光通信实验报告

合集下载

光通信技术实习报告

光通信技术实习报告

一、实习背景随着信息技术的飞速发展,光通信技术已成为现代通信技术的主流。

为了深入了解光通信技术的原理和应用,提高自身的专业技能,我参加了为期两周的光通信技术实习。

二、实习内容本次实习主要分为以下几个部分:1. 光通信基础知识学习在实习的第一周,我们学习了光通信的基本原理,包括光纤、光源、光放大器、光检测器等基本元件的工作原理。

同时,我们还了解了光纤的分类、传输特性以及光纤通信系统的组成。

2. 光纤通信实验在实习的第二周,我们进行了光纤通信实验。

实验内容包括:(1)光纤连接实验:学习了光纤连接器、光纤耦合器等器件的连接方法,掌握了光纤熔接技术。

(2)光源实验:了解了不同类型光源的特点和性能,如LED、LD、EDFA等。

(3)光放大器实验:学习了光放大器的工作原理和性能,如EDFA、Raman放大器等。

(4)光检测器实验:了解了不同类型光检测器的工作原理和性能,如PIN、APD等。

3. 光通信系统设计与分析在实习的第三周,我们学习了光通信系统的设计方法,并进行了以下设计:(1)光纤通信系统设计:根据实际需求,设计了光纤通信系统的传输速率、距离等参数。

(2)光放大器系统设计:根据实际需求,设计了光放大器系统的功率、增益等参数。

(3)光检测器系统设计:根据实际需求,设计了光检测器系统的灵敏度、响应速度等参数。

4. 光通信技术前沿研究在实习的最后阶段,我们了解了光通信技术的前沿研究,包括:(1)超高速光纤通信:研究了超高速光纤通信技术,如40G、100G等。

(2)波分复用技术:了解了波分复用技术的原理和优势。

(3)光纤传感技术:学习了光纤传感技术在工业、环境监测等领域的应用。

三、实习收获1. 提高了专业素养:通过本次实习,我对光通信技术的原理、应用和发展趋势有了更深入的了解,提高了自身的专业素养。

2. 增强了实践能力:在实验过程中,我掌握了光纤连接、光源操作、光放大器调试等实际技能,提高了自己的实践能力。

光纤通信实验报告

光纤通信实验报告

XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。

2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。

3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。

4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。

5、将电位器W46(阈值电流调节)逆时针旋转到底。

6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。

8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。

9、做完实验后先关闭交流电开关。

10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。

五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。

2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。

光纤通信实验报告全

光纤通信实验报告全

光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数.能够快速准确的区分单模或者多模类型的光纤。

实验1.21.关闭系统电源.将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道).注意收集好器件的防尘帽。

2.打开系统电源.液晶菜单选择“码型变换实验—CMI码PN”。

确认.即在P101铆孔输出32KHZ的15位m序列。

3.示波器测试P101铆孔波形.确认有相应的波形输出。

4.用信号连接线连接P101、P203两铆孔.示波器A通道测试TX1550测试点.确认有相应的波形输出.调节 W205 即改变送入光发端机信号(TX1550)幅度.最大不超过5V。

即将m序列电信号送入1550nm光发端机.并转换成光信号从TX1550法兰接口输出。

5.示波器B通道测试光收端机输出电信号的P204试点.看是否有与TX1550测试点一样或类似的信号波形。

6.按“返回”键.选择“码型变换实验—CMI码设置”并确认。

改变SW101拨码器设置(往上为1.往下为0).以同样的方法测试.验证P204和TX1550测试点波形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线.观测P204测试点的示波器B通道是否还有信号波形?重新接好.此时是否出现信号波形。

8.以上实验都是在同一台实验箱上自环测试.如果要求两实验箱间进行双工通信.如何设计连接关系.设计出实验方案.并进行实验。

9.关闭系统电源.拆除各光器件并套好防尘帽。

实验2.11.关闭系统电源.按照图2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550通过尾纤接到光功率计).注意收集好器件的防尘帽。

