半导体封装技术向高端演进 (从DIP、SOP、QFP、PGA、BGA到CSP再到SIP)
半导体先进封装技术

半导体先进封装技术半导体先进封装技术是近年来发展迅速的一项新技术。
该技术主要针对半导体芯片的封装,为其提供更好的性能和更广泛的应用。
本文将从概念、发展历程和技术特点三个方面,详细介绍半导体先进封装技术的相关信息。
一、概念半导体封装技术是将芯片连接到外部世界的必要步骤。
通过封装,芯片可以在工业、科学和家庭中得到广泛应用。
半导体先进封装技术是针对芯片的高密度、高性能、多功能、多芯片封装以及三维封装技术。
它已成为半导体工业中最具前景和应用价值的发展方向之一。
二、发展历程上世纪60年代,半导体芯片封装用的是双面线性封装(DIP)技术,随后发展为表面安装技术(SMT)。
到了21世纪初,半导体封装技术已经进入了六面体、四面体、三面体、2.5D、3D等多种复杂封装形式的时代,先进封装技术呈现出快速发展的趋势。
例如球形BGA (Ball Grid Array)、LGA(Land Grid Array)与CSP(Chip Scale Packaging)等,显示出线宽线距逐渐减小,芯片尺寸逐渐缩小以及集成度越来越高等特点。
三、技术特点1.尺寸小半导体先进封装技术封装的芯片尺寸比较小,能够在有限空间内实现高度复杂的电路功能,同时满足小型化和超大规模集成(ULSI)的发展趋势。
2.多芯片封装可以将多个芯片封装在一个芯片包裹里,可以大幅度减小封装尺寸,降低系统成本,提高系统性能和可靠性。
3.高密度高密度集成度意味着处理器芯片可以在一个很小的封装中实现超高性能,将更多的晶体管集成在芯片上,最终提高片上系统的性能。
4.三维封装技术三维封装是指在小空间中增加第三个方向的封装技术,采用多个芯片的Stacking,可以在有限的空间内增大电路,实现更高的功能。
以上就是半导体先进封装技术的相关信息。
可以看出,该技术的日益成熟和发展,正在推动半导体芯片的应用领域有了更多的可能性。
半导体封装发展史

半导体封装发展史一、引言半导体封装是半导体行业中至关重要的一环,它将半导体芯片封装在外部环境中,保护芯片并提供电气和机械连接。
随着半导体技术的不断发展,半导体封装也经历了多个阶段的发展和演进。
本文将从早期的无封装时代开始,逐步介绍半导体封装的发展史。
二、无封装时代早期的半导体器件并没有封装,裸露的芯片容易受到机械和环境的损害,限制了半导体器件的应用范围。
在这个时期,半导体器件通常是通过手工焊接或插入到电路板上进行连接。
这种方式不仅工作效率低,而且容易引入故障,限制了半导体技术的进一步发展。
三、线性DIP封装20世纪60年代,线性DIP(Dual In-line Package)封装技术的出现标志着半导体封装的第一个重要进步。
线性DIP封装是一种直插式封装,芯片的引脚通过两排直线排列在封装体的两侧。
这种封装方式使得半导体器件可以通过插入到插座或焊接到电路板上进行连接,提高了生产效率和可靠性。
四、表面贴装技术20世纪80年代,随着表面贴装技术的出现,半导体封装迎来了新的里程碑。
表面贴装技术将芯片引脚焊接到印刷电路板的表面,取代了传统的插入或焊接方式。
这种封装方式不仅提高了生产效率,还减小了封装体积,提高了器件的集成度。
表面贴装技术的出现推动了电子产品的小型化和轻量化。
五、BGA封装BGA(Ball Grid Array)封装是一种球网阵列封装技术,它在1995年左右开始广泛应用于半导体封装领域。
BGA封装将芯片引脚通过焊球连接到封装底部的焊盘上,提供了更多的连接点和更好的电气性能。
BGA封装具有较高的密度和良好的散热性能,适用于高性能和大功率的半导体器件。
六、CSP封装CSP(Chip Scale Package)封装是一种芯片级封装技术,它在21世纪初开始流行。
CSP封装将芯片封装在与芯片相同大小的封装体中,具有体积小、重量轻的特点。
CSP封装广泛应用于移动设备和无线通信领域,满足了对小型化和轻量化的需求。
电子元件 集成电路 IC 的封装 DIP、QFP、PGA、BGA CSP CGA LGA ZIF SOP PFP

电子元件集成电路 IC 的封装 DIP、QFP、PGA、BGA CSP CGA LGA ZIF SOP PFP... 从foundry厂得到圆片进行减薄、中测打点后,即可进入后道封装。
