 0 1 …y … 5 3 1 ﹣1 …11.如图,直线l是一次函数y=kx+b的图像.观察图像,可知:(1)b=_______,k=_______;(2)当y>2时.x_______.12.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(﹣32,﹣1),则不等式mx+2<kx+b<0的解集为.13.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.14.如图,已知函数y=x+2b和y=12ax+3图象交于点P,则不等式x+2b>12ax+3的解集为_______.三、解答题15.已知一次函数y=2x+4,作出函数图象,并回答以下问题:(1)x取何值时,y>0?(2)当x>8时,求y的取值范围.16.如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.17.作出函数y=2﹣x的图象,根据图象回答下列问题:(1)y的值随x的增大而;(2)图象与x轴的交点坐标是;与y轴的交点坐标是;(3)当x 时,y≥0;(4)该函数的图象与坐标轴所围成的三角形的面积是多少?18.如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是________;(2)关于x的不等式mx+n<1的解集是________;(3)当x为何值时,y1≤y2?(4)当x<0时,比较y2与y1的大小关系.19.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.参考答案1.C2.A3.A4.B5.C6.B7.D8.A.9.答案为:x=210.答案为:x=2.11.答案为:(1)3﹣k (2)x<112.答案为:﹣4<x<﹣3 2 .13.答案为:x<314.答案为:x>115.解:(1)如图,当x>﹣2时,y>0;(2)因为x=8时,y=2x+4=20,所以当x>8时,y>20.16.解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:b=﹣3,﹣3k+b=0,解得:k=﹣1,b=﹣3.(2)x>﹣3.17.解:令x=0,y=2;令y=0,x=2,得到(2,0),(0,2),描出并连接这两个点,如图,(1)由图象可得,y随x的增大而减小;(2)由图象可得图象与x轴的交点坐标是(2,0),与y轴交点的坐标是(0,2);(3)观察图象得,当x≤2时,y≥0,(4)图象与坐标轴围成的三角形的面积为0.5×2×2=2;18.解:(1)∵直线y2=ax+b与x轴的交点是(4,0),∴当x<4时,y2>0,即不等式ax+b>0的解集是x<4;故答案是:x<4;(2)∵直线y1=mx+n与y轴的交点是(0,1),∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y1的图象在y 2的下面时,有x≤2,所以当x≤2时,y1≤y2;(4)如图所示,当x<0时,y2>y1.19.解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=0.5×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(2.5,1).。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3.2 一次函数与一元一次不等式
知识库
1.解一元一次不等式可以看作是:当一次函数值大于(或小于)0时,求自变量相应的取值范围.
2.解关于x的不等式kx+b>mx+n可以转化为:
(1)当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方.
或(2)求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方.(不等号为“<”时是同样的道理)
魔法师
例:用画图象的方法解不等式2x+1>3x+4
分析:(1)可将不等式化为-x-3>0,作出直线y=-x-3,然后观察:自变量x取何值时,图象上的点在x轴上方?
或(2)画出直线y=2x+1与y=3x+4,然后观察:对于哪些x的值,直线y=2x+1上的点在直线y=3x+4上相应的点的上方?
解:方法(1)原不等式为:-x-3>0,在直角坐标系中画出函数y=-x-3•的图象(图1).从图象可以看出,当x<-3时这条直线上的点在x轴上方,即这时y=-x-3>0,因此不等式的解集是x<-3.
方法(2)把原不等式的两边看着是两个一次函数,•在同一坐标系中画出直线y=2x+1与y=3x+4(图2),从图象上可以看出它们的交点的横坐标是x=-3,因此当x<-3时,对于同一个x的值,直线y=2x+1上的点在直线y=3x+4•上相应点的上方,此时有2x+1>3x+4,因此不等式的解集是x<-3.
(1) (2)
演兵场
☆我能选
1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()
A.x>1 B.x≥1 C.x<1 D.x≤1
2.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是() A.x>-2 B.x≥-2 C.x<-2 D.x≤-2
3.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是() A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)
☆我能填
4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.
5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.
8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.☆我能答
9.某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:
(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?
10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.
(2)直接写出:当x取何值时y1>y2;y1<y2
探究园
12.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)
(1)求k、b的值,在同一坐标系中画出两个函数的图象.
(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2
(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0
答案:
1.A 2.C 3.D 4.x>2 5.x≥2 6.(-1,0);x<-1
7.(-3,0) 8.(2,3)
9.①当0<x<1500时,租国有出租车公司的出租车合算;
②1500km;③租个体车主的车合算
10.①P(1,0);②当x<1时y1>y2,当x>1时y1<y2
11.(1)k=、b=5,∴y=x-2、y=-3x+5 图象略;
(2)从图象可以看出:①当x<2时y1<y2;②当x≥2时y1≥y2;
(3)∵直线y1=1
2
x-2与x轴的交点为B(4,0),
直线y2=-3x+5与x轴的交点为C(5
3
,0),
∴从图象上可以看出:
①当x<4时y1<0,当x>5
3
时y2<0,
所以当5
3
<x<4时,y1<0且y2<0.
②当x>4时,y1>0;当x>5
3
时y2<0,
∴当x>4时y1>0且y2<0.。

相关文档
最新文档