2.打开系统电源.液晶菜单选择“码型变换实验-- CMI码设置” 确认.即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列.如10001000。

3.示波器测试P101铆孔波形.确认有相应的波形输出。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。

光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。

本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。

一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。

它主要包括光信号的产生、调制、传输和接收等过程。

光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。

2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。

光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。

二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。

2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。

3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。

4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。

三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。

2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。

3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。

4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。

光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。

光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。

光通讯实验报告

光通讯实验报告

一、实验目的1. 理解光通讯的基本原理和光传输的特性。

2. 掌握光通讯系统的基本组成和功能。

3. 通过实验验证光通讯系统中的信号调制、传输和接收过程。

4. 分析光通讯系统中的噪声影响及降低噪声的方法。

二、实验原理光通讯是利用光波作为信息载体,通过光纤传输信息的一种通信方式。

其基本原理是利用激光作为光源,将电信号调制到光波上,通过光纤传输,然后在接收端将光信号解调为电信号。

三、实验器材1. 光源:激光二极管2. 发射器:光发射模块3. 接收器:光接收模块4. 光纤:单模光纤5. 光纤连接器:SC型光纤连接器6. 光功率计7. 光衰减器8. 光耦合器9. 光纤测试仪10. 计算机及实验软件四、实验步骤1. 光源调制实验:(1)将激光二极管连接到光发射模块。