封装对集成电路起着机械支撑和机械保护、传输信号和分配电源、散热、环境保护等作用。
芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。
近年来电子产品朝轻、薄、短、小及高功能发展,封装市场也随信息及通讯产品朝高频化、高I/O 数及小型化的趋势演进。
由1980 年代以前的通孔插装(PTH)型态,主流产品为DIP(Dual In-Line Package),进展至1980 年代以SMT(Surface Mount Technology)技术衍生出的SOP(Small Out-Line Package)、SOJ(Small Out-Line J-Lead)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)封装方式,在IC 功能及I/O 脚数逐渐增加后,1997 年Intel 率先由QFP 封装方式更新为BGA(Ball Grid Array,球脚数组矩阵)封装方式,除此之外,近期主流的封装方式有CSP(Chip Scale Package 芯片级封装)及Flip Chip(覆晶)。
BGA(Ball Grid Array)封装方式是在管壳底面或上表面焊有许多球状凸点,通过这些焊料凸点实现封装体与基板之间互连的一种先进封装技术。
BGA封装方式经过十多年的发展已经进入实用化阶段。
1987年,日本西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。
2023年继续教育集成电路作业(十)

2023年继续教育作业(十)集成电路单选题(共3题,每题20分)1、()年,第一个电子管诞生。
A、19062、摩尔定律是1965年由戈登·摩尔(GordonMoore)提出来的,他说集成电路里晶体管数量每()个月翻一番。
D、183、随着封装技术的不断发展, MCP、SiP、SoP、PoP、SCSP、SDP、WLP等封装结构成为主流,并为趋于()方向封装发展的3D(三维)集成封装、TVS(硅通孔)集成等技术研发奠定了坚实的基础。
C、Z4、在硅晶片的国产化情况中,硅晶片以()以下为主。
D、6寸5、下列选项中,属于传统电子材料的是()。
C、陶瓷材料多选题(共5题,每题8分)1、()、()和()是当前国际公认的新科技革命的三大支柱。
A、材料B、能源C、信息技术2、半导体材料有哪些结构()?C、闪锌矿结构D、金刚石结构E、纤锌矿结构3、常见的半导体的材料,主要是由()、()等元素,以及()、()等化合物,所形成的一种材料。
A、硅B、锗 D、砷化镓 E、氮化镓4、世界制造强国分三大阵营,分别是()。
A、美国第一B、德国、日本居第二 D、中国处在第三阵营5、SIP是将多种功能芯片,包括()等功能芯片集成在一个封装内,从而实现一个基本完整的功能。
A、处理器 D、存储器 E、FPGA判断题(共5题,每题6分)1、1947年,英国人发明了晶体管。
错误2、目前我国集成电路自给率比较低,核心芯片缺乏。
正确3、半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料。
正确4、硅片可直接用于集成电路制造中。
错误5、集成电路产业链上游为集成电路设计、制造与芯片产品。
错误。
集成电路封装技术

集成电路封装技术一、概述集成电路封装技术是指将芯片封装成实际可用的器件的过程,其重要性不言而喻。
封装技术不仅仅是保护芯片,还可以通过封装形式的不同来满足不同应用领域的需求。
本文将介绍集成电路封装技术的基本概念、发展历程、主要封装类型以及未来发展趋势等内容。
二、发展历程集成电路封装技术随着集成电路行业的发展逐渐成熟。
最早的集成电路封装形式是引脚直插式封装,随着技术的不断进步,出现了芯片级、无尘室级封装技术。
如今,随着3D封装、CSP、SiP等新技术的出现,集成电路封装技术正朝着更加高密度、高性能、多功能的方向发展。
三、主要封装类型1.BGA封装:球栅阵列封装,是一种常见的封装形式,具有焊接可靠性高、散热性好等优点。
2.QFN封装:裸露焊盘封装,具有体积小、重量轻、成本低等优点,适用于尺寸要求严格的应用场合。