(2)将光发射模块连接到光纤。

(3)利用实验软件设置调制信号,观察光功率计的输出变化,验证调制效果。

2. 光纤传输实验:(1)将光发射模块和光接收模块分别连接到光纤的两端。

(2)将光衰减器连接到光发射模块和光接收模块之间。

(3)调整光衰减器,观察光功率计的输出变化,验证光纤传输效果。

3. 噪声分析实验:(1)将光接收模块连接到光纤。

(2)在光接收模块前加入噪声源,观察光功率计的输出变化,分析噪声对传输效果的影响。

(3)采用滤波器等方法降低噪声,观察光功率计的输出变化,验证降低噪声的效果。

4. 光耦合器实验:(1)将光发射模块和光接收模块分别连接到光耦合器的两个端口。

(2)调整光耦合器,观察光功率计的输出变化,验证光耦合器的性能。

5. 光纤测试实验:(1)将光纤连接器连接到光纤。

(2)利用光纤测试仪测量光纤的长度、损耗等参数。

五、实验结果与分析1. 光源调制实验:通过实验,验证了调制信号成功调制到光波上,并观察到光功率计的输出变化。

2. 光纤传输实验:通过实验,验证了光纤传输效果,并观察到光衰减器对传输效果的影响。

3. 噪声分析实验:通过实验,分析了噪声对传输效果的影响,并验证了降低噪声的方法。

光通信原理的实训报告

光通信原理的实训报告

一、实训目的通过本次实训,使学生了解光通信的基本原理,掌握光通信系统的工作原理和组成,熟悉光通信设备的基本操作,提高学生对光通信技术的实际应用能力。

二、实训内容1. 光通信基本原理(1)光纤传输原理:光纤传输是利用光的全反射原理,将光信号在光纤中传输。

光纤具有较高的传输速率、较远的传输距离、较小的信号衰减和较好的抗干扰性能。

(2)光发射和接收原理:光发射器将电信号转换为光信号,光接收器将光信号转换为电信号。

光发射器常用的有LED、LD等,光接收器常用的有PIN、APD等。

2. 光通信系统组成(1)光发射器:将电信号转换为光信号,常用的有LED、LD等。

(2)光纤:光信号传输的介质,具有高传输速率、远传输距离、小信号衰减和抗干扰性能。

(3)光接收器:将光信号转换为电信号,常用的有PIN、APD等。

(4)光放大器:用于提高光信号强度,常用的有EDFA、Raman放大器等。

(5)光分路器、光耦合器等:用于光信号的分配、耦合和整形。

3. 光通信设备操作(1)光纤熔接机:用于连接两根光纤,实现光信号的传输。

(2)光纤切割机:用于切割光纤,保证光纤连接的精度。

(3)光功率计:用于测量光信号的功率。

(4)光时域反射仪(OTDR):用于测量光纤的长度、损耗和断点。

三、实训过程1. 光发射器、光接收器原理实验(1)将LED、LD、PIN、APD等光器件接入光通信系统,观察光发射器和光接收器的工作情况。

(2)调整光发射器的驱动电流,观察光功率的变化。

(3)调整光接收器的偏置电压,观察光电流的变化。

2. 光纤传输实验(1)将两根光纤连接,使用光纤熔接机进行熔接。

(2)使用光纤切割机切割光纤,保证连接精度。

(3)将熔接后的光纤接入光通信系统,观察光信号的传输情况。

3. 光放大器实验(1)将光放大器接入光通信系统,观察光信号强度的变化。

(2)调整光放大器的输入功率和输出功率,观察光信号的变化。

4. 光分路器、光耦合器实验(1)将光分路器、光耦合器接入光通信系统,观察光信号的分配和耦合情况。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。

在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。

实验一: 光的传播特性我们首先对光的传播特性进行了研究。

选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。

通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。

实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。

我们通过实验对光纤中损耗和色散的影响进行了测试。

损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。

这是由于光纤中存在材料吸收和散射等因素造成的。

为了减小损耗,优化光纤的材料和结构是很重要的。

色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。

实验结果显示,不同波长的光信号到达时间存在差异。

这是由于光纤中折射率随波长变化而引起的色散效应。

为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。

实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。

通过实验,我们对这两种光纤的传输特性进行了研究。

我们首先测试了单模光纤。

结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。

然后我们进行了多模光纤的实验。

实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。

因此,多模光纤适用于近距离传输和低速通信。

结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。

我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。

然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。

光通信实验报告

光通信实验报告

光通信实验报告一、实验目的光通信作为一种高速、大容量的通信方式,在现代通信领域中占据着重要地位。

本次实验的目的是深入了解光通信的基本原理,掌握光通信系统的搭建和调试方法,测量光通信系统的关键性能参数,并分析影响光通信系统性能的因素。

二、实验原理(一)光的发射光通信中,光源是关键组件之一。

常用的光源有半导体激光器(LD)和发光二极管(LED)。

半导体激光器具有高亮度、窄线宽、方向性好等优点,适用于长距离、高速率的通信;发光二极管则具有成本低、可靠性高、光谱较宽等特点,适用于短距离、低速通信。

(二)光的传输光在光纤中传输时,会发生折射、反射和吸收等现象。

光纤分为多模光纤和单模光纤。

多模光纤可传输多个模式的光,但其传输带宽较窄,适用于短距离通信;单模光纤只允许传输一个模式的光,具有低损耗、大带宽的特点,适用于长距离、高速通信。

(三)光的接收光接收器将接收到的光信号转换为电信号。

常用的光接收器有光电二极管(PIN)和雪崩光电二极管(APD)。

PIN 光电二极管结构简单、成本低,但灵敏度相对较低;APD 具有较高的灵敏度,但工作电压较高,噪声较大。

(四)调制和解调在光通信中,需要对电信号进行调制,将其加载到光载波上进行传输。

常用的调制方式有强度调制(IM)、频率调制(FM)和相位调制(PM)。

在接收端,需要对光信号进行解调,恢复出原始的电信号。

三、实验设备本次实验所用到的设备主要包括:1、半导体激光器及驱动电路2、光纤跳线及耦合器3、光功率计4、示波器5、信号源6、误码测试仪四、实验步骤(一)搭建光通信系统1、将半导体激光器与驱动电路连接好,调节驱动电流,使激光器输出稳定的光信号。