3.CSP封装:芯片级封装,在尺寸更小、功耗更低的应用场合有着广泛的应用。
4.3D封装:通过将多个芯片垂直堆叠,实现更高的集成度和性能。
5.SiP封装:系统级封装,将多个不同功能的芯片封装在一起,实现更复杂的功能。
四、未来发展趋势随着物联网、人工智能等领域的兴起,集成电路封装技术也将迎来新的挑战和机遇。
未来,集成电路封装技术将朝着更高密度、更低功耗、更可靠、更环保的方向发展。
同时,新材料、新工艺和新技术的应用将为集成电路封装技术带来更多可能性。
五、结语集成电路封装技术是集成电路产业链中至关重要的一环,其发展水平直接关系到整个集成电路的性能和应用范围。
随着技术的不断进步,集成电路封装技术也在不断演进,为各个领域的技术发展提供了强有力的支撑。
希望本文能够帮助读者更好地了解集成电路封装技术的基本概念和发展趋势,为相关领域的研究和应用提供一定的参考价值。
电子产品工艺课后答案第六章 SMT(贴片)装配焊接技术

思考题:1、⑴试简述外表安装技术的发生布景。
答:从20世纪50年代半导体器件应用于实际电子整机产物,并在电路中逐步替代传统的电子管开始,到60年代中期,人们针对电子产物遍及存在笨、重、厚、大,速度慢、功能少、性能不不变等问题,不竭地向有关方面提出定见,迫切但愿电子产物的设计、出产厂家能够采纳有效办法,尽快克服这些短处。
工业畅旺国家的电子行业企业为了具有新的竞争实力,使本身的产物能够适合用户的需求,在很短的时间内就达成了底子共识——必需对当时的电子产物在PCB 的通孔基板上插装电子元器件的方式进行革命。
为此,各国纷纷组织人力、物力和财力,对电子产物存在的问题进行针对性攻关。
颠末一段艰难的搜索研制过程,外表安装技术应运而生了。
⑵试简述外表安装技术的开展简史。
答:外表安装技术是由组件电路的制造技术开展起来的。
早在1957年,美国就制成被称为片状元件〔Chip Components〕的微型电子组件,这种电子组件安装在印制电路板的外表上;20世纪60年代中期,荷兰飞利浦公司开发研究外表安装技术〔SMT〕获得成功,引起世界各畅旺国家的极大重视;美国很快就将SMT使用在IBM 360电子计算机内,稍后,宇航和工业电子设备也开始采用SMT;1977年6月,日本松下公司推出厚度为〔英寸〕、取名叫“Paper〞的超薄型收音机,引起颤动效应,当时,松下公司把此中所用的片状电路组件以“混合微电子电路〔HIC,Hybrid Microcircuits〕〞定名;70年代末,SMT大量进入民用消费类电子产物,并开始有片状电路组件的商品供应市场。
进入80年代以后,由于电子产物制造的需要,SMT作为一种新型装配技术在微电子组装中得到了广泛的应用,被称之为电子工业的装配革命,标识表记标帜着电子产物装配技术进入第四代,同时导致电子装配设备的第三次自动化高潮。
SMT的开展历经了三个阶段:Ⅰ第一阶段〔1970~1975年〕这一阶段把小型化的片状元件应用在混合电路〔我国称为厚膜电路〕的出产制造之中。
主流的封装形式

国际半导体技术发展路线图

ChinalntegratedCircult国际半导体技术发展路线图(ITRS)2013版综述(1)黄庆红1译,黄庆梅2校(1.工业和信息化部电子科学技术情报研究所,北京,100040;2.北京理工大学光电学院,北京,100081)摘要:国际半导体技术发展路线图(The I nt er nat i onal Technol ogy R oadm ap f or Sem i conduct or s,I TR S)自1999年第1版问世后,每偶数年份更新,每单数年份进行全面修订。
I TR S的目标是提供被工业界广泛认同的对未来15年内研发需求的最佳预测,对公司、研发团体和政府都有指导作用。
路线图对提高各个层次上研发投资的决策质量都有重要意义。
本篇是连载一。
关键词:国际半导体技术发展路线图;2013版International Technology Roadmapfor Semiconductors(2013Edition)HUANG Qing-hong1,HUANG Qing-mei2(1.Electronic Technical Information Research Institute,MII.Beijing100040,China;2.School of Optoelectronics,Beijing Institute of Technology,Beijing100081,China)Abstract:The first International Technology Roadmap for Semiconductors(ITRS)published in1999.Since then,the ITRS has been updated in even-numbered years and fully revised in odd-numbered years.The overall objectiveof the ITRS is to present industry-wide consensus on the“best current estimate”of the industry’s research anddevelop-ment needs out to a15-year horizon.As such,it provides a guide to the efforts of companies,universities,governments, and other research providers or funders.The ITRS has improved the quality of R&D investmentdecisions made at all levels and has helped channel research efforts to areas that most need research breakthroughs.Key words:ITRS;20131综述1.1不断变化的环境简介半导体工业诞生于20世纪70年代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。
从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进。
总体说来,半导体封装经历了三次重大革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,它极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩阵封装的出现,满足了市场对高引脚的需求,改善了半导体器件的性能;芯片级封装、系统封装等是现在第三次革新的产物,其目的就是将封装面积减到最小。
高级封装实现封装面积最小化芯片级封装CSP。
几年之前封装本体面积与芯片面积之比通常都是几倍到几十倍,但近几年来有些公司在BGA、TSOP的基础上加以改进而使得封装本体面积与芯片面积之比逐步减小到接近1的水平,所以就在原来的封装名称下冠以芯片级封装以用来区别以前的封装。
就目前来看,人们对芯片级封装还没有一个统一的定义,有的公司将封装本体面积与芯片面积之比小于2的定为CSP,而有的公司将封装本体面积与芯片面积之比小于1.4或1.2的定为CSP。
目前开发应用最为广泛的是FBGA和QFN等,主要用于内存和逻辑器件。
就目前来看,CSP的引脚数还不可能太多,从几十到一百多。
这种高密度、小巧、扁薄的封装非常适用于设计小巧的掌上型消费类电子装置。
CSP封装具有以下特点:解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;封装面积缩小到BGA的1/4至1/10;延迟时间缩到极短;CSP封装的内存颗粒不仅可以通过PCB板散热,还可以从背面散热,且散热效率良好。
就封装形式而言,它属于已有封装形式的派生品,因此可直接按照现有封装形式分为四类:框架封装形式、硬质基板封装形式、软质基板封装形式和芯片级封装。
多芯片模块MCM。
20世纪80年代初发源于美国,为解决单一芯片封装集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上组成多种多样的电子模块系统,从而出现多芯片模块系统。
它是把多块裸露的IC芯片安装在一块多层高密度互连衬底上,并组装在同一个封装中。
它和CSP封装一样属于已有封装形式的派生品。