2、通过光纤跳线和耦合器将激光器的输出光信号耦合到光纤中。

3、在接收端,将光纤输出的光信号接入光接收器,并连接到后续的电路中。

(二)测量光功率1、使用光功率计测量激光器的输出光功率。

2、在光纤的不同位置测量光功率,观察光功率的衰减情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除
光通信实验报告
篇一:光通信实验报告
信息与通信工程学院
光纤通信实验报告
班姓学
级:名:号:
班内序号:17

期:20XX年5月
一、oTDR的使用与测量
1、实验原理
oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。

瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。

oTDR就测量回到oTDR端口的一部分散射光。

这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。


成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。

给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。

瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。

也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。

在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。

因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。

很自然,这些现象也会影响到oTDR。

作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。

而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。

菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。

在这些点上,会有很强的背向散射光被反射回来。

因此,oTDR就是利用菲涅尔反射的信息来定位连
接点,光纤终端或断点。

oTDR的工作原理就类似于一个雷达。

它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息。

这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱。

盲区的概念
Fresnel反射引出一个重要的oTDR规格,即盲区。

有两类盲区:事件和衰减。

两种盲区都由Fresnel反射产生,用随反射功率的不同而变化的距离来表示。

盲区定义为持续时间,在此期间检测器受高强度反射光影响暂时“失明”,直到它恢复正常能够重新读取光信号为止。

2、实验结果
本实验主要按照要求进行测量,测出在不同折射率条件下的背向散射法曲线,
第1页
并按照下图中所示方法求得所需的衰减常数与接头损耗:
则其所测得效果图如下所示:
第2页
二、脉冲展宽法测量多模光纤带宽
1、实验原理
多模光纤基带响应测试方法既可用频域的方法,也可用
时域的方法。

时域法利用的是脉冲调制。

按照对脉冲信号采集及数学处理方法的不同,又分为脉冲展宽法、快速傅立叶变换法和频谱分析法。

本实验采用的是较为简单的脉冲展宽法。

图1.多模光纤脉冲展宽测试仪原理图
如图1所示为多模光纤时域法带宽测试原理框图。

从光发模块输出窄脉冲信号,首先使用跳线(短光纤)连接激光器和光检测器,可以测出注入窄脉冲的宽度??1;然后将待测光纤替换跳线接入,可以测出经待测光纤后的脉冲宽度??2。

经过理论推导可以得到求解带宽公式:
b
多模光纤脉冲展宽测试仪如图2所示。

前面板接口分上下两层。

上层用于850nm测试,下层为1310nm。

每个波长分别由窄脉冲发生器输出极窄光脉冲经被测光纤回到测试仪
内进行o/e变换后送出电信号,通过高速示波器即可显示。

本实验测试850nm波段和1310nm波段,采用的数字示波器如图3所示。

ghz)(:光通信实验报告)
第3页
图2.多模光纤脉冲展宽测试仪实物图
图3.实验采用的数字示波器实物图
2、实验步骤
接跳线测试:
1.打开测试仪电源开关(位于背面),前面板上的电源指示灯亮;
2.将示波器输入端与本仪器850nm的“RFouT”输出端用信号线接好;
3.用一根光纤跳线将850nm的“opTIcALIn”和“opTIcALouT”连接起来;
4.进行示波器操作:
a)按AuTo-scALe键调出波形;
b)点击TImebAse键,并通过右下方旋钮调整脉冲至适当宽度(一般设置为10.0ns/div);
c)点击?t、?V键,显示屏右方会出
现?Vmarkers(off/on)、?Vmarkers(off/on)选框,先通过右侧对应按键将?Vmarkers设为on,分别调节Vmarker1和Vmarker2测出脉冲高度并找出脉冲半高值;再将?Vmarkers 设为on,分别调节tmarker1和tmarker2使其与脉冲半高值相交。

则有tmarker2-tmarker1即为脉冲半高全宽?1。

接光纤测试:
换下该光纤跳线,接入待测光纤用同样方法测出?2。

3、实验结果
第4页
篇二:光通信技术实验报告
光通信技术实验报告
实验一光通讯系统wDm系统设计。

相关文档
最新文档