多芯片模块具有以下特点:封装密度更高,电性能更好,与等效的单芯片封装相比体积更小。
如果采用传统的单个芯片封装的形式分别焊接在印刷电路板上,则芯片之间布线引起的信号传输延迟就显得非常严重,尤其是在高频电路中,而此封装最大的优点就是缩短芯片之间的布线长度,从而达到缩短延迟时间、易于实现模块高速化的目的。
WLCSP。
此封装不同于传统的先切割晶圆,再组装测试的做法,而是先在整片晶圆上进行封装和测试,然后再切割。
它有着更明显的优势:首先是工艺大大优化,晶圆直接进入封装工序,而传统工艺在封装之前还要对晶圆进行切割、分类;所有集成电路一次封装,刻印工作直接在晶圆上进行,设备测试一次完成,有别于传统组装工艺;生产周期和成本大幅下降,芯片所需引脚数减少,提高了集成度;引脚产生的电磁干扰几乎被消除,采用此封装的内存可以支持到800MHz的频率,最大容量可达1GB,所以它号称是未来封装的主流。
它的不足之处是芯片得不到足够的保护。
表面贴片封装降低PCB设计难度表面贴片封装是从引脚直插式封装发展而来的,主要优点是降低了PCB电路板设计的难度,同时它也大大降低了其本身的尺寸大小。
用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。
表面贴片封装根据引脚所处的位置可分为:Single-ended(引脚在一面)、Dual(引脚在两边)、Quad(引脚在四边)、Bottom(引脚在下面)、BGA(引脚排成矩阵结构)及其他。
Single-ended。
此封装形式的特点是引脚全部在一边,而且引脚的数量通常比较少。
它又可分为:导热型,像常用的功率三极管,只有三个引脚排成一排,其上面有一个大的散热片;COF是将芯片直接粘贴在柔性线路板上(现有的用Flip-Chip技术),再经过塑料包封而成,它的特点是轻而且很薄,所以当前被广泛用在液晶显示器(LCD)上,以满足LCD分辨率增加的需要。
其缺点一是Film的价格很贵,二是贴片机的价格也很贵。
Dual。
此封装形式的特点是引脚全部在两边,而且引脚的数量不算多。
它的封装形式比较多,又可细分为SOT、SOP、SOJ、SSOP、HSOP 及其他。
SOT系列主要有SOT-23、SOT-223、SOT25、SOT-26、SOT323、SOT-89等。
当电子产品尺寸不断缩小时,其内部使用的半导体器件也必须变小,更小的半导体器件使得电子产品能够更小、更轻、更便携,相同尺寸包含的功能更多。
SOT封装既大大降低了高度,又显著减小了PCB 占用空间。
小尺寸贴片封装SOP。
飞利浦公司在上世纪70年代就开发出小尺寸贴片封装SOP,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
SOP 引脚数在几十个之内。
薄型小尺寸封装TSOP。
它与SOP的最大区别在于其厚度很薄,只有1mm,是SOJ的1/3;由于外观轻薄且小,适合高频使用。
它以较强的可操作性和较高的可靠性征服了业界,大部分的SDRAM内存芯片都是采用此TSOP封装方式。
TSOP内存封装的外形呈长方形,且封装芯片的周围都有I/O引脚。
在TSOP封装方式中,内存颗粒是通过芯片引脚焊在PCB板上的,焊点和PCB板的接触面积较小,使得芯片向PCB板传热相对困难。
而且TSOP封装方式的内存在超过150MHz后,会有很大的信号干扰和电磁干扰。
J形引脚小尺寸封装SOJ。
引脚从封装主体两侧引出向下呈J字形,直接粘着在印刷电路板的表面,通常为塑料制品,多数用于DRAM 和SRAM等内存LSI电路,但绝大部分是DRAM。
用SOJ封装的DRAM 器件很多都装配在SIMM上。
引脚中心距1.27mm,引脚数从20至40不等。
四边引脚扁平封装QFP。
QFP是由SOP发展而来,其外形呈扁平状,引脚从四个侧面引出,呈海鸥翼(L)型,鸟翼形引脚端子的一端由封装本体引出,而另一端沿四边布置在同一平面上。
它在印刷电路板(PWB)上不是靠引脚插入PWB的通孔中,所以不必在主板上打孔,而是采用SMT方式即通过焊料等贴附在PWB上,一般在主板表面上有设计好的相应管脚的焊点,将封装各脚对准相应的焊点,即可实现与主板的焊接。
因此,PWB两面可以形成不同的电路,采用整体回流焊等方式可使两面上搭载的全部元器件一次键合完成,便于自动化操作,实装的可靠性也有保证。
这是目前最普遍采用的封装形式。
此种封装引脚之间距离很小、管脚很细,一般大规模或超大规模集成电路采用这种封装形式。
其引脚数一般从几十到几百,而且其封装外形尺寸较小、寄生参数减小、适合高频应用。
该封装主要适合用SMT表面安装技术在PCB上安装布线。
但是由于QFP的引线端子在四周布置,且伸出PKG之外,若引线间距过窄,引线过细,则端子难免在制造及实装过程中发生变形。
当端子数超过几百个,端子间距等于或小于0.3mm时,要精确地搭载在电路图形上,并与其他电路组件一起采用再流焊一次完成实装,难度极大,致使价格剧增,而且还存在可靠性及成品率方面的问题。
采用J字型引线端子的PLCC等可以缓解一些矛盾,但不能从根本上解决QFP的上述问题。
由QFP衍生出来的封装形式还有LCCC、PLCC以及TAB等。
此封装的基材有陶瓷、金属和塑料三种。
从数量上看,塑料封装占绝大部分,当没有特别表示出材料时,多数情况为塑料QFP。
塑料QFP是最普及的多引脚LSI封装。
QFP封装的缺点是:当引脚中心距小于0.65mm时,引脚容易弯曲。
为了防止引脚变形,现已出现了几种改进的QFP品种。
塑料四边引脚扁平封装PQFP。
芯片的四周均有引脚,其引脚数一般都在100以上,而且引脚之间距离很小,管脚也很细,一般大规模或超大规模集成电路采用这种封装形式。
用这种形式封装的芯片,必须采用表面安装设备技术(SMT)将芯片边上的引脚与主板焊接起来。
PQFP封装适用于SMT表面安装技术在PCB上安装布线,适合高频使用,它具有操作方便、可靠性高、芯片面积与封装面积比值较小等优点。
带引脚的塑料芯片载体PLCC。
它与LCC相似,只是引脚从封装的四个侧面引出,呈丁字形,是塑料制品。
引脚中心距1.27mm,引脚数从18到84。
J形引脚不易变形,比QFP容易操作,但焊接后的外观检查较为困难。
它与LCC封装的区别仅在于前者用塑料,后者用陶瓷,但现在已经出现用陶瓷制作的J形引脚封装和用塑料制作的无引脚封装。
无引脚芯片载体LCC或四侧无引脚扁平封装QFN。
指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。
由于无引脚,贴装占有面积比QFP小,高度比QFP低,它是高速和高频IC用封装。
但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解,因此电极触点难于做到QFP的引脚那样多,一般从14到100左右。
材料有陶瓷和塑料两种,当有LCC标记时基本上都是陶瓷QFN,塑料QFN是以玻璃环氧树脂为基板基材的一种低成本封装。
球型矩阵封装BGA。
BGA封装经过十几年的发展已经进入实用化阶段,目前已成为最热门的封装。
随着集成电路技术的发展,对集成电路的封装要求越来越严格。
这是因为封装关系到产品的性能,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的交调噪声"Cross-Talk Noise"现象,而且当IC的管脚数大于208脚时,传统的封装方式有其难度。
因此,除使用QFP封装方式外,现今大多数的高脚数芯片皆转而使用BGA封装。
BGA一出现便成为CPU、高引脚数封装的最佳选择。
BGA封装的器件绝大多数用于手机、网络及通信设备、数码相机、微机、笔记本计算机、PAD和各类平板显示器等高档消费市场。
BGA封装的优点有:1.输入输出引脚数大大增加,而且引脚间距远大于QFP,加上它有与电路图形的自动对准功能,从而提高了组装成品率;2.虽然它的功耗增加,但能用可控塌陷芯片法焊接,它的电热性能从而得到了改善,对于集成度很高和功耗很大的芯片,采用陶瓷基板,并在外壳上安装微型排风扇散热,从而可达到电路的稳定可靠工作;3.封装本体厚度比普通QFP减少1/2以上,重量减轻3/4以上;4.寄生参数减小,信号传输延迟小,使用频率大大提高;5.组装可用共面焊接,可靠性高。
BGA封装的不足之处:BGA封装仍与QFP、PGA一样,占用基板面积过大;塑料BGA封装的翘曲问题是其主要缺陷,即锡球的共面性问题。
共面性的标准是为了减小翘曲,提高BGA封装的特性,应研究塑料、粘片胶和基板材料,并使这些材料最佳化。